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Figure 1: A parameter space for quantifying the strength of a gravitational field. The x-axis
measures the potential ϵ ≡ GM/rc2 and the y-axis measures the spacetime curvature ξ ≡ GM/r3c2

of the gravitational field at a radius r away from a central object of mass M . These two parameters
provide two different quantitative measures of the strength of the gravitational fields. The various
curves, points, and legends are described in the text.
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Figure 1: A parameter space for quantifying the strength of a gravitational field. The x-axis
measures the potential ϵ ≡ GM/rc2 and the y-axis measures the spacetime curvature ξ ≡ GM/r3c2

of the gravitational field at a radius r away from a central object of mass M . These two parameters
provide two different quantitative measures of the strength of the gravitational fields. The various
curves, points, and legends are described in the text.
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Figure 18: Expected constraints on the growth rates in each redshift bin. For each z the central
error bars refer to the Reference case while those referring to the Optimistic and Pessimistic case
have been shifted by �0.015 and +0.015 respectively. The growth rates for di↵erent models are
also plotted: ⇤CDM (green tight shortdashed curve), flat DGP (red longdashed curve) and a model
with coupling between dark energy and dark matter (purple, dot-dashed curve). The blue curves
(shortdashed, dotted and solid) represent the f(R) model by [612], Eq. 1.5.36 with n = 0.5, 1, 2
respectively and µ = 3. The plot shows that it will be possible to distinguish these models with
next generation data.
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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✦   Generalized theories: Galileons L(�, @µ�,rµr⌫�)

Scalar-tensor theories

� ! �+ bµx
µ + c L = �(@2�)n (Nicolis, Rattazzi, Trincherini ’08)

✦   Unique Lagrangians with 2nd order EOM:
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✦   Old school theories: Quintessence, Brans-Dicke, K-essence, … L(�, @µ�)

✦   Generalized theories: Galileons L(�, @µ�,rµr⌫�)

Scalar-tensor theories

� ! �+ bµx
µ + c L = �(@2�)n (Nicolis, Rattazzi, Trincherini ’08)

✦   Can provide self-acceleration and nonlinearities (Vainshtein screening), 
with controlled quantum corrections and no ghost

✦   Unique Lagrangians with 2nd order EOM:

L1 = � ,
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✦   Simplest models of modified gravity are base on single scalar field

LH = G2(�, X) +G3(�, X)⇤�+

+G4(�, X)(4)R� 2G4,X(�, X)
⇥
(⇤�)2 � �;µ⌫�

;µ⌫
⇤

+G5(�, X)(4)Gµ⌫�;µ⌫ +
1

3
G5,X(�, X)

⇥
(⇤�)3 � 3⇤��;µ⌫�

;µ⌫ + 2�;µ⌫�
;⌫�� ;µ

;�

⇤

(Horndeski ’73, see also Deffayet et al. ’11)

X ⌘ �;µ�
;µ ⌘ rµ�rµ�

✦   Covariantization: Horndeski theories
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   Examples:

✦   Simplest models of modified gravity are base on single scalar field

✦   Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost) 
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✦   Simplest models of modified gravity are base on single scalar field

✦   Generally, higher-derivatives lead to extra unstable d.o.f. (Ostrogradski ghost) 

Horndeski Extra DOF

Degenerate Higher-Order 
Scalar-Tensor theories

beyond Horndeski
Zumalacarregui, Garcia-Bellido ’13

with Gleyzes, Langlois, Piazza ’14; 

Langlois, Noui ’15, ’16; 

Crisostomi, Hull et al. ’16; 

Crisostomi, Koyama, Tasinato ’16; 

Achour et al. ‘16


L(�, @µ�)

L(�, @µ�,rµr⌫�)

Scalar-tensor theories

✦   Old school theories: Quintessence, Brans-Dicke, K-essence, …

✦   Generalized theories: Galileons



Degenerate Higher-Order ST theories
✦   DHOST/EST theories: most general Lorentz-invariant scalar-tensor theory with a 1 

scalar and 2 tensor degrees of freedom. Many (19) functions of 
Langlois and Noui ’15, ’16; Crisostomi, Koyama, Tasinato ‘16

L = f2(�, X)(4)R+K(�, X) +G(�, X)⇤�+ Cµ⌫⇢�
2 (�, X)@µ@⌫�@⇢@��

+ f3(�, X)Gµ⌫@
µ@⌫�+ Cµ⌫⇢�↵�

3 (�, X)@µ@⌫�@⇢@��@↵@��

(�, X)

Kµ⌫ ⌘ 1

2
ḣµ⌫ ⌘ 1

2
Lthµ⌫✦   Kinetic matrix

A = 0✦   Horndeski and beyond Horndeski are the simplest case:              . In general more 
complex: 3 degeneracy conditions. Degenerate Higher-Order Scalar-Tensor (DHOST) or 
Extended Scalar-Tensor (EST) theories.

✓
A B⇢�

Bµ⌫ Kµ⌫,⇢�

◆
Lkin = (V,Kµ⌫)

✓
V
K⇢�

◆

V ⌘ Ȧ ⌘ t⌫r⌫(n
µrµ�)V ⌘ Ȧ ⌘ t⌫r⌫(n

µrµ�)
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide

26

↵K(t), ↵B(t), ↵M (t),

↵T (t), ↵T (t), . . .

Models


Observations



Constructing the action
✦   Use metric quantities in uniform scalar field slicing
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Constructing the action
✦   Use metric quantities in uniform scalar field slicing

Nnµ

N i

hij

 ADM decomposition

ds

2 = �N

2
dt

2 + hij(N
i
dt+ dx

i)(N j
dt+ dx

j)

✦   Lagrangian contains all possible scalars under spatial diffs, ordered by number of 
perturbations and derivatives

�̇(t) 6= 0

S =

Z
d

4
x

p
�gL[t;N,K

i
j ,

(3)
R

i
j , . . .]

 Lapse

 Extrinsic curvature

 Intrinsic curvature

N

Kij

(3)Rij

(@�)2 = ��̇2
0(t)/N

2⇠ �̇

⇠ @tgij Kij =
1

2N
(ḣij �riNj �rjNi)

⇠ @2gij
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✦   Lagrangian contains all possible scalars under spatial diffs, ordered by number of 
perturbations and derivatives

Constructing the action
✦   Use metric quantities in uniform scalar field slicing

Nnµ

N i

hij

 ADM decomposition

ds

2 = �N

2
dt

2 + hij(N
i
dt+ dx

i)(N j
dt+ dx

j)

�̇(t) 6= 0

S =

Z
d

4
x

p
�gL[t;N,K

i
j ,

(3)
R

i
j , . . .]

✦   Expand the action

�N ⌘ N � 1 , �Kij ⌘ Kij �Hhij ,
(3)Rij

3.2 Quadratic action

In order to describe the dynamics of linear perturbations about the FLRW background solution, we
now expand the action up to quadratic order. The tensor Rij vanishes in the background and is thus
a perturbative quantity. It is useful to introduce the two other perturbative quantities (remembering
the definition of H in eq. (33))

δN ≡ N − N̄ , δKj
i ≡ Kj

i −Hδji . (45)

The expansion of the Lagrangian L up to quadratic order yields

L(N,Ki
j , R

i
j , . . . ) = L̄+ LNδN +

∂L

∂Ki
j

δKi
j +

∂L

∂Ri
j

δRi
j + L(2) + . . . , (46)

with the quadratic part given by

L(2) =
1

2
LNNδN

2 +
1

2

∂2L

∂Ki
j∂K

k
l

δKi
jδK

k
l +

1

2

∂2L

∂Ri
j∂R

k
l

δRi
jδR

k
l +

+
∂2L

∂Ki
j ∂R

k
l

δKi
jδR

k
l +

∂2L

∂N∂Ki
j

δNδKi
j +

∂2L

∂N∂Ri
j

δNδRi
j + . . . ,

(47)

where all the partial derivatives are evaluated on the FLRW background (without explicit notation,
as will be the case in the rest of this paper). The coefficient LNN denotes the second derivative of
the Lagrangian with respect to N . The dots in the two above equations correspond to other possible
terms which are not indicated explicitly to avoid too lengthy equations, but can be treated exactly
in the same way. This includes for instance the spatial derivatives of the curvature or of the lapse,
which appear in Horava-Lifshitz gravity.

The third term on the right hand side of (46) can be simplified as follows. Rewriting it as

∂L

∂Ki
j

δKi
j = FδK = F(K − 3H) , (48)

and noting that K = ∇µnµ, one can use the integration by parts

∫

d4x
√
−gFK = −

∫

d4x
√
−g nµ∇µF = −

∫

d4x
√
−g

Ḟ
N

. (49)

This implies that the Lagrangian (46) can be replaced by the equivalent Lagrangian

Lnew = L̄− 3HF −
Ḟ
N

+ LNδN + L(2) . (50)

Let us now consider the quadratic part (47). Because of the background geometry, the coefficient
of the second term is necessarily of the form4

∂2L

∂Kj
i ∂K

l
k

= ÂK δij δ
k
l +AK

(

δil δ
k
j + δikδjl

)

, (51)

4This is equivalent to the definition below, expressed with covariant indices for the extrinsic curvature tensors,
which makes the symmetry under exchange of the indices more manifest:

∂2L
∂Kij ∂Kkl

≡ ÂK ḡij ḡkl +AK

(

ḡik ḡjl + ḡil ḡjk
)

.
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Building blocks of linear perts
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�

with Gleyzes, Langlois, Piazza ’13 (see also Bloomfield ’13)

✦   New operators describe deviations from GR (ΛCDM)

✦   Functions αi(t) independent of background evolution 

 we fit to data            and             (agnostic of their time dependence and parametrization)H(t) ↵i(t)

✦   Time dependent couplings (functions αi): expansion around FRW background

H(t) = ȧ/a
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Building blocks of linear perts
✦   We impose absence of ghost and gradient stability:

L = +'̇2 � c2s(r')2

positive kinetic energy 
= absence of ghosts

positive sound speed squared = 
absence of gradient instabilities

hij = a2(t)e2⇣(�ij + �ij) , �ii = 0 = ri�ij

tensorscalar

Scalar Tensor

No ghosts

No gradient instability

M2 > 0

c2s(↵i) � 0 ↵T � �1
↵K + 6↵2

B



Fisher matrix analysis
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Figure 3: Two-dimensional 68% CL contours for the fiducial model I (⇤CDM model), obtained
by fixing all the other parameters to their fiducial values. The parameter ↵T,0 is absent, as it is
unconstrained on this fiducial model. Shaded blue regions correspond to theoretically forbidden
parameter space where c2s↵ < 0. Note that the axis range is di↵erent for di↵erent parameter planes.

The reason for this discrepancy is that the background is also modified when ↵M 6= 0, as
discussed earlier, whereas the background for ↵B 6= 0 is the same as the fiducial one.
Since the transfer function T�+ depends not only on the coe�cient ⌥lens but also on the
background, the degeneracy is more complex. In fact, the background modification also
a↵ects the matter growth but more modestly than for weak lensing.

To conclude, let us note that a large region of the observationally constrained parameter
space is forbidden by the stability requirements, i.e. c2s↵ > 0.
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by fixing all the other parameters to their fiducial values. The parameter ↵T,0 is absent, as it is
unconstrained on this fiducial model. Shaded blue regions correspond to theoretically forbidden
parameter space where c2s↵ < 0. Note that the axis range is di↵erent for di↵erent parameter planes.

The reason for this discrepancy is that the background is also modified when ↵M 6= 0, as
discussed earlier, whereas the background for ↵B 6= 0 is the same as the fiducial one.
Since the transfer function T�+ depends not only on the coe�cient ⌥lens but also on the
background, the degeneracy is more complex. In fact, the background modification also
a↵ects the matter growth but more modestly than for weak lensing.

To conclude, let us note that a large region of the observationally constrained parameter
space is forbidden by the stability requirements, i.e. c2s↵ > 0.
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The reason for this discrepancy is that the background is also modified when ↵M 6= 0, as
discussed earlier, whereas the background for ↵B 6= 0 is the same as the fiducial one.
Since the transfer function T�+ depends not only on the coe�cient ⌥lens but also on the
background, the degeneracy is more complex. In fact, the background modification also
a↵ects the matter growth but more modestly than for weak lensing.

To conclude, let us note that a large region of the observationally constrained parameter
space is forbidden by the stability requirements, i.e. c2s↵ > 0.
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↵I(t) = ↵I,0
1� ⌦m(t)

1� ⌦m,0

H2 = H2
0

h
⌦m0a

�3 + (1� ⌦m0)a
�3(1+w)

i

✦   Free functions parametrization:

✦   Background parametrization:

Euclid specifications (LCDM fiducial)

Quasi-static approximation

with Gleyzes, Langlois, Mancarella ‘15



Higher-Order theories

✦   All operators up to two derivatives
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✦   Two types of degeneracy conditions lead to

CI : ↵L = 0 , �2 = f2(�1) , �3 = f3(�1)

CII : �1 = f1(↵T ,↵H ,↵L) , �2 = f2(↵T ,↵H ,↵L) , �3 = f3(↵T ,↵H ,↵L)

c2s / �c2T ruled out!

✦   Generic scalar dispersion relation: E1!4 + E2!2k2 + E3!2 + E4k4 + E5k2 = 0

!2 � c2sk
2 = 0



Frame dependence
✦   Gravitational action:

S(2)[gµ⌫ ,↵I ] = S̃(2)[g̃µ⌫ , ↵̃I ]

✦   Action transforms under metric redefinition: (most general) disformal transformation

gµ⌫ ! g̃µ⌫ = C(�, X)gµ⌫ +D(�, X)@µ�@⌫� Bekenstein ’92

6+3=9 parameters and 3 degeneracy conditions: 6 parameters

↵̃I = M I0

I ↵I0

Sgravity =

Z
d

4
xLg(gµ⌫ ;↵I ,�J) , I = 1, . . . , 6 , J = 1, 2, 3



Frame dependence
✦   Gravitational action:

S(2)[gµ⌫ ,↵I ] = S̃(2)[g̃µ⌫ , ↵̃I ]

✦   Action transforms under metric redefinition: (most general) disformal transformation

gµ⌫ ! g̃µ⌫ = C(�, X)gµ⌫ +D(�, X)@µ�@⌫� Bekenstein ’92

✦   Two sets of degeneracy conditions invariant under disformal transformations

✦   Class       can be brought to Horndeski frame:CI ↵H = 0, �J = 0

6+3=9 parameters and 3 degeneracy conditions: 6 parameters

↵̃I = M I0

I ↵I0

Sgravity =

Z
d

4
xLg(gµ⌫ ;↵I ,�J) , I = 1, . . . , 6 , J = 1, 2, 3

✦   Changing frame changes matter couplings (Horndeski vs Jordan): Matter matters! 
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erate a late-time cosmic acceleration – would be protected against quantum corrections and therefore
remains small. This is because m! 0 restores a symmetry (di↵eomorphism invariance or general co-
variance). Although the simplest massive gravity theory was shown not to admit a flat FLRW universe,
its bimetric generalization was indeed able to provide self-accelerating solutions [104, 105, 106], con-
sistent with all existing observational data at the background level [107, 108]. Since then, an extensive
amount of work has been done to study the viability of the theories through metric perturbation theory
and structure formation studies [e.g. 109, 110, 111, 112, 113, 114, 115, 116]. Unfortunately, although
the simplest bigravity models are able to provide viable self-accelerating background expansions, all
such models su↵er from ghost and/or gradient instabilities [117, 112, 114, 118]. While it is possible to
push these instabilities back to unobservably early times, beyond the regime of validity of the theory,
without losing self-acceleration and obtaining a technically natural acceleration parameter [119], the
theory becomes observationally indistinguishable from ⇤CDM in this case. While this may render
the theory less favorable from an Occam’s razor perspective, the fact that a small mass is protected by
the symmetry of di↵eomorphisms makes the theory more favorable than ⇤CDM from the perspective
of naturalness. It is then mainly a matter of subjective taste and further observational tests to decide
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• Undo unitary gauge:

Phenomenology

• Newtonian gauge (scalar flucts):
dt

2 = �(1 + 2�)dt2 + a

2(t)(1� 2 )d~x2

Perturbations in an arbitrary gauge 

•  The action for the perturbations in an arbitrary gauge can 
be obtained via the Stueckelberg trick:  

•  The new quadratic action can be derived using the following 
substitutions:  

f ! f + ḟ⇥ +
1

2
f̈⇥2 ,

g00 ! g00 + 2g0µ⇥ + gµ�⇤µ⇥⇤�⇥ ,

�Kij ! �Kij � Ḣ⇥hij � ⇤i⇤j⇥ ,

�K ! �K � 3Ḣ⇥ � 1

a2
⇤2⇥ ,

(3)Rij ! (3)Rij +H(⇤i⇤j⇥ + �ij⇤
2⇥) ,

(3)R ! (3)R+
4

a2
H⇤2⇥ .

t ! t+ �(t, ⇥x)

Note: the 3-dim quantities 
on the right are defined 
with respect to the new 
time hypersurfaces.  



• Undo unitary gauge:

Phenomenology

• Newtonian gauge (scalar flucts):
dt

2 = �(1 + 2�)dt2 + a

2(t)(1� 2 )d~x2

Perturbations in an arbitrary gauge 

•  The action for the perturbations in an arbitrary gauge can 
be obtained via the Stueckelberg trick:  

•  The new quadratic action can be derived using the following 
substitutions:  

f ! f + ḟ⇥ +
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time hypersurfaces.  

• Quasi-static approximations — valid on scales                      .                                      
E.g., for surveys such as Euclid                .  
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Boltzmann codes
• Full Einstein-Boltzmann solver:
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Boltzmann codes
• Full Einstein-Boltzmann solver:
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• EFTCAMB (from CMBFAST)       (Hu, Raveri, Frusciante, Silvestri et al.)

• hi_class (from CLASS)        (Zumalacarregui, Bellini, Sawicki, Lesgourgues et al.)

• COOP (indep. code, Zhiqi Huang)        (with D’Amico, Huang and Mancarella)

• LVDM-CLASS (from CLASS)         (Blas, Ivanov, Sibiryakov)

• others …   



Boltzmann codes
• Full Einstein-Boltzmann solver:

&

dfI
d⌘

= CI [fI ] , I = �, ⌫, b,CDM

Gmodified

ij = 8⇡G
X
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T (I)
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�S(2)
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hi_class
hiclass-code.net

EFTCAMB
eftcamb.org

COOP
cita.utoronto.ca/~zqhuang/coopα

Gal-CAMB

LVDM-CLASS

BD-CAMB
DASh-BD
CLASSigJ

NL-CAMB

NL-CLASS

CLASS EOS fR

FIG. 1. Overlap between codes and theories used in the comparison. Each code is represented by a silhouette that covers the models for which
it has been compared. General-purpose and publicly available codes are represented by thick solid regions, while model-specific or private
codes are enclosed by dashed lines. Note that we only show the models used in this paper, not the full theory space available to each code.

modes of the linearized metrics; typically EB solvers make a
particular choice of gauge – the synchronous gauge – although
another common gauge – the Newtonian gauge – is particu-
larly useful in extracting physical understanding of the vari-
ous effects at play. Also it should be noted that the universe
undergoes an elaborate thermal history: it will recombine and
subsequently reionize. It is essentially to model this evolution
accurately as it has a significant effect on the evolution of per-
turbations. Another key aspect is the use of line of sight meth-
ods (mentioned in the introduction) that substantially speed up
the numerical computation of the evolution of perturbations
by many orders of magnitude; as shown in [7] it is possible
to obtain an accurate solution of the Boltzman hierarchy by
first solving a truncate form of the lower order moments of
the perturbation variables and the judiciously integrating over
the appropriate kernel convolved with these lower order mo-
ments. All current EB solvers use this approach.

Most (but not all) EB solvers currently being used are mod-
ifications of either CAMB or CLASS. This means that they
have evolved from very different code basis, are in different
languages and use (mostly) different algorithms. This is of
tremendous benefit when we compare results in the next sec-
tion. We should highlight, however, that there are a couple of
cases – DASh and COOP – that do not belong to this geneal-
ogy.

The codes that we will be comparing are summarized in Tab
?? and their details can be found in the following sections.

A. EFTCAMB

EFTCAMB is a particular implementation of the EFT of
dark energy [17, 71] into CAMB [9] EB solver (in for-
tran90) which evolves the full set of perturbations (in the
synchronous gauge) arising from the action in Equation 4,
taking particular care to check for stability, i.e. positive
speeds of propagation and ghosts. It can fully treat specific
models (such as, Jordan-Brans-Dicke, designer- f (R), Hu-
Sawicki f(R), Hořava-Lifshitz gravity, Covariant Galileon and
quintessence) through an appropriate choice of the EFT func-
tions. It also accepts phenomenological choices for the time
dependence of the EFT functions which may not be associated
to specific theories and of the dark energy equation of state.
EFTCAMB has been used to place constraints on f (R)

gravity [72], Hořava-Lifshitz [35] and dark energy [71]. It
has also been used to explore the interplay between mas-
sive neutrinos and dark energy as well as the tension be-
tween the primary and weak lensing signal in CMB data
[73]. An up to date implementation can be downloaded from
http://eftcamb.org/. The JBD EFTCAMB solver is
based on EFTCAMBOct15 version, while the others are based
on the most recent EFTCAMBJul17 version.

B. hi class

hi class (Horndeski in the Cosmic Linear Anisotropy
Solving System) is an implementation of the evolution equa-

Bellini et multi alii, in prep. 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{wDE, aX} functions along with the relative difference between EFTCAMB and hi class . Bottom figure: The same as in the top figure but
for the matter power spectrum at different redshifts.

For the models we considered we verified that the disagree-
ment between the different codes was never worse than 1%,
but it should be care of the user to verify that the precision pa-
rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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FIG. 4. 1s cosmological constraints achievable by a Stage-4 CMB experiments (red), LSST (green) and the combination of the two (blue).
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played by a vertical dashed line), we find that significant in-
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the matter power spectrum down to scales k ⇠ 0.1hMpc�1 at
z = 0.

D. The relative importance of the different surveys.

One can broadly characterise a cosmological survey in
terms of its ability to measure two main observables: the
angular diameter distance relation and growth of structure.
The former will be sensitive to the background expansion and
therefore, the equation of state w, while the latter will depend
on all parameters. It should also be possible to constrain the
shape of the power spectrum as a function of redshift and thus
pick out scale-dependent effects on the growth rate (e.g. the
braiding scale in Eq. 4 and the k-dependence in the quasi-
static parameters, appendix A). But this will be, for now, a
subdominant effect and, in the case of a galaxy redshift sur-
vey, is very sensitive to assumptions about bias.

At early times, a measurement of the primary anisotropies
in the CMB will serve as an anchor for both distance mea-
surements as well as for the growth rate: it fixes the angular
diameter distance at z ' 1000 as well as the overall primordial

amplitude of fluctations. Per se it will not tightly constrain
the gravitational parameters but it will play a crucial role in
breaking degeneracies. In addition, S4 will supply us with
a high-significance map of the projected matter fluctuations
(with a radial kernel peaking around z ⇠ 2) via weak lensing.
As such it will help to calibrate measurements of the growth
rate at lower redshift as well as to pin down the neutrino mass.

Complementing early-time constraints from the CMB are
late-time measurements of large scale structure from galaxy
clustering and weak lensing with LSST as well as intensity
mapping with SKA. Specifically, an intensity mapping survey
such as SKA1-IM will give us a biased measurement of the
matter power spectrum as a function of redshift and therefore a
distance measurement via the baryon acoustic oscillation fea-
tures. To a lesser degree of importance, it will also give us a
measurement of the growth rate via redshift-space distortion,
but only if an independent measurement of the background
HI temperature can be made. The LSST survey will have two
complementary data sets. On the one hand it will supply us
with a map of the galaxy distribution and therefore a mea-
surement of the angular diameter distance as well as a low-
significance measurement of redshift-space distortions over a
range of redshifts. On the other hand it will supply us with a
tomographic set of weak lensing maps which will give us an
unbiased measurement of the growth of structure through the

8

Case > wBD, 95%C.L. s(cB) s(cM) s(cT ) s(cK) s(w) s(Âmn ) [meV] FoM(cB,cM ,cT )
S4 2.9⇥103 0.796 0.746 1.26 4.9 0.112 71 1.3
LSST 1.2⇥104 0.193 0.089 0.205 8.8 0.016 45 61
SKA1-IM 9.5⇥103 13.3 6.0 8.6 106 0.018 74 1.0
S4+LSST 1.3⇥104 0.169 0.072 0.179 3.5 0.011 22 88
S4+SKA1-IM 1.0⇥104 0.305 0.238 0.786 3.5 0.0085 23 9.0
S4+LSST+SKA1-IM 1.7⇥104 0.161 0.070 0.151 3.1 0.0069 15 121
S4+LSST+SKA1-IM+Spec. 1.7⇥104 0.123 0.056 0.146 3.1 0.0061 13 143
Best fit of [34] N.A. 0.063 0.076 0.201 4.23 0.0059 13 N.A.

TABLE I. 1s constraints on the Horndeski parameters cB and cM , the dark-energy equation of state parameter w and the sum of neutrino
masses Âmn for different combinations of experiments. The last column shows the constraints assuming a modified gravity fiducial model
given by the best fit in [34], in which case LCDM would be ruled out by more than 7s from cM alone. The corresponding values for the
figure-of-merit defined in Section V are shown in the last column.

FIG. 1. Cosmological constraints for the combination of CMB S4 with LSST (galaxy clustering and shear) and an intensity mapping experiment
carried out by Phase-1 of the SKA (red ellipses). The green ellipses show the additional constraining power achievable by combining these
observations with measurements of the BAO scale and the growth rate of structure carried out by an independent DESI-like experiment.

analysis of [34], gives us an idea of the overall structure of
the constraints for fixed equation of state, w = �1, with cM
and cB being more tightly constrained than cK and cT (note
that in [34] the constraints on cT are heavily affected by the-
oretical priors, such as stability conditions). Our results show
that, while the future generation of surveys we consider will
also be able to pin down cT to a similar degree of precision,
cK will remain a highly uncertain parameter. Fortunately, cK
shows little or no degeneracy with any of the other Horndeski

parameters, and therefore it can be marginalized over without
degrading the constraints on cB,M,T . This is explicitly shown
in Table II, which summarizes the degeneracies on these pa-
rameters for fixed or marginalized cK . We see, however, that
the uncertainties on cB,M,T grow between 10% and 30% when
considering an evolving dark energy component with w 6=�1.

We can explore the full set of relevant degeneracies in Fig.
1, which shows that cB and cM are tightly correlated along
the direction cB ' 2.5cM . The dark energy equation of state
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Given its complementarity with the science cases covered
by LSST, we will focus here on intensity mapping only. The
cosmological observable in this case is the HI antenna tem-
perature measured in a set of frequency bins, related to the
corresponding redshift as n = n21cm/(1+ z). We will assume
that the observations will be done using the SKA1-MID as de-
scribed in [6, 88]. We consider the frequency band 350-1050
MHz, dividing it into 200 frequency channels, corresponding
to a comoving width of ⇠ 16Mpc/h. The models used to de-
scribe the signal and noise power spectrum of this observable,
including the models for the HI bias and background temper-
ature, are presented in detail in [6]. We assume a 10,000-hour
survey covering 40% of the sky carried out with a set of 200
15 m antennas in single-dish observation mode with a system
temperature of 25 K. The noise power spectrum is modelled
as white (before beam de-convolution):

N`(n) = s2
N(n)exp[`(`+1)q 2

FWHM(n)/(8ln2)], (17)

where the noise variance sN and beam width qFWHM are deter-
mined by the parameters listed above as described in [6]. The
beam size of the SKA (qFWHM ⇠ 2� at z ⇠ 1) is large enough
that we do not need to impose a strict high-` cut, since the
measurements become noise-dominated well before the scale
of non-linearities (in practice we impose a cut `max = 200).

Since individual sources are not detected, the faint 21cm
emission needs to be separated from the much brighter (⇠ 5
orders of magnitude) diffuse galactic and extragalactic fore-
grounds. Although, given the smooth frequency dependence
of the foregrounds, it should be possible to isolate the cos-
mological signal based on its different spectral properties
(see [89, 90]), foreground residuals will necessarily dominate
the measurements on large radial scales, and it is expected
that foreground contamination coupled with instrumental mis-
calibration will be the largest source of systematic uncertain-
ties. Another cause of concern specific to single-dish obser-
vations is the effect of gain fluctuations in the time domain,
which could be an important source of systematic uncertain-
ties on large angular scales, although the effect may depend
on the survey scanning strategy. As before, we will, for the
most part, ignore these systematics in this work, in an attempt
to present the best achievable constraints on scalar-tensor the-
ories from future experiments.

4. Spectroscopic surveys

In our analysis we have not included constraints from wide
spectroscopic such as DESI [91] or Euclid [85]. For this type
of experiments, with good angular and radial resolution, the
most efficient way to carry out Fisher forecasts is to use the
Fourier coefficients of the galaxy overdensity dg(z,k) as an
observable in a discrete set of redshift bins within which evo-
lution effects are effectively frozen. In this formalism it is
however not straightforward to account for inter-bin correla-
tions [92] and correlations with overlapping lensing and CMB
experiments, a key aspect of our analysis. On the other hand,
the option of modelling spectroscopic observations as a set of
angular maps at different redshift becomes computationally

intractable without losing radial information. Furthermore,
given that the experiments listed above cover the main sci-
ence cases that a spectroscopic survey would be able to ap-
proach (geometric radial and angular BAO measurements and
RSDs), we do not expect dramatic improvements in the final
uncertainties due to the inclusion of spectroscopic data.

Nevertheless, and in order to estimate both the reach of fu-
ture spectroscopic observations and the amount of information
lost in our formalism, we have included constraints from an
independent (i.e. uncorrelated) DESI-like spectroscopic sur-
vey using the expected uncertainties on the radial and angular
BAO scales and the growth rate of structure estimated by [11].
We do not include these additional constraints as part of our
fiducial forecasts, but discuss their relevance in Section IV A.

IV. RESULTS

The class of theories we are considering can, as we have
seen, be parameterized in terms of 5 free function of time, w,
aM , aK , aB and aT (we fix the initial Planck mass, i.e. the
integration constant needed to obtain M2

⇤ from aM , to 1). For
the bulk of this analysis we assume that deviations from GR
are intimately tied to the onset of accelerated expansion and
hence, for now, we adopt a parametrization of the form:

aX = bX + cX
WDE(z)

WDE(z = 0)
, (18)

where WDE is the fractional energy density in dark energy (or
whatever is responsible for the onset of accelerated expansion)
which itself depends on w. For our fiducial constraints we fix
the early terms to zero (bX = 0), and concentrate only on cX .
In a latter subsection we will consider bX , as well as a different
time dependence.

As a fiducial model we choose a point in the space of cX
that is close enough to L GR to be compatible within 1s given
our most optimistic constraints (this is done to avoid the nu-
merical singularities at cX = 0). The fiducial model we chose
is {w =�1, cK = 0.1, cB = 0.05, cM =�0.05, cT =�0.05}.
Beside these, we vary over the basic parameters of the flat
LCDM model: the dark matter and baryon densities wc and
wb, the local expansion rate h, the amplitude and tilt of pri-
mordial scalar fluctuations (As, ns) and the optical depth to
reionization t . For these, we set their fiducial values to the
best-fit cosmology of [9] (with t = 0.06 as per the latest mea-
surement of [93]). Furthermore, we consider a single massive
neutrino with a mass of 60meV. When considering extended
models with free early-time parameters, we set their fiducial
values to bX = 0.

A. Overall constraints.

We begin by considering the combination of our three main
datasets (S4, LSST and SKA1-IM) to identiy the space of pa-
rameters on which the tightest constraints can be drawn. Table
I summarizes the forecast constraints on the most relevant pa-
rameters, and Fig 1 shows the covariance between them. The
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Beside these, we vary over the basic parameters of the flat
LCDM model: the dark matter and baryon densities wc and
wb, the local expansion rate h, the amplitude and tilt of pri-
mordial scalar fluctuations (As, ns) and the optical depth to
reionization t . For these, we set their fiducial values to the
best-fit cosmology of [9] (with t = 0.06 as per the latest mea-
surement of [93]). Furthermore, we consider a single massive
neutrino with a mass of 60meV. When considering extended
models with free early-time parameters, we set their fiducial
values to bX = 0.

A. Overall constraints.

We begin by considering the combination of our three main
datasets (S4, LSST and SKA1-IM) to identiy the space of pa-
rameters on which the tightest constraints can be drawn. Table
I summarizes the forecast constraints on the most relevant pa-
rameters, and Fig 1 shows the covariance between them. The

!BD > 20 000This work:
Cassini (Bertotti et al. 03): !BD > 40 000

�(↵X) ⇠ O(0.1)



Mildly nonlinear scales

✦   Ample information on nonlinear scales: many more modes and possible new signatures 
(screening mechanism, nonlinear couplings, etc.)

✦   Many developments in numerical simulations including DE/MG

✦   Possible strategy: conservative cutoff on small scales. But certain observables require 
(mildly) nonlinear modelling. E.g. redshift-space distortions, baryon acoustic oscillations, 
etc.

✦   Nonlinear scales are difficult!

 Only developed for some models (e.g. DGP, f(R))

✦   Many developments in analytical perturbative methods Baldauf, Bernardeau, Bertolini, 
Blas, Carrasco, Crocce, Garny, 
Ivanov, Pajer, Peloso, Pietroni, 
Scoccimarro, Senatore, 
Sibiryakov, Valageas, Zaldarriaga 
and many others

Codes: ECOSMOG, 
MG-GADGET, ISIS, 
DGPM, …


(Winther et al 15) Time consuming and non-standard models difficult to implement



Nonlinear ET of DE
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✦   In the short-scale limit, a finite number of operators dominate
Bellini, Jimenez, Verde ‘15Example: Horndeski has only 3 cubic operators and nothing more



Nonlinear ET of DE

✦   GR case: Poisson equation
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Bellini, Jimenez, Verde ‘15
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�̇m +r [(1 + �m)~vm] = 0

Example: Horndeski has only 3 cubic operators and nothing more

✦   Standard Perturbation Theory

mildly NL scaleslarge nonlinearities
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Nonlinear ET of DE

k2� = �3

2
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✦   Modifications of gravity encoded in Poisson-like equation
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Bellini, Jimenez, Verde ‘15

~̇vm +H~vm + ~vm ·r~vm = �r�

�̇m +r [(1 + �m)~vm] = 0

Example: Horndeski has only 3 cubic operators and nothing more

✦   Standard Perturbation Theory

mildly NL scaleslarge nonlinearities, screening, …
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✦   In the short-scale limit, a finite number of operators dominate



Conclusions

   Unifying description for scalar-tensor theories, including higher-order 
degenerate ones (and more)


   Analysis of (degenerate higher-order) theories highly simplified  


   Linear regime worked out! Issue of time dependence of α’s when comparing 
to data


   Straightforward connection to mildly and fully nonlinear regime




