Effective Field Theories for Post-Newtonian Gravity with a Spin (or two)

Michèle Lévi

Institut de Physique Théorique CEA, Université Paris-Saclay

CERN, TH workshop August 18, 2017

イロト 不得 トイヨト イヨト

-

Outline

1 Formulating the tower of EFTs

- Setup and goal
- Degrees of freedom
- Symmetries

2 Formulating an EFT for a spinning particle

- Worldline spin as a further DOF
- Restoring gauge freedom of rotational variables
- Nonminimal couplings with spin

3 Integrating out the orbital scale

- Disentangling particle and fields DOFs
- NRG fields and Schwinger's time gauge
- EOMs of spin from effective action

4 Implementing the EFTs

- LO cubic & quartic in spin sectors
- NNLO spin-squared interaction
- EFTofPNG package

Gravitational Radiation

Prediction 1916 Einstein Indirect Evidence 1974 Hulse & Taylor Direct Observation 2015 LIGO!

Gravitational wave detectors:

- Ground-based
 - LIGO
 - GEO 600
 - Virgo
- Second generation ground-based
 - US Advanced LIGO 2015
 - EU Advanced Virgo 2017
 - Japan KAGRA 2019?
 - LIGO India 2024?
- Future space-based
 - ESA eLISA 2034?

イロト 不得下 イヨト イヨト

GW events – as of 2015!

- GW150914 (shown in figure)
 GW151226
- 3 GW170104

<ロ> (日) (日) (日) (日) (日)

Sources of Gravitational Waves

Three phases in the life of a compact binary:

- 1 Inspiral
- 2 Merger
- 3 Ringdown

イロト イヨト イヨト イヨト

Sources of Gravitational Waves

Three phases in the life of a compact binary:

- Inspiral
- 2 Merger
- 3 Ringdown

Detection by matched filtering

- \Rightarrow Theoretical waveform templates
- ⇒ Phenomenological modelling of waveforms requires PN parameters of up to 6th order!

Michele Levi (IPhT, U. Paris-Saclay)

イロト 不得下 イヨト イヨト

Methods to compute gravitational-wave templates

 \Rightarrow Effective-One-Body approach, Buonanno and Damour 1999

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Formulating the tower of EFTs Setup and goal

EFTs and their Setup are Universal

There is a Hierarchy of Scales

[Goldberger et al. 2007]

1 r_s , scale of internal structure, $r_s \sim m$ **2** r, orbital separation scale, $r \sim \frac{r_s}{v^2}$ **3** λ , radiation wavelength scale, $\lambda \sim \frac{r}{v}$ We can use EFT!

イロト イポト イヨト イヨト

 $v\ll$ 1, $\mathit{nPN}\equiv v^{2\mathit{n}}$ correction in GR to Newtonian Gravity

For an EFT of PNG proceed in stages corresponding to each scale

Formulating the tower of EFTs Setup and goal

Setup of EFT is Universal Bottom-Up or Top-Down?

Stage 1 Remove the scale r_{5} of isolated compact object, bottom-up approach

$$S\left[g_{\mu
u}
ight]=-rac{1}{16\pi G}\int d^{4}x\sqrt{g}R$$

Integrate out strong field modes $g_{\mu
u}\equiv g^s_{\mu
u}+ar{g}_{\mu
u}$

$$\Rightarrow S_{\text{eff}}\left[\bar{g}_{\mu\nu}, y^{\mu}, e^{\mu}_{A}\right] = -\frac{1}{16\pi G} \int d^{4}x \sqrt{\bar{g}} R\left[\bar{g}_{\mu\nu}\right] + \underbrace{\sum_{i} C_{i} \int d\sigma O_{i}(\sigma)}_{\equiv S_{\rho\rho}(\sigma) \text{ with Wilson coefficients}}$$

Setup of EFT is Universal

Stage 2 Remove the orbital scale r of binary, top-down

$$ar{g}_{\mu
u}\equiv\eta_{\mu
u}+\underbrace{H_{\mu
u}}_{
m orbital}+\underbrace{\widetilde{h}_{\mu
u}}_{
m radiation}$$

$$\partial_t H_{\mu\nu} \sim \frac{v}{r} H_{\mu\nu}, \quad \partial_i H_{\mu\nu} \sim \frac{1}{r} H_{\mu\nu}, \quad \partial_\rho \tilde{h}_{\mu\nu} \sim \frac{v}{r} \tilde{h}_{\mu\nu}$$

Kenneth Wilson

$$S_{\rm eff}\left[\bar{g}_{\mu\nu}, y_1^{\mu}, y_2^{\mu}, e_{(1)A}^{\mu}, e_{(2)A}^{\mu}\right] = -\frac{1}{16\pi G}\int d^4x \sqrt{\bar{g}}R\left[\bar{g}_{\mu\nu}\right] + S_{(1)\rm pp} + S_{(2)\rm pp}$$

Integrate out orbital field modes

$$\Rightarrow e^{iS_{\rm eff(composite)}\left[\tilde{h}_{\mu\nu}, y^{\mu}, e^{\mu}_{A}\right]} \equiv \int \mathcal{D}H_{\mu\nu} \ e^{iS_{\rm eff}\left[\tilde{g}_{\mu\nu}, y^{\mu}_{1}, y^{\mu}_{2}, e_{(1)}^{\mu}_{A}, e_{(2)}^{\mu}_{A}\right]}$$

Stop here for effective action in conservative sector, that is WITHOUT any remaining orbital scale field DOFs

[ML 2010, ML & Steinhoff 2014]

Michele Levi (IPhT, U. Paris-Saclay)

August 2017 7 / 23

To construct EFT - identify Degrees of Freedom

1 The gravitational field

- The metric $g_{\mu\nu}(x)$
- The tetrad field $\eta^{ab} \tilde{e}_{a}^{\mu}(x) \tilde{e}_{b}^{\nu}(x) = g^{\mu\nu}(x)$

2 The particle worldline coordinate

 $y^{\mu}(\sigma)$ a function of an arbitrary affine parameter σ Particle worldline position does not in general coincide with object's 'center'

3 The particle worldline rotating DOFs

Worldline tetrad, $\eta^{AB} e_{A}^{\mu}(\sigma) e_{B}^{\nu}(\sigma) = g^{\mu\nu}$

 \Rightarrow Angular velocity $\Omega^{\mu
u}(\sigma)$ + conjugate Spin $S_{\mu
u}(\sigma)$

 $\Rightarrow \text{Lorentz matrices, } \eta^{AB} \Lambda_A{}^a(\sigma) \Lambda_B{}^b(\sigma) = \eta^{ab} + \text{conjugate local spin, } S_{ab}(\sigma)$

イロト 不得下 イヨト イヨト 二日

To construct EFT – identify Symmetries

- **1** General coordinate invariance, and parity invariance
- **2** Worldline reparametrization invariance
- **3** Internal Lorentz invariance of local frame field
- 4 SO(3) invariance of body-fixed spatial triad
- **5** Spin gauge invariance, that is invariance under choice of completion of body-fixed spatial triad through timelike vector
- 6 Assume isolated object has no intrinsic permanent multipole moments beyond the mass monopole and the spin dipole

イロト イポト イヨト イヨト

Worldline spin as a further DOF

Effective action of a spinning particle

[Hanson & Regge 1974, Bailey & Israel 1975]

•
$$u^{\mu} \equiv dy^{\mu}/d\sigma$$
, $\Omega^{\mu\nu} \equiv e^{\mu}_{A} \frac{De^{A\nu}}{D\sigma} \Rightarrow L_{pp} [u_{\mu}, \Omega^{\mu\nu}, \bar{g}_{\mu\nu}]$
• $S_{\mu\nu} \equiv -2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$ spin as further worldline DOF – classical source
 $\Rightarrow S_{pp}(\sigma) = \int d\sigma \left[-m\sqrt{u^2} - \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} + L_{SI} [u^{\mu}, S_{\mu\nu}, \bar{g}_{\mu\nu} (y^{\mu})] \right]$

For an EFT with spin the gauge of both rotational variables should be fixed at the level of the point particle action

[ML 2×PRD 2010, ML & Steinhoff JCAP 2014]

Start in the covariant gauge: $e^{\mu}_{[0]} = \frac{p^{\mu}}{\sqrt{p^2}}, \qquad S_{\mu\nu}p^{\nu} = 0$

• Linear momentum $p_{\mu}\equiv -rac{\partial L}{\partial u^{\mu}}=mrac{u^{\mu}}{\sqrt{u^{2}}}+\mathcal{O}(S^{2})$

Gauge freedom of rotational variables can be restored

[ML & Steinhoff, JHEP 2015]

Introduce gauge freedom in rotational variables

Transform gauge of $e^{A\mu}$ from $e_{[0]\mu} = q_{\mu} \rightarrow \hat{e}_{[0]\mu} = w_{\mu}$ with a boost-like transformation in covariant form:

 $\hat{e}^{A\mu} = L^{\mu}{}_{
u}(w,q)e^{A
u}, \quad q_{a}, w_{a}$ timelike unit 4-vectors

$$\Rightarrow \text{ Generic gauge:} \quad \hat{e}_{[0]\mu} = w_{\mu}, \ \hat{S}^{\mu\nu} \left(p_{\nu} + \sqrt{p^2} \hat{e}_{[0]\nu} \right) = 0$$

Ernst Stueckelberg

\Rightarrow Extra term in action appears!

- For minimal coupling $\frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} = \frac{1}{2}\hat{S}_{\mu\nu}\hat{\Omega}^{\mu\nu} + \frac{\hat{S}^{\mu\rho}p_{\rho}}{p^{2}}\frac{Dp_{\mu}}{D\sigma}$ • Extra term contributes to finite size effects, yet carries no Wilson coefficient
- Beyond minimal coupling $S_{\mu\nu} = \hat{S}_{\mu\nu} \frac{\hat{S}_{\mu\rho}p^{\rho}p_{\nu}}{p^2} + \frac{\hat{S}_{\nu\rho}p^{\rho}p_{\mu}}{p^2}$

イロト イポト イヨト イヨト

Nonminimal coupling action with spin must be constrained

[ML & Steinhoff, JHEP 2014, JHEP 2015]

イロト イポト イヨト イヨト

Building blocks $\sim {\sf Riemann} \times {\sf ~Spin-induced}$ higher multipoles

Spin-induced higher multipoles

$$\begin{split} S^{\mu} &\equiv *S^{\mu\nu} \frac{p_{\nu}}{\sqrt{p^2}} \simeq *S^{\mu\nu} \frac{u_{\nu}}{\sqrt{u^2}}, \quad *S_{\alpha\beta} \equiv \frac{1}{2} \epsilon_{\alpha\beta\mu\nu} S^{\mu\nu} \\ \Rightarrow S_{\mu} S^{\mu} &= -\frac{1}{2} S_{\mu\nu} S^{\mu\nu} \equiv -S^2 \\ \bullet SO(3) \text{ invariance of body-fixed triad} \\ \Rightarrow \text{ Spin multipoles are } SO(3) \text{ irrep tensors} \\ \bullet \text{ Initially, covariant gauge } e_{[0]}^{\mu} = u^{\mu} / \sqrt{u^2}, \ e_{[i]}^{\mu} u_{\mu} = 0 \\ \Rightarrow \text{ Spin-induced higher multipoles are symmetric, traceless, and spatial, constant tensors in body-fixed frame} \end{split}$$

 \Rightarrow From parity invariance: Even and odd combinations of spin vector S^{μ} couple to even and odd parity electric and magnetic curvature tensors, and their covariant derivatives, respectively.

Nonminimal coupling action with spin must be constrained [ML & Steinhoff, JHEP 2014, JHEP 2015]

Curvature tensors

Electric component, $E_{\mu\nu} \equiv R_{\mu\alpha\nu\beta} u^{\alpha} u^{\beta}$, Magnetic component, $B_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\alpha\beta\gamma\mu} R^{\alpha\beta}_{\delta\nu} u^{\gamma} u^{\delta}$, and their spatial body-fixed covariant derivatives, $D_{[i]} = e^{\mu}_{[i]} D_{\mu}$

- Field is vacuum solution at LO, properties of Riemann, Bianchi identities $\Rightarrow E_{\mu\nu}$, $B_{\mu\nu}$, symmetric, traceless, and orthogonal to u^{μ} , also when projected to body-fixed frame, where they are spatial
- At most linear in Riemann
 - \Rightarrow Time derivative $D_{[0]} = u^{\mu} D_{\mu} \equiv D/D\sigma$ can be ignored
- Analogous to Maxwell's equations

$$\begin{aligned} \epsilon_{[ikl]} D_{[k]} E_{[lj]} &= \dot{B}_{[ij]} \implies D_{[i]} E_{[ij]} = D_{[i]} B_{[ij]} = 0, \\ \epsilon_{[ikl]} D_{[k]} B_{[lj]} &= -\dot{E}_{[ij]} \qquad \Box E_{[ij]} = \Box B_{[ij]} = 0 \end{aligned}$$

⇒ Indices of covariant derivatives would be symmetrized with respect to indices of electric and magnetic tensors ⇒ Covariant derivatives of these tensors are also traceless \bullet \bullet \bullet \bullet

Michele Levi (IPhT, U. Paris-Saclay)

EFTs of PNG

August 2017 13 / 23

LO nonminimal couplings to all orders in spin are fixed [ML & Steinhoff, JHEP 2014, JHEP 2015]

LO nonminimal couplings to all orders in spin

New spin-induced Wilson coefficients:

$$\mathcal{L}_{\mathsf{SI}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \frac{\mathcal{C}_{\mathsf{ES}^{2n}}}{m^{2n-1}} D_{\mu_{2n}} \cdots D_{\mu_3} \frac{\mathcal{E}_{\mu_1 \mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \cdots S^{\mu_{2n-1}} S^{\mu_{2n}} + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{\mathcal{C}_{\mathsf{BS}^{2n+1}}}{m^{2n}} D_{\mu_{2n+1}} \cdots D_{\mu_3} \frac{\mathcal{B}_{\mu_1 \mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \cdots S^{\mu_{2n-1}} S^{\mu_{2n}} S^{\mu_{2n+1}}$$

LO spin couplings up to 4PN order

 $nPN \equiv v^{2n} \text{ correction in GR to Newtonian Gravity}$ $L_{ES^2} = -\frac{C_{ES^2}}{2m} \frac{E_{\mu\nu}}{\sqrt{u^2}} S^{\mu} S^{\nu}, \qquad \text{Quadrupole @2PN}$ $L_{BS^3} = -\frac{C_{BS^3}}{6m^2} \frac{D_{\lambda} B_{\mu\nu}}{\sqrt{u^2}} S^{\mu} S^{\nu} S^{\lambda}, \qquad \text{Octupole @3.5PN}$ $L_{ES^4} = \frac{C_{ES^4}}{24m^3} \frac{D_{\lambda} D_{\kappa} E_{\mu\nu}}{\sqrt{u^2}} S^{\mu} S^{\nu} S^{\lambda} S^{\kappa}, \text{ Hexadecapole @4PN}$

Particle DOFs should be disentangled from field DOFs

[ML, 2×PRD 2010, ML & Steinhoff, JCAP 2014, JHEP 2015]

Worldline tetrad contains both rotational and field DOFs

 $\hat{e}_{A}{}^{\mu} = \hat{\Lambda}_{A}{}^{b}\tilde{e}_{b}{}^{\mu}: \ \eta^{AB}\hat{\Lambda}_{A}{}^{a}\hat{\Lambda}_{B}{}^{b} = \eta^{ab}, \text{ tetrad field } \eta_{ab}\tilde{e}^{a}{}_{\mu}\tilde{e}^{b}{}_{\nu} = g_{\mu\nu}$ $\frac{1}{2}\hat{S}_{\mu\nu}\hat{\Omega}^{\mu\nu} = \frac{1}{2}\hat{S}_{ab}\hat{\Omega}^{ab}_{\text{flat}} + \frac{1}{2}\hat{S}_{ab}\omega_{\mu}{}^{ab}u^{\mu}, \ \omega_{\mu}{}^{ab} \equiv \tilde{e}^{b}{}_{\nu}D_{\mu}\tilde{e}^{a\nu} \text{ Ricci rotation coefficients}$

 $\Rightarrow \text{New rotational variables: } \hat{\Omega}_{\text{flat}}^{ab} = \hat{\Lambda}^{Aa} \frac{d\hat{\Lambda}_{A}{}^{b}}{d\sigma}, \ \hat{S}_{ab}$

Separation of field from particle worldline DOFs is not complete

- \$\hlowsymbol{\Lambda}_{[0]}^a = w^a = \tilde{e}^a_{\ \mu} w^{\mu}\$ may contain further field dependence
 \$\hlowsymbol{S}_{0i}\$ contain further field dependence
 - ⇒ Field completely disentangled from worldline DOFs only once gauge for rotational variables is fixed

Michele Levi (IPhT, U. Paris-Saclay)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Fixing the gauge of rotational variables

[ML & Steinhoff, JHEP 2015]

$$\hat{\Lambda}_{[0]a} = w_a, \qquad \hat{S}^{ab} \left(p_b + \sqrt{p^2} \hat{\Lambda}_{[0]b} \right) = 0$$

3 sensible gauges

Covariant gauge

$$\hat{\Lambda}_{[0]a} = rac{p_a}{\sqrt{p^2}} \Rightarrow {\Lambda_{[0]}}^a = rac{p^a}{\sqrt{p^2}}$$

2 Canonical gauge

$$\hat{\Lambda}_{[0]}{}^{a} = \delta_{0}^{a} \Leftrightarrow \hat{\Lambda}_{A}{}^{(0)} = \delta_{A}^{0} \Rightarrow \qquad \hat{S}^{ab} \left(p_{b} + \sqrt{p^{2}} \delta_{0b} \right) = 0$$

Generalization of Pryce-Newton-Wigner SSC from flat spacetime 3 No mass dipole gauge

$$\hat{\Lambda}_{[0]}{}^{a} = \frac{2p_{0}\delta_{0}^{a} - p^{a}}{\sqrt{p^{2}}} \Rightarrow \qquad \hat{S}_{a0} = 0$$

Michele Levi (IPhT, U. Paris-Saclay)

EFTs of PNG

August 2017 16 / 23

NRG fields and Schwinger's time gauge Reduction over time dimension à la Kaluza-Klein

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} \equiv e^{2\phi}(dt - A_i dx^i)^2 - e^{-2\phi}\gamma_{ij}dx^i dx^j$$

φ, A_i, γ_{ij} ≡ δ_{ij} + σ_{ij}, Non Relativistic Gravitational (NRG) fields
 Advantageous, preferable e.g. over Lorentz covariant, ADM decompositions...

[w spin ML, PRD 2010 etc.]

イロト イポト イヨト イヨト

NRG tetrad field gauge

[ML & Steinhoff JHEP 2015]

Schwinger's time gauge

$$\tilde{e}_{(i)}{}^0(x)=0$$

Using internal Lorentz symmetry

$$\tilde{e}^{a}{}_{\mu} = \left(egin{array}{cc} e^{\phi} & -e^{\phi}A_{i} \\ 0 & e^{-\phi}\sqrt{\gamma}_{ij} \end{array}
ight), \quad \sqrt{\gamma}_{ij} ext{ symmetric square root of } \gamma_{ij}$$

EOMs for the precession of spin

[ML & Steinhoff, JCAP 2014]

From variation of the final effective action - like those of position

$$S_{\text{eff(spin)}} = \int dt \left[-\frac{1}{2} \sum_{l=1}^{2} S_{lij} \Omega_l^{ij} - V \left(\vec{x}_l, \dot{\vec{x}}_l, \ddot{\vec{x}}_l, \dots, S_{lij}, \dot{S}_{lij}, \dots \right) \right]$$

Lorentz matrices and spin are independent variational variables!

$$\Rightarrow \dot{S}_{I}^{ij} = -4S_{I}^{k[i}\delta^{j]I}\frac{\delta\int dt V}{\delta S_{I}^{kI}} = -4S_{I}^{k[i}\delta^{j]I}\left[\frac{\partial V}{\partial S_{I}^{kI}} - \frac{d}{dt}\frac{\partial V}{\partial \dot{S}_{I}^{kI}} + \dots\right]$$

If rotational gauge is not fixed

$$S_{(\text{spin})} = \int dt \left[-\frac{1}{2} \sum_{I=1}^{2} S_{Iab} \Omega_{I}^{ab} - V \left(\vec{x}_{I}, \dot{\vec{x}}_{I}, \ddot{\vec{x}}_{I}, \dots, S_{Iab}, \dot{S}_{Iab}, \dots \right) \right]$$

$$\Rightarrow \dot{S}_{I}^{ab} = 4S_{I}^{c[a} \eta^{b]d} \frac{\delta \int dt V}{\delta S_{I}^{cd}} = 4S_{I}^{c[a} \eta^{b]d} \left[\frac{\partial V}{\partial S_{I}^{cd}} - \frac{d}{dt} \frac{\partial V}{\partial \dot{S}_{I}^{cd}} + \dots \right]$$

LO sectors beyond Newtonian

Feynman graphs of non-spinning sector to 1PN order

One-loop diagram - absent from 1PN with NRG fields

LO Feynman diagrams with spin - to quadratic in spin

LO cubic and quartic in spin sectors [ML & Steinhoff, JHEP 2014]

Feynman diagrams of LO **cubic** in spin sector

On left pair – quadrupole-dipole, on right – octupole-monopole
Note analogy of each pair with LO spin-orbit

Feynman diagrams of LO quartic in spin sector

- On left and right quadrupole-quadrupole and hexadecapole-monopole
- Each is analogous to LO spin-squared
- In middle octupole-dipole analogous to LO spin1-spin2

Michele Levi (IPhT, U. Paris-Saclay)

EFTs of PNG

August 2017 20 / 23

NNLO spin-squared sector

[ML & Steinhoff, JCAP 2016]

Feynman diagrams of order G^3 with two loops

Five 2-loop topologies actually fall into 3 kinds

■ H topology (graphs c1,c2) – irreducible kind – is the nasty one!

Implementing the EFTs EFTofPNG package

EFTofPNG package version 1.0

[ML & Steinhoff, arXiv:1705.06309]

イロト イポト イヨト イヨト

Public repository URL: https://github.com/miche-levi/pncbc-eftofpng

Conclusions

EFT of PNG with Spin: Summary of formal results

[ML & Steinhoff, JHEP 2015; ML, arXiv:1705.07515]

- EFT formulation for spinning gravitating objects
- Spin-induced nonminimal coupling to all orders in spin
- EOMs and Hamiltonians straightforward to derive

EFT of PNG with Spin: Summary of applications

[ML, arXiv:1705.07515]

- NLO S1-S2, SO [ML, 2×PRD 2010], S² [ML & Steinhoff, JHEP 2015]
- NNLO S1-S2 [ML, PRD 2011], SO, S² [ML & Steinhoff, 2×JCAP 2016]
- LO S³+S⁴ [ML & Steinhoff, JHEP 2014]
- Public package with spin + observables pipeline [ML & Steinhoff, 2017]
- \Rightarrow Spinning & non-spinning PN accuracy unprecedently in sync!

Prospective work

- Formal matching of spin-induced Wilson coefficients
- \blacksquare Radiative sector with spin: Formulation of EFT \rightarrow Implementation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = ∽○<⊙