OROOT

Data Analysis Framework

Parallel and Functional based

Analysis in ROOT (T'Datalrame)

Pere Mato on behalf of the ROOT Team

' Datalrame

* New way to interact with ROOT columnar format
+ Inspiration taken from widely spread tools such as Pandas or Spark
* Concept proposed earlier (e.g. LINQToROOT by G. Watts)
* Analysis expressed as a chain of transformations and actions
* Transtformation: filter, add a column, ...
* Actions: Fill an histo, a profile, count events, ...
* The user specifies the What and ROOT chooses the How

+ Computation is only triggered at the end of the chain having the
full knowledge of what the user wants to do

+ Great opportunity for optimizations (partitioning, caching, re-
ordering, parallelization, etc.)

/ ROOT 2

Jata An3ls 5 Fremew

Controlling the lL.oop

TTreeReader data(tree);

TTreeReaderValue<A> x(data, "x");
TTreeReaderValue y(data, "y"); TDataFrame data(tree, {"x","y","z"});
TTreeReaderValue<C> z(data, "z");

data.Filter(IsGoodEvent)
.Foreach(DoStuff);

while (reader.Next()) {
if (IsGoodEvent(x, y, z))
DoStuff(x, y, z);

(+) The current interface the user has full control of the event-loop
(-) needs some boilerplate
(-) running the event-loop in parallel is not trivial

(-) users implement trivial operations again and again

- ROOT

Jata Anals s Freme

Controlling the lL.oop

[ROOT will parallelize the operations.]

TTreeReader data(tree); \/
TTreeReaderValue<A> x(data, "x"); ROOT: E”ableﬂmﬂjfltMT()’
TTreeReaderValue y(data, "y"); TDataFrame data(tree, {"x 2"}
TTreeReaderValue<C> z(data, "z");

. data.Filter(IsGoodEvent)
while (reader.Next()) { .Foreach(DoStuff);

if (IsGoodEvent(x, y, z))

DoStuff(x, y, z);

} [(1) A thread safe DoStuff needed]

(+) The current interface the user has full control of the event-loop
(-) needs some boilerplate
(-) running the event-loop in parallel is not trivial

(-) users implement trivial operations again and again

- ROOT 4

Jata Anals s Freme

Example: Cut and Fill

auto IsPos = [](double x) { return x > 0.; };
TDataFrame d("tree", "data2017_*.root");
auto h = d.Filter(IsPos,{"theta"}).HistolD("pt");

h->Draw(); // event Loop is run here

* Event-loop is run lazily, upon first access to the results

RGO

Jata Anals s Fremewcrk

Example: Cut and Fill

- bool IsPos(double x) { return x > 0.; }
 bool IsNeg(double x) { return x < 0.; }
TDataFrame d("tree", "file.root");
~auto hl = d.Filter(IsPos, {"theta"}).HistolD("pt");

- auto h2 = d.Filter(IsNeg, {"theta"}).HistolD("pt");
|

|

hl->Draw(); // event Loop is run once here
h2->Draw("SAME"); // no need to run Loop again here

* All actions are executed in the same event-loop

J ROOT

Jata Anals s Fremewcrk

Fxample: Branching

TDataFrame d("tree", "file.root", {"x"});

// store a filtered data-frame with a new column

auto ¥ = d.Filter([](double a) { return a > 0.})

.AddColumn("z", Sum, {"x","y"});
// makRe multiple histograms out of 1t ‘

auto hz = f.HistolD("z"
auto hxy = f. H15t02D(" 5Ny e G °
auto hy = d. Pr‘ofllelD(" VA I G 0

I

* Not just functional chains but functional graphs

- ROOT

Jata Anals s Fremews

Implementation Status

* A type safe approach with everything templated

* E.g. usage of TTreeReader
* Good performance

* 0 copies

+ read-decompress-deserialise only what is needed

* as many actions as the user specifies in a single event loop
* Sophisticated usage of Jitting behind the scenes possible

* Slimmer programming model accessible: user must not specity
column types, cling can jit the right template arguments

* Write expressions for new columns or filters as strings written in C++

d -~ TDF(treeName, fileName)
n_cut - 'tracks.size() > 8°'
nentries - d.Filter(n_cut).Count();

"%s passed all filters" “nentries.GetValue()

Implementation Status (2)

* Python interface via PyROOT with jitted C++

* Write out transformed dataset in ROOT format, implicit parallelism
can be activated here too
* Write a tree from different threads (no one file per thread only!)

TDataFrame d(treeName, fileName):
auto d_cut = d.Filter("bl % 2 = 0");

auto d2 = d_cut.Define("bl_square', "bl * bl");
d2.Snapshot(treeName, outFileName, {"bl", "bl_square"});

* Plan to read other formats too (Parquet, CSV, SQL ...)

* Benchmarking of TDataFrame and its SnapShot capabilities being
performed now on desktops, Xeon bleeding edge servers and KNL

+ All this will be in ROOT 6.10

Jata Anals 5 Fremewcrk

