
VISION ‘25
HEP ANALYSIS ECOSYSTEM WORKSHOP

Gerhard Raven / VU Amsterdam + Nikhef / LHCb

VISION 25

DISCLAIMER…

▸ Quote Andrei Alexandrescu — Declarative
Control Flow [youtube]

▸ You are (trying to shape) shaping how
HEP analysis will look like!

▸ Responsibility: What if I make a really bad
suggestion and convince you?

▸ So: no answers / dictate — more of a
wishlist / perspective

VISION 25

WE ARE STILL DOING THE SAME THING (!?)

▸ Take a LEP-era physicist

▸ would be comfortable with an LHC
analysis — after being amazed about
the growth of data, computing &
complexity

▸ The growth in computing since the
early 90-ies to late 00-ies has allowed
us to be ~ conservative

VISION 25

EVOLVING CODE IS TAKING AWAY — AND INTRODUCE ABSTRACTIONS
▸ Structured programming — Dijkstra: GOTO considered harmful

▸ use loop constructs (for, while) instead

▸ Procedural programming — modularization

▸ (local) scope

▸ Object-Oriented programming — dependency inversion

▸ takes away ‘void *’, use VTBL instead — allows to call lower-level code ‘not
yet written’

▸ hide state

▸ Functional programming — takes away (mutable) state

▸ powerful type systems, referential transparency

▸ Declarative programming — takes away control flow

VISION 25

PROGRAMMING PARADIGMS
▸ Why does HEP love ‘imperative programming’?

▸ (the illusion of) control!

▸ not a black box (erhm.. really?)

▸ The problem with ‘imperative’ code’ : it over-specifies!

▸ What is the alternative?

▸ ‘declarative’ / ‘functional’

▸ express the logic without specifying the control
flow

▸ eg. Makefile / SQL / Wolfram Language / C++
destructors

ROOT AND
NEW PROGRAMMING
PARADIGMS
PHILIPPE CANAL, FERMILAB
AXEL NAUMANN, CERN

FOR THE ROOT TEAM

2016-10-10, CHEP 2016 / SAN FRANCISCO

VISION 25

IT IS TIME TO BE MORE ABSTRACT, AND LET GO OF (BORING) DETAILS

5

ROOT::EnableImplicitMT();
TDataFrame data(tree, {"x","y","z"});

data.Filter(IsGoodEvent)
 .Foreach(DoStuff);

● users have full control over the event-loop
● needs some boilerplate
● running the event-loop in parallel is not trivial
● users implement trivial operations again and again

TTreeReader data(tree);
TTreeReaderValue<A> x(data, "x");
TTreeReaderValue y(data, "y");
TTreeReaderValue<C> z(data, "z");

while (reader.Next()) {
 if (IsGoodEvent(x, y, z))
 DoStuff(x, y, z);
}

Improving on current interfaces

✔
✔
✔

Danillo Piparo

High-level and speed are not antithetical

Code like

bestmuon =
muons.filter(m => m.iso > 10)

.maxBy(m => m.pt)

does not need to create
function objects or
muon objects at
runtime!

It need not be “taken
literally.”

Another possible execution plan:

1. Start with all muon.iso values in one array, all muon.pt
values in another array, and a “repetition level” to specify
where events begin and end.

2. Apply the contents of the filter function to make a mask.

3. Use the mask and repetition level to compact the muon.pt
into zero or one results per event.

4 / 51

Jim Pivarski

VISION 25

FRONTEND VS. BACKEND

▸ Separate ‘physics’ configuration / logic (‘what’) / logic
from the ‘compute’ implementation (‘how’)

▸ eg. RooFit provides ‘declarative’ hooks for
evaluation & normalization — and does constant
folding, caching, hybrid numerical/analytic
integration, interpolation, …

▸ Must allow backends the freedom to evolve!

▸ black box risk: (further) split between ‘analysis’ and
‘computing’ knowledge / people…

VISION 25

ESTABLISH PROVENANCE / VOCABULARY

▸ one of my greatest ()#$*) with NTuples / TTrees (key-value stores),

▸ How do I know whether those keys really correspond to the
right observables?

▸ Need first-class provenance!

▸ Links back from ‘keys’ to the code that produced the ‘values’

▸ git-like versioning for data

▸ redo an analysis on the ‘previous version’ of the data (can
we afford to do that? storage is already a problem!)

▸ dependency tracking

▸ updates to observables when eg. calibrations are updated

▸ ability to add (forgotten) observables without redo-ing
everything…

VISION 25

PROVENANCE REQUIRES INTEGRATED/AUTOMATED WORKFLOW

▸ producing large scale NTuples is a)#($*@)_

▸ trigger → MDF (bytestream) → reco → DST →
stripping (skimming) → uDST → NTPL “A” → NTPL
“B” → RooFit

▸ Why hasn’t uDST / AOD taken over?

▸ Need to link with ‘event model’

▸ Not invented here syndrome

▸ Toolkits vs. frameworks / straightjackets

▸ Automated pipelines & continuous integration — first
steps towards reproducible analysis

▸ Universities / Funding Agencies plan audits!

VISION 25

HOW TO BENEFIT FROM THE WORLD OUT THERE

▸ Industry has grown a LOT

▸ Google/Facebook/Amazon/Microsoft/Apple employ a lot
of very clever people

▸ Doing your own bare-bones ‘GPU’ framework will not keep
up

▸ Better to re-use/interop with eg. TensorFlow / SPARK (or
lower level like Thrust) and focus on how to leverage those

▸ But what if you pick the “wrong” standard, and it dead-
ends?

▸ Major reason why in the past we ‘did it ourselves’….

▸ Contribute back (eg. to standards)

VISION 25

PERCEIVED/UNNECESSARY COMPLEXITY

▸ “People can not contribute because computing nowadays is too complex”

▸ Need several full analysis chains which demonstrate “the new way” is better /
easier / more performant / ….

VISION 25

VISION 25

Vision::~Vision()

