
Parallel and Functional based
Analysis in ROOT (TDataFrame)
Pere Mato on behalf of the ROOT Team

TDataFrame
✤ New way to interact with ROOT columnar format

✤ Inspiration taken from widely spread tools such as Pandas or Spark
✤ Concept proposed earlier (e.g. LINQToROOT by G. Watts)

✤ Analysis expressed as a chain of transformations and actions
✤ Transformation: filter, add a column, …
✤ Actions: Fill an histo, a profile, count events, …

✤ The user specifies the What and ROOT chooses the How
✤ Computation is only triggered at the end of the chain having the

full knowledge of what the user wants to do
✤ Great opportunity for optimizations (partitioning, caching, re-

ordering, parallelization, etc.)
2

Controlling the Loop

(+) The current interface the user has full control of the event-loop
(-) needs some boilerplate
(-) running the event-loop in parallel is not trivial
(-) users implement trivial operations again and again

3

Controlling the Loop

(+) The current interface the user has full control of the event-loop
(-) needs some boilerplate
(-) running the event-loop in parallel is not trivial
(-) users implement trivial operations again and again

4

ROOT will parallelize the operations.

(!) A thread safe DoStuff needed

Example: Cut and Fill

✤ Event-loop is run lazily, upon first access to the results

5

Example: Cut and Fill

✤ All actions are executed in the same event-loop

6

Example: Branching

✤ Not just functional chains but functional graphs

7

Implementation Status
✤ A type safe approach with everything templated

✤ E.g. usage of TTreeReader
✤ Good performance

✤ 0 copies
✤ read-decompress-deserialise only what is needed
✤ as many actions as the user specifies in a single event loop

✤ Sophisticated usage of Jitting behind the scenes possible
✤ Slimmer programming model accessible: user must not specify

column types, cling can jit the right template arguments
✤ Write expressions for new columns or filters as strings written in C++

8

Implementation Status (2)
✤ Python interface via PyROOT with jitted C++
✤ Write out transformed dataset in ROOT format, implicit parallelism

can be activated here too
✤ Write a tree from different threads (no one file per thread only!)  
 
 
 

✤ Plan to read other formats too (Parquet, CSV, SQL …)
✤ Benchmarking of TDataFrame and its SnapShot capabilities being

performed now on desktops, Xeon bleeding edge servers and KNL
✤ All this will be in ROOT 6.10

9

