Search for ultra-light dark matter using cold atoms

Aurélien Hees*, Jocelyne Guéna, Michel Abgrall, Sébastien Bize, Peter Wolf

Probing the dark sector and general relativity at all scales
CERN, 14-25 August 2017

*Present affiliation: UCLA Galactic Center Group
Menu

• Introduction
• Scalar fields with non-universal coupling
• Link to dark matter
• Relation to atomic spectroscopy
• Searching in the SYRTE FO2 Rb/Cs spectroscopy data
• Results in linear model
• Results in other models
• Limits on mass range
• Conclusion and Outlook

[Hees et al., PRL 117, 061301, 2016]
• General Relativity (GR) is a classical theory, difficult to reconcile with quantum field theory and the Standard Model of particle physics (SM).
• Dark Energy and Dark Matter (DM) may indicate deviations from GR and/or SM.

• Many modified gravitational theories and corresponding cosmological models contain long range scalar fields. Higgs boson is the first known fundamental scalar field (short range).
• If such scalar fields are massive and pressureless they could be DM candidates. Under quite general assumptions they will oscillate at frequency \(f = \frac{m_\phi c^2}{h} \).
• Scalar fields might be non-universally coupled to SM-fields, leading to violations of the equivalence principle e.g. non-universality of free fall or space-time variations of fundamental constants.
• Comparing different atomic transitions allows searching for such variations [e.g. Guéna et al., PRL 2012].
• We analyze \(\approx 6 \) yrs of Rb/Cs hyperfine frequency measurements to search for such massive scalar fields at very low mass \(\approx 10^{-24} \ldots 10^{-18} \text{ eV} \).
Non-universally coupled scalar fields

- From Damour & Donoghue (2010).
- Fundamental constants (α, Λ_3, m_i) are functions of φ, and vary if φ varies.
- Quadratic couplings treated in Stadnik & Flambaum (2014). Leads to similar phenomenology.

\[S = \frac{1}{c} \int d^4x \sqrt{-g} \left[R - 2g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi) \right] + \frac{1}{c} \int d^4x \sqrt{-g} [\mathcal{L}_{\text{SM}}(g_{\mu\nu}, \Psi) + \mathcal{L}_{\text{int}}(g_{\mu\nu}, \varphi, \Psi)] \]

With five dimensionless coupling constants d_x

- From Damour & Donoghue 2010
- [Stadnik & Flambaum 2014, 2015]
Evolution of the scalar field

- Assume a quadratic potential for φ.
- Embed action in FLRW metric.
- Varying with respect to φ gives a KG equation for its evolution ($\sigma = \partial L_{int}/\partial \varphi$).
- The solution oscillates at $\omega = m_\varphi c^2 / \hbar$ with negligible “Hubble damping” for $m_\varphi \gg \hbar H / c^2$, well satisfied for our mass range.

\[V(\varphi) = \frac{2c^2 m_\varphi^2 \varphi^2}{\hbar^2} \]

\[\ddot{\varphi} + 3H \dot{\varphi} + \frac{m_\varphi^2 c^4}{\hbar^2} \varphi = \frac{4\pi G}{c^2} \sigma \]

\[\varphi = \frac{4\pi G \sigma \hbar^2}{m_\varphi^2 c^6} + \varphi_0 \cos(\omega t + \delta) \]
The cosmological density (+) and pressure (-) of ϕ are given by
\[\frac{c^2}{8\pi G} \left(\phi^2 \pm \frac{V(\phi)c^2}{2} \right). \]

It turns out that the oscillating part of $\phi(t)$ has zero average pressure and is therefore a candidate for Dark Matter.

Equating its average density with the DM density (≈ 0.4 GeV/cm3) fixes the amplitude of the oscillation $\phi_0 \cos(\omega t + \delta)$.

That oscillation translates into an oscillation of the fundamental constants that can be searched for in a 6 parameter space (m_ϕ, d_x).

The mass m_ϕ is given by the frequency of oscillation, the coupling constants d_x by the amplitude.

\[
\rho_\phi = \frac{c^2}{4\pi G} \omega^2 \phi_0^2 = \frac{c^6}{4\pi G \hbar^2} \frac{m_\phi^2 \phi_0^2}{2}
\]

[Stadnik & Flambaum 2014, 2015]
[Arvinataki, Huang, Van Tilburg 2015]
Relation to Atomic Spectroscopy

- Different atomic transition frequencies depend differently on three dimensionless fundamental constants: α, m_e/Λ_{QCD}, m_q/Λ_{QCD}, with $m_q = (m_u + m_d)/2$.
- If one or several of those constants vary in time/space, you can search for that variation by monitoring ratios of atomic transition frequencies in atomic clocks.
- The dependence of different frequency ratios on the fundamental constants has been calculated in great detail by Flambaum and co-workers [2006, 2008, 2009].
- Generally, optical transitions are sensitive to variations of α only, while hyperfine transitions to linear combinations of all three. Thus, ideally at least 3 different frequency ratios are required to independently search for a possible variation of either of the 3 constants.

<table>
<thead>
<tr>
<th>TABLE I. Sensitivity coefficients k_α, k_μ, and k_q of atomic transition frequencies used in current atomic clocks to a variation of α [23,24], of $\mu = m_e/m_p$ and of m_q/Λ_{QCD} [16,17]. These transitions are hyperfine transitions for $^{1}H_{\text{hfs}}$, 87Rb, 133Cs, and optical transitions for $^{1}H(1S-2S)$ and all others except Dy. For Dy, the rf transition between two closely degenerated electronic levels of opposite parity is used in the two 162 and 163 isotopes [10,11,25].</th>
</tr>
</thead>
<tbody>
<tr>
<td>87Rb</td>
</tr>
<tr>
<td>k_α</td>
</tr>
<tr>
<td>k_μ</td>
</tr>
<tr>
<td>k_q</td>
</tr>
</tbody>
</table>

[Guéna et al. 2012]
Built in early 2000s by André Clairon and co-workers.
Operates simultaneously on laser cooled (µK) 87Rb and 133Cs since 2008 (common mode systematics).
Most accurate and stable Rb/Cs frequency ratio measurement world-wide (and longest duration).
Contributes continuously to TAI with both Rb and Cs.
Previously used to constrain linear drifts of fundamental constants, and variations proportional to U/c^2 i.e. annual variations [Guéna, PRL 2012].
All systematics are evaluated and corrected during operation.

FO2 Rb/Cs raw data

- Nov 2009 – Feb 2016
- Averaged to 100 points/day
- 100814 points in total
- ≈ 45% duty cycle with gaps due to maintenance and investigation of systematics
- Standard deviation = 3×10^{-15}

$y(t) = \frac{f(t)}{f_0}$
Noise model

FO2-Rb/Cs comparison over 6 months
Allan standard deviation of the Rb/Cs frequency ratio

- Noise level is a function of Fourier frequency:

\[
\begin{align*}
\sigma_0^2(\omega) &= 4.6 \times 10^{-29}, \quad \text{for } \omega \leq 9.0 \times 10^{-6} \text{ rad/s} \\
\sigma_0^2(\omega) &= 9.3 \times 10^{-30}, \quad \text{for } \omega \geq 4.5 \times 10^{-5} \text{ rad/s} \\
\sigma_0^2(\omega) &= 4.2 \times 10^{-34}/\omega, \quad \text{otherwise,}
\end{align*}
\]

Bump well understood: correction of collision shift by HD/LD measurements
interleaved introduce another timescale at 5 days

Resolution below 10^{-16}

- Fit $A + C_\omega \cos(\omega t) + S_\omega \sin(\omega t)$ to data for each independent ω.
- Search for a peak in normalized power $P_\omega = \frac{N}{4\sigma_\delta^2(\omega)} (C^2_\omega + S^2_\omega)$.
- Use different methods (LSQ + MC, Bayesian MCMC) to determine confidence limits.
Systematic Effects

- Detailed and repeated analysis of systematic effects (Guéna 2012, 2014) estimates uncertainty on absolute determination of Rb and Cs hyperfine frequency to 3.2×10^{-16} and 2.1×10^{-16}.
- The uncertainty on the difference is expected to be significantly less due to common mode.
- Periodic variations at any frequency are again expected to be below that level.
- No evidence for systematic effect at most likely frequency (diurnal).

⇒ Our results are limited by statistics rather than systematic uncertainties.
• Complementary to previous searches (Dy) that are sensitive to d_e only.
• When assuming only $d_e \neq 0$, improve Dy limits significantly.
• Also complementary to WEP tests ($\approx 10^{-3}$ for only $d_e \neq 0$). But those are limiting at $m_\varphi=0$ (no link to DM).

Results in linear model

$\log_{10}(d_e + 0.043(d_{mq} - d_g))$

$\log_{10} m_\varphi [\text{eV}/c^2]$

[Damour & Donoghue 2010]
[Van Tilburg et al. 2015]
Results in other models

Note the different parametrization of the scalar field:

\[
L^\text{quad}_{\text{int}} = - \sum_f \frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f + \frac{\phi^2}{(\Lambda'_\gamma)^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4}
\]

\[
\varphi = \sqrt{4\pi G/c^2} \phi = \sqrt{4\pi \phi/M_{Pl}}
\]

[From Stadnik & Flambaum, PRA 94, 022111 (2016)]
Results in other models

\[L_{\text{int,eff}}^{\text{Higgs}} = \frac{A(h)}{m_h^2} \phi \left(\sum_f g_{hff} f \bar{f} + \frac{g_{h\gamma\gamma}}{\langle h \rangle} F_{\mu\nu} F^{\mu\nu} \right), \]

where \(m_h = 125 \text{ GeV} \) is the mass of the Higgs boson, \(g_{hff} = m_f/\langle h \rangle \) for couplings of the Higgs to elementary fermions (leptons and quarks), \(g_{hNN} = bn_N/\langle h \rangle \) with \(b \sim 0.2-0.5 \) [24] for couplings of the Higgs to nucleons, and \(g_{h\gamma\gamma} \approx \alpha/8\pi \) for the radiative coupling of the Higgs to the electromagnetic field.

[From Stadnik & Flambaum, PRA 94, 022111 (2016)]
A lower limit on plausible DM masses is obtained by requiring that $\lambda = \frac{h}{mv} < $ smallest dwarf galaxy ($\approx 1 \text{ kpc} \approx 3 \times 10^{19} \text{ m}$). With $v \approx 10^{-3} c$ this gives a minimum mass of about 10^{-23} eV.

- Our upper limit is due to our data being averaged to 100 points/day, imposing a Nyquist limit at $5.8 \times 10^{-4} \text{ Hz}$ corresponding to $m \approx 2.4 \times 10^{-18} \text{ eV}$.
- But our basic measurement cycle time is 2 s, so we will analyze some high frequency data to extend our search up to 10^{-15} eV.
- It is possible to search at even higher masses, at the expense of sensitivity [see e.g. Kalaydzhyan & Yu, arXiv 2017]. Limited when DM coherence time $= \frac{h}{mv^2}$ (assuming virialized DM) becomes shorter than clock cycle (2 s). Then $m \leq 2 \times 10^{-9} \text{ eV}$.
Conclusion and Outlook

- A massive scalar field φ may oscillate at frequency $f = m_\varphi c^2 / h$.
- If non-universally coupled to SM fields it will lead to a corresponding oscillation of fundamental constants, that can be searched for with atomic clocks.
- It may also be a candidate for pressureless DM, that continues to elude direct detection.
- We analyze ≈ 6 yrs of Rb/Cs hyperfine frequency measurements to search for such massive scalar fields at very low mass $\approx 10^{-24} – 10^{-18}$ eV.
- We see no evidence for such a scalar field.
- Our results are complementary to, and competitive with, previous searches in several different DM models.

- We expect to extend the reach of our search to masses as high as 10^{-9} eV in the near future.
- We expect that with the advent of new and better atomic clocks this type of search will be further improved and expanded in the future.
- Although not discussed in this presentation, searching for topological scalar DM with atomic clocks is a new and interesting field. Could be the subject of future work.
Post-doctoral position
Searching for Dark Matter with a network of atomic clocks

directed by: Pacôme Delva and Peter Wolf
Observatoire de Paris, CNRS, Université Pierre et Marie Curie, LNE
Systèmes de Référence Temps-Espace SYRTE, Paris

For details see: https://syrte.obspm.fr/spip/stages-theses/
Open until filled (max. March 2018)
Backup Slides
• Detailed and repeated analysis of systematic effects (Guéna 2012, 2014) estimates uncertainty on absolute determination of Rb and Cs hyperfine frequency to 3.2×10^{-16} and 2.1×10^{-16}.
• The uncertainty on the difference is expected to be significantly less due to common mode.
• Periodic variations at any frequency are again expected to be below that level.
• No evidence for systematic effect at most likely frequency (diurnal).
• Our results are certainly limited by statistics rather than systematic uncertainties.
Coherence time:

\[\hbar \omega = mc^2 + \frac{mv^2}{2} \Rightarrow \frac{\delta \omega}{\omega} \approx \frac{v \delta v}{c^2} \approx 10^{-6}\]

for \(\delta v \approx v \approx 10^{-3} c\)

\[\delta \omega \tau_{coh} = 2\pi\]

For our highest frequency \((\omega_{max} = \frac{\pi}{864 \text{s}})\) this gives a minimum \(\tau_{coh} \approx 55\) years, much longer than our data

Minimum mass:

- \(mv = h/\lambda\), but \(\lambda\) needs to be smaller than smallest dwarf galaxy \((\approx 1 \text{kpc} \approx 3 \times 10^{19}\text{ m})\)
- With \(v \approx 10^{-3} c\) this gives a minimum mass of about \(10^{-23}\) eV.