
Performing amplitude fits with
TensorFlow:

LHCb experience

Anton Poluektov

University of Warwick, UK

23 May 2017

On behalf of LHCb collaboration

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 1/13



Introduction: amplitude analyses at LHCb
Pentaquark analysis:
[PRL 115 (2015) 072001]

∼ 26000 events, 6D phase space,

unbinned ML fit

]2[GeVKp
2m

2 3 4 5 6

]2
[G

eV
p

ψ
J/2

m

16

18

20

22

24

26 LHCb

Λ
∗

re
so

n
an

ce
s

J/ψp resonance

 [GeV]pψ/Jm
4 4.2 4.4 4.6 4.8 5

E
ve

nt
s/

(1
5 

M
eV

)

0

100

200

300

400

500

600

700

800

LHCb(b)

 [GeV]pKm
1.4 1.6 1.8 2 2.2 2.4 2.6

E
ve

nt
s/

(1
5 

M
eV

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

LHCb(a)

data
total fit
background

(4450)cP
(4380)cP
(1405)Λ
(1520)Λ
(1600)Λ
(1670)Λ
(1690)Λ
(1800)Λ
(1810)Λ
(1820)Λ
(1830)Λ
(1890)Λ
(2100)Λ
(2110)Λ

Λ
Λ

μ

μ

μ

μ

ψ

pp
KKθ θ φ

θ

*

+

−

+

−
K − −

ψ Λ

Λ

b

*
ψ *

φ  = 0

Λ

Λ

φ μψ
*

Λ

b

lab frame

rest frame
0

0

rest frame

∗

x

z

b

Λ

rest frame

Many analyses at LHCb are using
amplitude fits:

Very powerful analysis technique.
Complex unbinned fits with many
free parameters over a
multidimensional phase space
(typically 2–8 dims.)
From thousands (rare B decays) to
many millions (charm decays)
events to fit.

Several existing frameworks
(Laura++, MINT, GooFit) typically
limited to a subset of possible
analyses (e.g. 2D Dalitz plots).

Looking at more flexible alternatives
to perform amplitude fits efficiently.

Today: experience with TensorFlow

library.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 2/13

http://arxiv.org/abs/1507.03414


Introduction

Warning for those familiar with TensorFlow: this is not a talk about
machine learning. This is a talk about using TensorFlow for maximum
likelihood fits (in particular, amplitude fits).

Amplitude analyses

Large amounts of data

Complex models

... which depend on
optimisable parameters

Optimise by minimising neg.
log. likelihood (NLL)

Need tools which allow

Convenient description of
models
Efficient computations

Machine learning

Large amounts of data

Complex models

... which depend on
optimisable parameters

Optimise by minimising cost
function

Need tools which allow

Convenient description of
models
Efficient computations

Many software tools are developed for machine learning, could reuse some of
them in HEP analyses.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 3/13



TensorFlow library

[Tensorflow webpage]

[White Paper]

“TensorFlow is an open source software library for
numerical computation using data flow graphs.”
Released by Google in October 2015.

Uses computer algebra paradigm: instead of actually
running calculations, you describe what you want to
calculate (computational graph)

TF can then do various operations with your graph,
such as:

Optimisation (e.g. caching data, common subgraph
elimination to avoid calculating same thing many
times).
Compilation for various architectures (multicore,
multithreaded CPU, mobile CPU, GPU, distributed
clusters).
Analytic derivatives to speed up gradient descent.

Has Python, C++ and Java front-ends. Python is more
developed and (IMO) more convenient. Faster
development cycle, more compact and readable code.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 4/13

https://www.tensorflow.org/
http://download.tensorflow.org/paper/whitepaper2015.pdf


TensorFlow: basic structures

TF represents calculations in the form of directional
data flow graph.

Nodes: operations

Edges: data flow

f = a*tf.sin(w*x + p)

Data are represented by tensors (arrays of arbitrary dimensionality)

Most of TF operations are vectorised, e.g. tf.sin(x) will calculate
element-wise sin xi for each element xi of multidimensional tensor x.

Input data can take the form of

Placeholders: abstract structure which is assigned a value only at execution
time. Typically used to feed training data (ML) or data sample to fit to
(our case).

Variables: assigned an initial value, can change the value over time.
Tunable parameters of the model.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 5/13



TensorFlow: graph building and execution

To build a graph, you define inputs and TF operations acting on them:
import tensorflow as tf

# define input data (x) and model parameters (w,p,a)
x = tf.placeholder( tf.float32, shape = ( None ) )
w = tf.Variable( 1. )
p = tf.Variable( 0. )
a = tf.Variable( 1. )

# Build calculation graph
f = a*tf.sin(w*x + p)

(note that calculation graph is described using TF building blocks. Can’t use
existing libraries directly)
Nothing is executed at this stage. The actual calculation runs in the TF session:

# Create TF session and initialise variables
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# Run calculation of y by feeding data to tensor x
f_data = sess.run( f, feed_dict = { x : [1., 2., 3., 4.] })

print y_data # [ 0.84147096 0.90929741 0.14112 -0.7568025 ]

Input/output in sess.run is numpy arrays.
Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 6/13



TensorFlow: features for amplitude analyses

Built-in optimisers

Built-in minimisation functions OK for ANN training, but not for physics (no
uncertainties, likelihood scans). Use MINUIT instead, and run TF only for
likelihood calculation (custom FCN in python, run MINUIT using PyROOT).

Analytic gradient

Extremely useful feature of TF is automatic calculation of the graph for analytic
gradient of any function (speed up convergence!)

tfpars = tf.trainable_variables() # Get all TF variables
grad = tf.gradients(chi2, tfpars) # Graph for analytic gradient

This is called internally in the built-in optimizers, but can be called explicitly
and passed to MINUIT.

Partial execution

In theory, TF should be able to identify which parts of the graph need to be
recalculated (after, e.g. changing value of tf.Variable), and which can be
taken from cache.
In practice, this does not always work as expected, but there is a possibility to
inject a value of a tensor in sess.run using feed_dict manually.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 7/13



TensorFlowAnalysis package

Project in gitlab: [TensorFlowAnalysis].

TF can serve as a framework for maximum likelihood fits (and amplitude fits in
particular). Missing features that need to be added:

ROOT interface to read/write ntuples.

MINUIT interface for minimisation.

Library of HEP-related functions.

Simplified standalone Dalitz plot generation/fitting script using only TF and
ROOT. [DemoDalitzFit.py]

Only around 200 lines of Python, thanks to very compact code, e.g.:

def RelativisticBreitWigner(m2, mres, wres) :
return 1./Complex(mres**2-m2, -mres*wres)

def UnbinnedLogLikelihood(pdf, data_sample, integ_sample) :
norm = tf.reduce_sum(pdf(integ_sample))
return -tf.reduce_sum(tf.log(pdf(data_sample)/norm ))

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 8/13

https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/blob/master/demo/DemoDalitzFit.py


TensorFlowAnalysis: structure

Unlike many other amplitude analysis frameworks, TensorFlowAnalysis is
basically a collection of standalone functions for components of the
amplitude. These are then glued together in TF itself.
Components of the library are:

Phase space classes (Dalitz plot, four-body, baryonic 3-body, angular etc.):
provide functions to check if variable is inside the phase space, to generate
uniform distributions etc.

Fit parameter class: derived from tf.Variable, adds range, step size etc.
for MINUIT

Interface for MINUIT, integration, unbinned log. likelihood

Functions for toy MC generation, calculation of fit fractions.

Collection of functions for amplitude description:

Lorentz vectors: boosting, rotation
Kinematics: two-body breakup momentum, helicity angles
Helicity amplitudes, Zemach tensors
Dynamics: Breit-Wigner functions, form factors, non-resonant shapes
Elements of covariant formalism (polarisation vectors, γ matrices, etc.)
Multilinear interpolation of ROOT histograms

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 9/13



TensorFlowAnalysis: status and plans

Code is functional for
conventional 2D Dalitz
plots and baryonic 3-body
decays like Λ0

b → D0pπ−.
Examples in
[TensorFlowAnalysis/work]

Possible directions of development

Extending library of function: as needed by the analyses.

Saving/loading of compiled graphs.

Optimisations of CPU/memory usage, more intelligent caching.

Self-documenting feature. Could use Python magic to automatically
generate LaTeX description of formulas entering the fit (by replacing the
input tensors with special Python objects).

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 10/13

https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/blob/master/work/


TensorFlowAnalysis: benchmarks

Benchmark runs (fit time only).
CPU: Intel Core i5-3570 (4 cores), 3.4GHz, 16Gb RAM
GPU: NVidia GeForce 750Ti (640 CUDA cores), 2Gb VRAM

Time, sec
Iterations No caching Forced caching

CPU GPU CPU GPU

D0 → K 0
Sπ

+π−, 100k events, 500× 500 norm.
Numerical grad. 2656 484 247 486 272
Analytic grad. 297 69 67 68 70
D0 → K 0

Sπ
+π−, 1M events, 1000× 1000 norm.

Numerical grad. 2271 3196 1247 3012 1374
Analytic grad. 1146 1678 829 1585 864
Λ0
b → D0pπ−, 10k events, 400× 400 norm.

Numerical grad. 7258 1046 302 418 250
Analytic grad. 397 66 67 39 66
Λ0
b → D0pπ−, 100k events, 800× 800 norm.

Numerical grad. 6116 3503 400 1802 382
Analytic grad. 280 211 201 116 196

D0 → K 0
Sπ

+π− amplitude: isobar model, 18 resonances, 36 free parameters
Λ0
b → D0pπ− amplitude: 3 resonances, 4 nonres amplitudes, 28 free parameters
Forced caching: enforce caching of helicity tensors.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 11/13



TensorFlowAnalysis: problems and limitations

TensorFlow is not readily available at CERN lxplus.

Installing from binaries on Debian-based systems and Mac is straightforward.
With SLC, need to install from source. Tricky, but doable.

Memory usage: can easily exceed a few Gb of RAM for large datasets
(charm) or complicated models.

Especially with analytic gradient
Limiting factor with consumer-level GPU.

Double precision is essential

Performance issues with consumer-level GPUs

In some cases, models run faster on CPU than on GPU

Some TF computational kernels are not yet implemented on GPU
RAM–VRAM data transfer issues?

Probably less efficient than dedicated code developed with CUDA/Thrust,
but way more flexible and easy to hack.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 12/13



Summary

Google made a good job providing us a functional framework for doing
complicated fits: TensorFlow

Why I think this approach is promising:

Can utilise modern computing architectures (mutithreaded,
massively-parallel, distributed) without deep knowledge of their structure.
Interesting optimisation options, e.g. analytic derivatives help a lot for fits
to converge faster.
Transparent structure of code. Only essence of things, no auxiliary low-level
technical stuff in the description of functions.
Resulting models very portable and (with minor effort) can work standalone
w/o the framework. Should be easy to e.g. share with theorists.
Flexible python interface can allow further tricks, e.g. automatic generation
of LaTeX documentation or custom code generation.
Useful training value for students who will leave HEP for industry.

As any generic solution, possibly not as optimal as specially designed tool.
But taking development cycle into account, very competitive.

TensorFlowAnalysis package: collection of functions to perform
amplitude analysis fits. In active development, used for a few ongoing
baryonic decay analyses at LHCb.

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 13/13



BACKUP

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 14/13



TensorFlow: minimisation algorithms

TensorFlow has its own minimisation algorithms:

# Placeholder for data
y = tf.placeholder( tf.float32, shape = ( None ) )

# Define chi2 graph using previously defined function f
chi2 = (f-y)**2

# TF optimiser is a graph operation as well
train = tf.train.GradientDescentOptimizer(0.01).minimize( chi2 )

# Run 1000 steps of gradient descent inside TF session
for i in range(1000) :
sess.run(train, feed_dict = {

x : [1., 2., 3., 4., 5.], # Feed data to fit to
y : [3., 1., 5., 3., 2.] } )

print sess.run( [a,w,p] ) # Watch how fit parameters evolve

Built-in minimisation functions seem to be OK for ANN training, but not
for physics (no uncertainties, likelihood scans)

MINUIT seems more suitable. Use it instead, and run TF only for likelihood
calculation (custom FCN in python, run Minuit using PyROOT).

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 15/13



TensorFlowAnalysis: structure of a fitting script

Experimental data are represented in TensorFlowAnalysis as a 2D tensor
data[candidate][variable]

where inner index corresponds to event/candidate, outer to the phase space
variable. E.g. 10000 Dalitz plot points would be represented by a tensor of
shape (10000, 2).

In the fitting script, you would start from the definitions of phase space, fit
variables and fit model:

phsp = DalitzPhaseSpace(ma, mb, mc, md) # Phase space

# Fit parameters
mass = Const(0.770)
width = FitParameter("width", 0.150, 0.1, 0.2, 0.001)
a = Complex( FitParameter("Re(A)", ...), FitParameter("Im(A)", ...) )

def model(x) : # Fit model as a function of 2D tensor of data
m2ab = phsp.M2ab(x) # Phase space class provides access to individual
m2bc = phsp.M2bc(x) # kinematic variables
ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ...
return Abs(ampl)**2

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 16/13



TensorFlowAnalysis: structure of a fitting script

Subtlety: fit model f (x) enters differently into data and normalisation terms in
the likelihood:

− lnL = −
(∑

ln f (xdata)− Ndata ln
∑

f (xnorm)
)

Thus need to create two graphs for the model as a function of data and
normalisation sample placeholders:

model_data = model( phsp.data_placeholder )
model_norm = model( phsp.norm_placeholder )

Now can create normalisation sample, and read data e.g.
norm_sample = sess.run( phsp.RectangularGridSample(500,500) )
data_sample = ReadNTuple(...)

Create the graph for negative log. likehood:
norm = Integral( model_norm )
nll = UnbinnedNLL( model_data, norm )

And finally call MINUIT feeding the actual data and norm samples to
placeholders

result = RunMinuit(sess, nll, { phsp.data_placeholder : data_sample ,
phsp.norm_placeholder : norm_sample } )

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 17/13



TensorFlowAnalysis: structure of a fitting script

Call to
result = RunMinuit(sess, nll, ... )

internally includes calculation of analytic gradient for NLL. See benchmarks
below to get the idea how that helps.

Since NLL graph is defined separately, it should be easy to construct custom
NLLs for e.g. combined CPV-allowed fits of two Dalitz plots.

norm = Integral(model1_norm) + Integral(model2_norm)
nll = UnbinnedNLL(model1_data, norm) + UnbinnedNLL(model2_data, norm)

Example: [Ξ−
b → pK−K− CPV-enabled toy MC]

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 18/13

https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/blob/master/work/Xib2pKK_CP.py


Examples in TensorFlowAnalysis/work

List of example fitting/toy MC scripts in the master branch of TensorFlowAnalysis

AngularFit.py Fit in 3D angular phase space a la B0 → K∗µ+µ−

D2KsPiPi.py Realistic amplitude for D0 → K 0
Sπ

+π− with 18 resonances, incl.
background

DalitzTF.py Simplified amplitude for D0 → K 0
Sπ

+π−

FourBodyToys.py Toy MC generation for 4-body Λ0
b → pπ−π−π+

HistInterpolation.py Example of using interpolated 2D shape from ROOT
histogram (e.g. for efficiency or background)

Lb2Dppi.py Λ0
b → D0pπ− amplitude fit in helicity formalism

Lb2DppiCovariantFit.py Λ0
b → D0pπ− amplitude fit in convariant formalism

Lb2DppiCovariantToys.py Toy MC generation of resonances in Λ0
b → D0pπ− using

convariant formalism

Lc2pKpi.py Realistic Λ+
c → pK−π+ amplitude using helicity formalism. Includes

non-uniform efficiency

Xib2pKK CP.py CPV-allowed combined fit of two Dalitz plots of Ξ−
b → pK−K−

Anton Poluektov Experience with TensorFlow Analysis Ecosystem Workshop, Amsterdam, 22-24 May 2017 19/13


