Femtocode: querying HEP data

Jim Pivarski

Princeton University – DIANA

May 23, 2017
A data analyst’s life

Reducing a large set of files into a small set of files to make plots.

The last dataset must be small enough to permit real time plotting and re-plotting.
Assertion: if physicists *could* make plots (and other aggregations for statistical analysis) directly from the collaboration’s Analysis Object Data in real time, they *would*.
Rapid queries on big data are possible; in fact, it’s a big field:
Database-style interaction

Rapid queries on big data are possible; in fact, it’s a big field:

- Instead of users maintaining private skims, running local processes, they share a distributed query server.
Rapid queries on big data are possible; in fact, it’s a big field:

- Instead of users maintaining private skims, running local processes, they share a distributed query server.
- Instead of fetching data from disk, cache in RAM/SSD/X-Point.
Database-style interaction

Rapid queries on big data are possible; in fact, it’s a big field:

- Instead of users maintaining private skims, running local processes, they **share** a distributed query server.
- Instead of fetching data from disk, **cache** in RAM/SSD/X-Point.
- Instead of evaluating user’s code as-is, **translate** it into a form that optimizes memory bandwidth.
Rapid queries on big data are possible; in fact, it’s a big field:

- Instead of users maintaining private skims, running local processes, they share a distributed query server.
- Instead of fetching data from disk, cache in RAM/SSD/X-Point.
- Instead of evaluating user’s code as-is, translate it into a form that optimizes memory bandwidth.
- Instead of executing operations on nested objects, execute on flat arrays of numbers.
Most users need mostly the same input variables.

- For instance, all muon analyses use the same kinematic variables and might also use different isolation variables.
- Exact fraction is unknown, but we know that analysis groups share ntuplizers that slim the same 10% (4 kB/event) of CMS MiniAOD.

If, say, half of the variables are shared and half are not, a server distributed across a cluster with 10 TB of RAM effectively gives each user 5 TB + ϵ of RAM.
Columns for a dataset do not need to come from the same file.

Extreme version of the “friend TTree” concept (superfriends).
The limitation

- row-wise
- columnar

(what it means)

- flat tables
- nested structures

(how it's stored)
The limitation

- **row-wise**
 - flat tables
 - columnar
- **columnar**
 - nested structures

(what it means)
The limitation

- Row-wise
- Columnar
- Flat tables
- Nested structures

(what it means)

(how it's stored)
Physicist’s view

Muon object schema:

collection(record(
 pt = real(0, almost(inf)),
 eta = real,
 phi = real(-pi, pi)))

Example query:

muons.filter(mu => mu.pt > 5)
 .map(mu => mu.pt * sinh(mu.eta))
 .max

Return type:

union(null, real)

Execution engine

Physical representation:

muons.pt: [31.09, 9.76, 8.18, ...]
muons.phi: [-0.48, 0.12, 0.12, ...]
muons.eta: [0.88, 0.92, -0.26, ...]
muons@size: [3, 1, 1, 2, ...]

Example execution:

1. Compute muons.pt > 5 for all muons.
2. Compute sinh(muons.eta) for elements in which #1 is true.
3. Compute muons.pt * #2 for elements in which #1 is true.
4. Pick the maximum #3 value or NaN, returning array with one value per event.
Representing objects as flat arrays

For simple collections of records (e.g. particles), these arrays have the same interpretation as ROOT TLeaves:

- data arrays contain all values, ignoring event boundaries,
- size array contains the size of each event’s collection.

Given:

```
[ [ a b c ] [ d e f g ] ] [ [ h ] [ i j ] ]
```

Data array:

```
a b c d e f g h i j
```

Recursive counter:

```
2 3 4 2 1 2
```

Except for runtime calculations, rather than just on disk.

For collections of collections (with fixed, known depth), we can extend this definition recursively:
For simple collections of records (e.g. particles), these arrays have the same interpretation as ROOT TLeaves:

- data arrays contain all values, ignoring event boundaries,
- size array contains the size of each event’s collection.

Except for runtime calculations, rather than just on disk.
Representing objects as flat arrays

For simple collections of records (e.g. particles), these arrays have the same interpretation as ROOT TLeaves:

- data arrays contain all values, ignoring event boundaries,
- size array contains the size of each event’s collection.

Except for runtime calculations, rather than just on disk.

For collections of collections (with fixed, known depth), we can extend this definition recursively:

Given:

\[
\begin{bmatrix}
[[a b c] [d e f g]] [[h] [i j]]
\end{bmatrix}
\]

Data array:

\[
\begin{align*}
& a & b & c & \quad & d & e & f & g & \quad & h & & i & j \\
\end{align*}
\]

Recursive counter:

\[
\begin{align*}
& 2 & 3 & \quad & 4 & \quad & 2 & 1 & \quad & 2
\end{align*}
\]
Granular unit of parallelization

Each query might touch any column, so the unit of parallelization is a group of columns with an integer number of events.
Query system layout

- **client**: pure Python, part of the base Femtocode package.
- **dispatch**: assigns subtasks to `compute` if not in store, compiles code, redirects metadb, and aggregates all results.
- **compute**: performs calculations in first-ready-first-serve order, maintains an input data cache, sends results to store.
- **store**: saves partial results for a specified length of time (days or weeks). Lets users repeat queries with impunity.
- **metadb**: responds to requests for dataset descriptions at client and compute levels of detail.
- **datadb**: original input data from the experiments, may be EOS/ROOT.

- Query and progress (same call)
- Get input data
- Get detailed descriptions
- Get results
- Assign work
- Save results
- Create new tables for users to query
- Redirect requests for dataset descriptions
pending = session.source("ZZ_13TeV_pythia8")
.define(mumass = "0.105658") # chain of operations on source
.toPython(mass = "")

muons.map(mu1 => muons.map(
 {mu2 =>
 p1x = mu1.pt * cos(mu1.phi);
p1y = mu1.pt * sin(mu1.phi);
p1z = mu1.pt * sinh(mu1.eta);
E1 = sqrt(p1x**2 + p1y**2 + p1z**2 + mumass**2);
 })))

doubly nested loop over muons

p2x = mu2.pt * cos(mu2.phi);
p2y = mu2.pt * sin(mu2.phi);
p2z = mu2.pt * sinh(mu2.eta);
E2 = sqrt(p2x**2 + p2y**2 + p2z**2 + mumass**2);

px = p1x + p2x; py = p1y + p2y;
pz = p1z + p2z; E = E1 + E2;

"if" is required to avoid sqrt(-x)
if E**2 - px**2 - py**2 - pz**2 >= 0:
 sqrt(E**2 - px**2 - py**2 - pz**2)
else:
 None # output type is nullable

})
""".submit()
final = pending.await() # asynchronous submission to
watch result accumulate

Yes, we see the Z peak.
Comparing apples and bananas

I/O-bounded operation (plus) on 806 177 jet p_T values (6.15 MB):

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.018 MHz</td>
<td>CMSSW EDAnalyzer (too many branches loaded)</td>
</tr>
<tr>
<td>1.5 MHz</td>
<td>TTree::Draw into single-bin histogram</td>
</tr>
<tr>
<td>2.8 MHz</td>
<td>minimal disk read and unzip (ROOT or Numpy)</td>
</tr>
<tr>
<td>12 MHz</td>
<td>allocating C++ objects on heap, iterating, deleting</td>
</tr>
<tr>
<td>31 MHz</td>
<td>allocating C++ objects on stack, iterating</td>
</tr>
<tr>
<td>54 MHz</td>
<td>current implementation of Femtocode loop*</td>
</tr>
<tr>
<td>250 MHz</td>
<td>minimal single-threaded loop in C (our goal)</td>
</tr>
<tr>
<td>8 000 MHz</td>
<td>same loop on 128 threads in KNL’s MCDRAM</td>
</tr>
<tr>
<td>57 000 MHz</td>
<td>equivalent on Tesla P100-SXM2 GPU</td>
</tr>
</tbody>
</table>

*Not final.
Shared query-based data access is worth pursuing.

Femtocode is an implementation of that idea, and is starting to work.
Femtocode always appears in quotes (like SQL). It is a big-data aggregation step that feeds into a traditional analysis.

A query is a “workflow” from source to aggregation, compiled and submitted as one unit.

e.g. `source("dataset").define(X).define(Y).histogrammar(Z)`

Most Femtocode snippets are tiny (hence “femto”), scattered throughout a Histogrammar aggregation:

```python
session.source("dataset")
    .define(goodmuons = ""...""")  # define good muons
    .filter("goodmuons.size >= 2")  # cut on them
    .define(dimuon = ""...""")  # define dimuons
    .bundle(  # plot their attributes
        mass = bin(120, 0, 12, "dimuon.mass"),
        pt = bin(100, 0, 100, "dimuon.pt"),
        eta = bin(100, -5, 5, "dimuon.eta"),
        phi = bin(314, 0, 2*pi, "dimuon.phi + pi"),
        # also plot the muons
        muons = loop("goodmuons", "mu", bundle(
            pt = bin(100, 0, 100, "mu.pt"),
            eta = bin(100, -5, 5, "mu.eta"),
            phi = bin(314, -pi, pi, "mu.phi"))))
```
Loop over pairs of muons is constructed by nesting functionals:
"muons.map(mu1 => muons.map(mu2 => f(mu1, mu2)))"
is equivalent to

```python
list_of_lists = []
for mu1 in muons:
    list_of_numbers = []
    for mu2 in muons:
        list_of_numbers.append(f(mu1, mu2))
    list_of_lists.append(list_of_numbers)

return list_of_lists
```

There will someday be more convenient forms: pairs, table, filter, flatten, flatMap, zip, permutations, etc.

(The dimuon example would ideally use pairs to avoid double-counting and flatten to destructure the list-of-lists. Or better yet, pick two by p_T to get one candidate per event.)
Type system requires domain of \(\text{sqrt} \) to be guarded:

\[
\text{sqrt}(E^{*2} - px^{*2} - py^{*2} - pz^{*2})
\]

FemtocodeError: Function "sqrt" does not accept arguments with the given types:

\[
\text{sqrt}(\text{real})
\]

The \text{sqrt} function can only be used on non-negative numbers.

Check line:col 19:2 (pos 401):

\[
\text{sqrt}(E^{*2} - px^{*2} - py^{*2} - pz^{*2})
\]

To resolve this compile-time error, we write:

\[
\begin{align*}
\text{if } & E^{*2} - px^{*2} - py^{*2} - pz^{*2} \geq 0: \\
& \text{sqrt}(E^{*2} - px^{*2} - py^{*2} - pz^{*2}) \\
\text{else:} & \\
& \text{None}
\end{align*}
\]

The compiler tracks each subexpression’s interval of validity:

\(E^{*2} - px^{*2} - py^{*2} - pz^{*2} \) is limited to \(\text{real}(\text{min}=0, \text{max}=\text{inf}) \).

In the future, we could use SymPy to discover this algebraically.
Another thing to notice

```
muons.map(mu1 => muons.map(
  {mu2 =>
    p1x = mu1.pt * cos(mu1.phi);
    p1y = mu1.pt * sin(mu1.phi);
    p1z = mu1.pt * sinh(mu1.eta);
    E1 = sqrt(p1x**2 + p1y**2 + p1z**2 + mumass**2);

    p2x = mu2.pt * cos(mu2.phi);
    p2y = mu2.pt * sin(mu2.phi);
    p2z = mu2.pt * sinh(mu2.eta);
    E2 = sqrt(p2x**2 + p2y**2 + p2z**2 + mumass**2);

    px = p1x + p2x;
    py = p1y + p2y;
    pz = p1z + p2z;
    E = E1 + E2;

    if E**2 - px**2 - py**2 - pz**2 >= 0:
      sqrt(E**2 - px**2 - py**2 - pz**2)
    else:
      None
  } for mu2)
))
```
The dimuon example, after “compilation”

Sized by muons[@size]:

```
#0 := cos(muons[]-phi)
#1 := *(muons[]-pt, #0)
#2 := **(#1, 2)
#3 := sin(muons[]-phi)
#4 := *(muons[]-pt, #3)
#5 := **(#4, 2)
#6 := sinh(muons[]-eta)
#7 := *(muons[]-pt, #6)
#8 := **(#7, 2)
#9 := +(2, #5, #8, 0.011164)
#10 := sqrt(#9)
```

type(#10) == real(0.105658, almost(inf))

Sized by #11@size:

```
#11@size := $explodesize(muons[], muons[])
#11 := $explodedata(#10, #11@size, (muons[]))
#12 := $explodedata(#10, #11@size, (muons[], muons[]))
#13 := +(11, #12)
#14 := **(#13, 2)
#15 := $explodedata(#1, #11@size, (muons[]))
#16 := $explodedata(#1, #11@size, (muons[], muons[]))
#17 := +(15, #16)
#18 := **(#17, 2)
#19 := -(#14, #18)
#20 := $explodedata(#4, #11@size, (muons[]))
#21 := $explodedata(#4, #11@size, (muons[], muons[]))
#22 := +(20, #21)
#23 := **(#22, 2)
#24 := -(#19, #23)
#25 := $explodedata(#7, #11@size, (muons[]))
#26 := $explodedata(#7, #11@size, (muons[], muons[]))
```

```
#27 := +(25, #26)
#28 := **(#27, 2)
#29 := -(#24, #28)
#30 := >=(#29, 0)
#31 := <(#29, 0)
#32 := -(#24, #28)
#33 := sqrt(#32)
#34 := if(#30, #31, #33, None)
```

type(#34) == union(null, real(0, almost(inf)))

muons[]-pt, muons[]-phi, muons[]-eta, muons[]@size, and everything that starts with a # is (at least conceptually) a big array of values.

All functions except $explode* would make good GPU kernels.
Suppose we have this dependency graph.

We are free to choose where to put the loops.

\(a, b, c, d, e, \) and \(f \) are all large arrays

\(t_9 \) must also be a large array

Intermediate steps need not be

\(\otimes \) is some operation
Freedom to choose the looping structure

At every step:

foreach i:
 t0[i] := a[i] ⊗ b[i]
foreach i:
 t1[i] := c[i] ⊗ d[i]
foreach i:
 t2[i] := e[i] ⊗ f[i]
foreach i:
 t3[i] := t0[i] ⊗ t1[i]
foreach i:
 t4[i] := t1[i] ⊗ t2[i]
foreach i:
 t5[i] := t4[i] ⊗ t2[i]
foreach i:
 t6[i] := t1[i] ⊗ t3[i]
foreach i:
 t7[i] := t5[i] ⊗ t6[i]
foreach i:
 t8[i] := t7[i] ⊗ t5[i]
foreach i:
 t9[i] := t8[i] ⊗ t4[i]
Freedom to choose the looping structure

Around everything:

foreach i:
 t0 := a[i] ⊗ b[i]
 t1 := c[i] ⊗ d[i]
 t2 := e[i] ⊗ f[i]
 t3 := t0 ⊗ t1
 t4 := t1 ⊗ t2
 t5 := t4 ⊗ t2
 t6 := t1 ⊗ t3
 t7 := t5 ⊗ t6
 t8 := t7 ⊗ t5
 t9[i] := t8 ⊗ t4
Freedom to choose the looping structure

Or an intermediate case:

```plaintext
t0 := a ⊗ b
t1 := c ⊗ d
t2 := e ⊗ f
t3 := t0 ⊗ t1
t4 := t1 ⊗ t2
t5 := t4 ⊗ t2
t6 := t1 ⊗ t3
t7 := t5 ⊗ t6
t8 := t7 ⊗ t5
t9 := t8 ⊗ t4
```

Note that this changes which quantities are arrays and which are scalars.

```plaintext
foreach i:
    t0 := a[i] ⊗ b[i]
    t1 := c[i] ⊗ d[i]
    t2[i] := e[i] ⊗ f[i]
    t3 := t0 ⊗ t1
    t4[i] := t1 ⊗ t2
    t6[i] := t1 ⊗ t3
```

```plaintext
foreach i:
    t5 := t4[i] ⊗ t2[i]
    t7 := t5 ⊗ t6
    t8 := t7 ⊗ t5
    t9[i] := t8 ⊗ t4
```
Three kinds of operations in each plateau

Explode: increase cardinality of one array so that it matches another. Determines the indexing of the loop, so must be first.

Flat: apply function to all members of two aligned data arrays, ignoring event boundaries. Intermediate steps need not be arrays.

Implode: combine results (sum, mean, max, etc.) to reduce cardinality of an array. Size of output arrays are not constrained by the indexing of the loop. Must be last.
Using ROOT functions in Femtocode

```
import ctypes
libMathCore = ctypes.cdll.LoadLibrary("libMathCore.so")
chi2_ctypes = libMathCore._ZN5TMath17ChisquareQuantileEdd  # c++filt!
chi2_ctypes.argtypes = (ctypes.c_double, ctypes.c_double)
chi2_ctypes.restype = ctypes.c_double

Creating a custom library (on the Femtocode client):
from femtocode.typesystem import *
from femtocode.lib.custom import *
def chi2_sig(x, n):
    # Compile-time type-safety: assert parameter types, provide return type.
    assert isinstance(x, Number) and \
        almost.min(0, x.min) == 0 and almost.max(x.max, almost(1)) == almost(1)
    assert isinstance(n, Number) and n.whole and n.min > 0
    return real(0, almost(inf))

custom = CustomLibrary()  # module name    symbol name    signature
custom.add(CustomFlatFunction("chi2", "ROOT.some_library", "chi2_ctypes", chi2_sig))

Running a Femtocode query that uses this library:
from femtocode.run.execution import NativeTestSession
session = NativeTestSession()

# Define a dataset with the right types and fill it with dummy data.
numerical = session.source("Test", x=real(0, almost(1)), n=integer(1, almost(inf)))
for i in range(100):
    numerical.dataset.fill({"x": i / 100.0, "n": i + 1})

# Femtocode calls TMath::ChisquareQuantile without involving Python at all.
result = numerical.toPython(out = "chi2(x, n)").submit(libs=[custom])
for entry in result:
    print entry
```
Femtocode’s design philosophy is to do work up-front to streamline the event loop. In the distributed server, managing subtasks is part of this up-front work. Time to completion could be summarized as

\[\text{time} = C_1 + C_2(n_{\text{cores}}) \cdot N_{\text{subtasks}} + \frac{C_3}{n_{\text{cores}}} \cdot N_{\text{events}} \]

- \(C_1 \) is a constant, dominated by 70 ms of JIT-compilation time,
- \(C_2(n_{\text{cores}}) \) is the time spent managing subtasks, a complex concurrent processes affected by Amdahl’s law.
- \(C_3 \) is the part that actually executes the user’s query; it is natively compiled and embarrassingly parallel.

The order parameter in this problem is \(N_{\text{events}} \). We get to choose \(\frac{N_{\text{subtasks}}}{N_{\text{events}}} \) and can simply make partitions larger if the Pythonic “data management” part becomes an issue.