Effective Theory of Dark Energy

Filippo Vernizzi - IPhT, CEA Saclay

Probing the Dark Sector and General Relativity CERN, Geneva - August 14, 2017 with Creminelli, Cusin, D'Amico, Gleyzes, Gubitosi, Langlois, Lewandowski, Mancarella, Noreña, Noui, Piazza, ...

- Gravity only been tested over specials ranges of scales and masses
- Cosmology is a window for testing gravity on very large distances

Gravity only been tested over specials

ranges of scales and masses

Gravity only been tested over specials

ranges of scales and masses

Observations

Many models of modified gravity, each with its own theoretical motivation and phenomenology

Grav. waves

Many models of modified gravity, each with its own theoretical motivation and phenomenology

Observations

Bridge models and observations in a minimal and systematic way

Observations

ETofDE $\alpha_K(t), \alpha_B(t), \alpha_M(t), \alpha_T(t), \alpha_T(t), \ldots$

Bridge models and observations in a minimal and systematic way

Observationally motivated: efficiency, now implemented in Einstein-Boltzmann codes

Theoretically motivated: locality, causality, diff invariance, unitarity, stability, etc...

ETofDE $\alpha_K(t), \alpha_B(t), \alpha_M(t), \alpha_T(t), \alpha_T(t), \dots$

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$

- Simplest models of modified gravity are base on single scalar field
- ♦ Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, …
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$

 $\phi \to \phi + b_{\mu} x^{\mu} + c \qquad \qquad \mathcal{L} = \phi (\partial^2 \phi)^n$

(Nicolis, Rattazzi, Trincherini '08)

 $\mathcal{L}(\phi, \partial_{\mu}\phi)$

Unique Lagrangians with 2nd order EOM:

$$\mathcal{L}_{1} = \phi ,$$

$$\mathcal{L}_{2} = (\partial \phi)^{2} ,$$

$$\mathcal{L}_{3} = (\partial \phi)^{2} \partial^{2} \phi ,$$

$$\mathcal{L}_{4} = (\partial \phi)^{2} \left[(\partial^{2} \phi)^{2} - (\partial_{\mu} \partial_{\nu} \phi)^{2} \right] ,$$

$$\mathcal{L}_{5} = (\partial \phi)^{2} \left[(\partial^{2} \phi)^{3} - 3 \partial^{2} \phi (\partial_{\mu} \partial_{\nu} \phi)^{2} + 2 (\partial_{\mu} \partial_{\nu} \phi)^{3} \right]$$

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, …
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$

 $\phi \to \phi + b_{\mu} x^{\mu} + c \qquad \qquad \mathcal{L} = \phi (\partial^2 \phi)^n$

(Nicolis, Rattazzi, Trincherini '08)

 $\mathcal{L}(\phi, \partial_{\mu}\phi)$

Unique Lagrangians with 2nd order EOM:

$$\begin{aligned} \mathcal{L}_{1} &= \phi , \\ \mathcal{L}_{2} &= (\partial \phi)^{2} , \\ \mathcal{L}_{3} &= (\partial \phi)^{2} \partial^{2} \phi , \\ \mathcal{L}_{4} &= (\partial \phi)^{2} \left[(\partial^{2} \phi)^{2} - (\partial_{\mu} \partial_{\nu} \phi)^{2} \right] , \\ \mathcal{L}_{5} &= (\partial \phi)^{2} \left[(\partial^{2} \phi)^{3} - 3 \partial^{2} \phi (\partial_{\mu} \partial_{\nu} \phi)^{2} + 2 (\partial_{\mu} \partial_{\nu} \phi)^{3} \right] \end{aligned}$$

Can provide self-acceleration and nonlinearities (Vainshtein screening), with controlled quantum corrections and no ghost

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, ...
- $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$ Generalized theories: Galileons
- Covariantization: Horndeski theories

(Horndeski '73, see also Deffayet et al. '11)

 $L_H = G_2(\phi, X) + G_3(\phi, X) \Box \phi +$ + $G_4(\phi, X)^{(4)}R - 2G_{4,X}(\phi, X) [(\Box \phi)^2 - \phi_{:\mu\nu}\phi^{;\mu\nu}]$ $+ G_5(\phi, X)^{(4)} G^{\mu\nu} \phi_{;\mu\nu} + \frac{1}{3} G_{5,X}(\phi, X) \left[(\Box \phi)^3 - 3 \Box \phi \phi_{;\mu\nu} \phi^{;\mu\nu} + 2 \phi_{;\mu\nu} \phi^{;\nu\lambda} \phi_{;\lambda}^{;\mu} \right]$

$$X \equiv \phi_{;\mu} \phi^{;\mu} \equiv \nabla_{\mu} \phi \nabla^{\mu} \phi$$

$$\mathcal{L}(\phi,\partial_{\mu}\phi)$$

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- ✦ Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost)

- Simplest models of modified gravity are base on single scalar field
- ♦ Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- ✦ Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost)

- Simplest models of modified gravity are base on single scalar field
- ♦ Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- ✦ Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost)

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost)

Examples:

$$\frac{\partial^2 \mathcal{L}}{\partial v_a \partial v_b} = \begin{pmatrix} 1 & b \\ b & k \end{pmatrix} \quad \begin{array}{c} k = b^2 \\ \text{Degenerate!} \end{array}$$

- Simplest models of modified gravity are base on single scalar field
- Old school theories: Quintessence, Brans-Dicke, K-essence, ... $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories: Galileons $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- ✦ Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost)

Degenerate Higher-Order ST theories

• DHOST/EST theories: most general Lorentz-invariant scalar-tensor theory with a 1 scalar and 2 tensor degrees of freedom. Many (19) functions of (ϕ, X)

Langlois and Noui '15, '16; Crisostomi, Koyama, Tasinato '16

$$L = f_2(\phi, X)^{(4)}R + K(\phi, X) + G(\phi, X)\Box\phi + C_2^{\mu\nu\rho\sigma}(\phi, X)\partial_\mu\partial_\nu\phi\partial_\rho\partial_\sigma\phi + f_3(\phi, X)G_{\mu\nu}\partial^\mu\partial^\nu\phi + C_3^{\mu\nu\rho\sigma\alpha\beta}(\phi, X)\partial_\mu\partial_\nu\phi\partial_\rho\partial_\sigma\phi\partial_\alpha\partial_\beta\phi$$

• Kinetic matrix
$$V \equiv t^{\nu} \nabla_{\nu} (n^{\mu} \nabla_{\mu} \phi)$$
 $K_{\mu\nu} \equiv \frac{1}{2} \dot{h}_{\mu\nu} \equiv \frac{1}{2} \mathcal{L}_t h_{\mu\nu}$

$$\mathcal{L}_{\rm kin} = (V, K_{\mu\nu}) \begin{pmatrix} \mathcal{A} & \mathcal{B}^{\rho\sigma} \\ \mathcal{B}^{\mu\nu} & \mathcal{K}^{\mu\nu,\rho\sigma} \end{pmatrix} \begin{pmatrix} V \\ K_{\rho\sigma} \end{pmatrix}$$

✦ Horndeski and beyond Horndeski are the simplest case: $\mathcal{A} = 0$. In general more complex: 3 degeneracy conditions. Degenerate Higher-Order Scalar-Tensor (DHOST) or Extended Scalar-Tensor (EST) theories.

Models Einstein-Dilaton-Tessa Baker Cascading gravity Lorentz violation Hořava-Lifschitz Gauss-Bonnet Conformal gravity Strings & Branes $\left(\frac{R}{\Box}\right) R_{\mu\nu} \Box^{-1} R^{\mu\nu}$ $f\left(G\right)$ Galaxy clustering DGP Some Randall-Sundrum I & II degravitation 2T gravity Higher-order scenarios Higher dimensions Non-local General $R_{\mu\nu}R^{\mu\nu}$, $\Box R$,etc. f(R)ETofDE Kaluza-Klein **Modified Gravity** Vector Einstein-Aether $\alpha_K(t), \, \alpha_B(t), \, \alpha_M(t),$ Generalisations of S_{EH} Teves — Add new field content Massive gravity Bigravity $\alpha_T(t), \, \alpha_T(t), \, \ldots$ Gauss-Bonnet Chern-Simons Scalar-tensor & Brans-Dicke Tensor Weak lensing Lovelock gravity Ghost condensates /Cuscuton EBI Galileons Chaplygin gases Bimetric MOND the Fab Four Emergent KGB **Approaches** f(T) Coupled Quintessence Einstein-Cartan-Sciama-Kibble CDT Padmanabhan Horndeski theories Torsion theories thermo.

Observations

Constructing the action

Use metric quantities in uniform scalar field slicing

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

Constructing the action

Use metric quantities in uniform scalar field slicing

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

 Lagrangian contains all possible scalars under spatial diffs, ordered by number of perturbations and derivatives
 Cheung et al. `07

$$S = \int d^4x \sqrt{-g} L[t; N, K_j^i, {}^{(3)}R_j^i, \ldots]$$

Lapse	$N \sim \dot{\phi}$	$(\partial \phi)^2 = -\dot{\phi}_0^2(t)/N^2$
Extrinsic curvature	$K_{ij} \sim \partial_t$	$g_{ij} \qquad K_{ij} = \frac{1}{2N} (\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i)$
Intrinsic curvature	$^{(3)}R_{ij} \sim \partial^2$	g_{ij}

Constructing the action

Use metric quantities in uniform scalar field slicing

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

 Lagrangian contains all possible scalars under spatial diffs, ordered by number of perturbations and derivatives
 Cheung et al. `07

$$S = \int d^4x \sqrt{-g} L[t; N, K^i_j, {}^{(3)}R^i_j, \ldots]$$

Expand the action

_

$$\delta N \equiv N - 1 , \qquad \delta K_{ij} \equiv K_{ij} - Hh_{ij} , \qquad \stackrel{(3)}{\longrightarrow} R_{ij}$$
$$L(N, K_j^i, R_j^i, \dots) = \bar{L} + L_N \delta N + \frac{\partial L}{\partial K_j^i} \delta K_j^i + \frac{\partial L}{\partial R_j^i} \delta R_j^i + L^{(2)} + \dots$$

Building blocks of linear perts $S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$ with Clauzer Langlein Piezze '12 (see also Placefield '12)

with Gleyzes, Langlois, Piazza '13 (see also Bloomfield '13)

- New operators describe deviations from GR (ΛCDM)
- Time dependent couplings (functions α_i): expansion around FRW background
- Functions $a_i(t)$ independent of background evolution $H(t) = \dot{a}/a$

 \triangleright we fit to data H(t) and $lpha_i(t)$ (agnostic of their time dependence and parametrization)

Building blocks of linear perts

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

with Gleyzes, Langlois, Piazza '13 (see also Bloomfield '13)

Notation of Bellini, Sawicki '14 for the alphas

$lpha_{i}$	$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$	$lpha_H$
$\mathcal{O}_i^{(2)}$	δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$	$\delta N^{(3)}R$
quintessence, k-essence	\checkmark				
Cubic Galileon	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	
Beyond Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

5 functions of time instead of 5 functions of ϕ , $(\partial \phi)^2$; minimal number of parameters

Building blocks of linear perts

We impose absence of ghost and gradient stability:

	Scalar	Tensor
No ghosts	$\alpha_K + 6\alpha_B^2$	$M^2 > 0$
No gradient instability	$c_s^2(\alpha_i) \ge 0$	$\alpha_T \ge -1$

Fisher matrix analysis

Euclid specifications (LCDM fiducial) Quasi-static approximation

Background parametrization:

$$H^{2} = H_{0}^{2} \left[\Omega_{m0} a^{-3} + (1 - \Omega_{m0}) a^{-3(1+w)} \right]$$

✦ Free functions parametrization:

$$\alpha_I(t) = \alpha_{I,0} \, \frac{1 - \Omega_{\rm m}(t)}{1 - \Omega_{\rm m,0}}$$

Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

✦ All operators up to two derivatives

with Langlois, Mancarella, Noui '17

$lpha_i$	$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$	$lpha_H$	$lpha_L$	eta_1	eta_2	eta_3
$\mathcal{O}_i^{(2)}$	δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$	$\delta N^{(3)}R$	δK^2	$\delta \dot{N}^2$	$\delta \dot{N} \delta K$	$(\partial_i \delta N)^2$
quintessence, k-essence	\checkmark								
Cubic Galileon	\checkmark	\checkmark							
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark						
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark					
Beyond Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
DHOST/EST theries	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

✦ All operators up to two derivatives

with Langlois, Mancarella, Noui '17

$lpha_i$	$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$	$lpha_H$	$lpha_L$	eta_1	eta_2	eta_3
$\mathcal{O}_i^{(2)}$	δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$	$\delta N^{(3)}\!R$	δK^2	$\delta \dot{N}^2$	$\delta \dot{N} \delta K$	$(\partial_i \delta N)^2$

- Generic scalar dispersion relation: $\mathcal{E}_1 \omega^4 + \mathcal{E}_2 \omega^2 k^2 + \mathcal{E}_3 \omega^2 + \mathcal{E}_4 k^4 + \mathcal{E}_5 k^2 = 0$
- + Two types of degeneracy conditions lead to $\omega^2 c_s^2 k^2 = 0$
 - $C_{I}: \quad \alpha_{L} = 0 , \qquad \beta_{2} = f_{2}(\beta_{1}) , \qquad \beta_{3} = f_{3}(\beta_{1})$

 $\begin{aligned} \mathcal{C}_{\mathrm{II}}: \quad \beta_1 &= f_1(\alpha_T, \alpha_H, \alpha_L) \;, \quad \beta_2 &= f_2(\alpha_T, \alpha_H, \alpha_L) \;, \quad \beta_3 &= f_3(\alpha_T, \alpha_H, \alpha_L) \\ & c_s^2 \propto -c_T^2 \qquad \text{ruled out!} \end{aligned}$

Frame dependence

Gravitational action:

$$S_{\text{gravity}} = \int d^4 x \mathcal{L}_g(g_{\mu\nu}; \alpha_I, \beta_J) , \qquad I = 1, \dots, 6 , \quad J = 1, 2, 3$$

6+3=9 parameters and 3 degeneracy conditions: 6 parameters

Action transforms under metric redefinition: (most general) disformal transformation

$$g_{\mu\nu} \to \tilde{g}_{\mu\nu} = C(\phi, X)g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$
 Bekenstein '92

$$S^{(2)}[g_{\mu\nu},\alpha_I] = \tilde{S}^{(2)}[\tilde{g}_{\mu\nu},\tilde{\alpha}_I] \qquad \qquad \tilde{\alpha}_I = M_I^{I'}\alpha_{I'}$$

Frame dependence

Gravitational action:

$$S_{\text{gravity}} = \int d^4 x \mathcal{L}_g(g_{\mu\nu}; \alpha_I, \beta_J) , \qquad I = 1, \dots, 6 , \quad J = 1, 2, 3$$

6+3=9 parameters and 3 degeneracy conditions: 6 parameters

Action transforms under metric redefinition: (most general) disformal transformation

$$g_{\mu\nu} o \tilde{g}_{\mu\nu} = C(\phi, X)g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$
 Bekenstein '92

$$S^{(2)}[g_{\mu\nu},\alpha_I] = \tilde{S}^{(2)}[\tilde{g}_{\mu\nu},\tilde{\alpha}_I] \qquad \qquad \tilde{\alpha}_I = M_I^{I'}\alpha_{I'}$$

- Two sets of degeneracy conditions invariant under disformal transformations
- Class C_{I} can be brought to Horndeski frame: $\alpha_{H} = 0, \ \beta_{J} = 0$

DHOST I
$$\longrightarrow$$
 Beyond Horndeski $D(X)$ Horndeski

Changing frame changes matter couplings (Horndeski vs Jordan): Matter matters!

Models

ETofDE $\alpha_K(t), \, \alpha_B(t), \, \alpha_M(t),$

 $\alpha_{T}(t), \alpha_{B}(t), \alpha_{M}(t)$ $\alpha_{T}(t), \alpha_{T}(t), \ldots$

Phenomenology

- Undo unitary gauge: $t \to t + \pi(t, \vec{x})$
- Newtonian gauge (scalar flucts): $dt^2 = -(1+2\Phi)dt^2 + a^2(t)(1-2\Psi)d\vec{x}^2$

$$\begin{split} f &\to f + \dot{f}\pi + \frac{1}{2}\ddot{f}\pi^2 , \\ g^{00} &\to g^{00} + 2g^{0\mu}\pi + g^{\mu\nu}\partial_{\mu}\pi\partial_{\nu}\pi , \\ \delta K_{ij} &\to \delta K_{ij} - \dot{H}\pi h_{ij} - \partial_i\partial_j\pi , \\ \delta K &\to \delta K - 3\dot{H}\pi - \frac{1}{a^2}\partial^2\pi , \\ ^{(3)}\!R_{ij} &\to {}^{(3)}\!R_{ij} + H(\partial_i\partial_j\pi + \delta_{ij}\partial^2\pi) , \\ ^{(3)}\!R &\to {}^{(3)}\!R + \frac{4}{a^2}H\partial^2\pi . \end{split}$$

Phenomenology

Phenomenology

Small scale limit

$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$
δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$

• In the limit $k \rightarrow \infty$:

$$\nabla^2 \Phi = \frac{3}{2} \Omega_m H^2 a^2 \delta_m \left(1 + \alpha_T + \frac{\xi^2}{\nu} \right)$$
$$\nabla^2 \Psi = \frac{3}{2} \Omega_m H^2 a^2 \delta_m \left(1 + \frac{\xi \alpha_B}{\nu} \right)$$

$$\xi = \alpha_B (1 + \alpha_T) + \alpha_T - \alpha_M$$
$$\nu = -\left\{ (1 + \alpha_B) \left[\alpha_B (1 + \alpha_T) + \alpha_T - \alpha_M + \frac{\dot{H}}{H^2} \right] + \frac{\dot{\alpha}_B}{H} + \frac{3}{2} \Omega_m \right\} = \frac{c_s^2 \alpha}{2} > 0$$

• Full Einstein-Boltzmann solver:

Iver:
$$\frac{df_I}{d\eta} = C_I[f_I]$$
, $I = \gamma, \nu, b, \text{CDM}$
 $\frac{\delta S^{(2)}}{\delta \pi} = 0$ & $G_{ij}^{\text{modified}} = 8\pi G \sum_I T_{ij}^{(I)}$

• Full Einstein-Boltzmann solver:
$$\frac{df_I}{d\eta} = C_I[f_I]$$
, $I = \gamma, \nu, b$, CDM
 $\frac{\delta S^{(2)}}{\delta \pi} = 0$ & $G_{ij}^{\text{modified}} = 8\pi G \sum_I T_{ij}^{(I)}$

- EFTCAMB (from CMBFAST) (Hu, Raveri, Frusciante, Silvestri et al.)
- hi_class (from CLASS) (Zumalacarregui, Bellini, Sawicki, Lesgourgues et al.)
- COOP (indep. code, Zhiqi Huang) (with D'Amico, Huang and Mancarella)

- LVDM-CLASS (from CLASS) (Blas, Ivanov, Sibiryakov)
- others

Deviations from **ACDM**

Mildly nonlinear scales

- ♦ Nonlinear scales are difficult!
- Possible strategy: conservative cutoff on small scales. But certain observables require (mildly) nonlinear modelling. E.g. redshift-space distortions, baryon acoustic oscillations, etc.
- Ample information on nonlinear scales: many more modes and possible new signatures (screening mechanism, nonlinear couplings, etc.)
- Many developments in numerical simulations including DE/MG
 Only developed for some models (e.g. DGP, f(R))
 Time consuming and non-standard models difficult to implement
 Codes: ECOSMOG, MG-GADGET, ISIS, DGPM, ...
 Winther et al 15)
- Many developments in analytical perturbative methods

Baldauf, Bernardeau, Bertolini, Blas, Carrasco, Crocce, Garny, Ivanov, Pajer, Peloso, Pietroni, Scoccimarro, Senatore, Sibiryakov, Valageas, Zaldarriaga and many others

Nonlinear ET of DE

$$S = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t)\mathcal{O}_i^{(2)} + \sum_i \alpha_i(t)\mathcal{O}_i^{(3)} \right]$$

In the short-scale limit, a finite number of operators dominate
 Example: Horndeski has only 3 cubic operators and nothing more
 Bellini, Jimenez, Verde '15

Nonlinear ET of DE

$$S = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t)\mathcal{O}_i^{(2)} + \sum_i \alpha_i(t)\mathcal{O}_i^{(3)} \right]$$

- In the short-scale limit, a finite number of operators dominate
 Example: Horndeski has only 3 cubic operators and nothing more Bellini, Jimenez, Verde '15
- Standard Perturbation Theory

$$\dot{\delta}_m + \nabla \left[(1 + \delta_m) \vec{v}_m \right] = 0$$
$$\dot{\vec{v}}_m + H \vec{v}_m + \vec{v}_m \cdot \nabla \vec{v}_m = -\nabla \Phi$$

GR case: Poisson equation

$$\nabla^2 \Phi = \frac{3}{2} a^2 H^2 \Omega_{\rm m} \delta_{\rm m}$$

Nonlinear ET of DE

$$S = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t)\mathcal{O}_i^{(2)} + \sum_i \alpha_i(t)\mathcal{O}_i^{(3)} \right]$$

- In the short-scale limit, a finite number of operators dominate
 Example: Horndeski has only 3 cubic operators and nothing more Bellini, Jimenez, Verde '15
- Standard Perturbation Theory

$$\dot{\delta}_m + \nabla \left[(1 + \delta_m) \vec{v}_m \right] = 0$$
$$\dot{\vec{v}}_m + H \vec{v}_m + \vec{v}_m \cdot \nabla \vec{v}_m = -\nabla \Phi$$

Modifications of gravity encoded in Poisson-like equation

$$k^{2}\Phi = -\frac{3}{2}a^{2}H^{2}\Omega_{\mathrm{m}}\mu_{\Phi,1}\delta_{\mathrm{m}} - \frac{9}{4}a^{2}H^{2}\Omega_{\mathrm{m}}^{2}\mu_{\Phi,2}(\vec{k}_{1},\vec{k}_{2})\delta_{\mathrm{m}}(\vec{k}_{1})\star\delta_{\mathrm{m}}(\vec{k}_{2}) + \dots$$

large nonlinearities, screening, ...

mildly NL scales

 H_{0}^{-1}

$$\delta_m \sim 1$$

Conclusions

- * Unifying description for scalar-tensor theories, including higher-order degenerate ones (and more)
- * Analysis of (degenerate higher-order) theories highly simplified
- ★ Linear regime worked out! Issue of time dependence of α's when comparing to data
- * Straightforward connection to mildly and fully nonlinear regime