ATF2 IP-BPM - piezo movers calibration (2016.10.04-2016.10.13)

1. Horizontal movers calibration
2. Vertical disp. when lateral scanning (XY coupling)
3. Vertical movers calibration (linear fit)
4. Vertical movers calibration (non-linear fit)
5. Vertical movers stability (movers resting at midstroke)

Philip Bambade, Sandry Wallon - LAL-IN2P3-CNRS - Université Paris-Sud, Orsay -France

BPMs displacement system (to bring vertical and horizontal disp + a bit of roll and pitch)

Setup for movers calibration

BPMs displacement system installed in a frame holding distance meters
Vertical calibration done at IP with SIOS interferometer ${ }^{(*)}$ (sub nanometric resolution) for :

- BPM-AB Cedrat vertical movers system - BPM-C PI vertical movers system (Mirror for interferometry measurement set on BPM's top, therefore calibration is done for the tripod system, not for each movers)

Horizontal calibration done at IP with Keyence lasermeter (sub micrometric resolution) for :

- BPM-AB Cedrat mover (no new calibration available, data seems to have been erased by PI data)
- BPM-C PI mover
$\left(^{*}\right)$ Interferometer and BPMs assy installed on the frame laying on a metallic table ("bench") near IP.

Specs for measurements :

- 0.1 V step (0.5 V for PI factory calibration)
- 3 sec holding time (same for PI factory calibration)
-5 Hz acquisition
-10 to 13 measurements kept at every steps (measurements when moving from step to another are rejected)
For each setting voltage, 10 to 13 measurements are
displayed on the following plots (i.e. not error bar).

1. Horizontal movers calibration (linear fit)

Measurements done with KEK laser-meter (sub $\mu \mathrm{m}$ resolution)

Pl piezo mover :

- Can not reach expected $300 \mu \mathrm{~m}$ stroke, only 252 to $268 \mu \mathrm{~m}$ (mover is pre-stressed by elastic hinge);
- Mover behaves in continuous manner (see fig.);
- Consequently, actual gain is
smaller than factory one : 25.97
$\mu \mathrm{m} / \mathrm{V}$

Cedrat mover : no data (erased by PI data during measurements)

2. Vertical disp. when lateral scanning (XY coupling)

Measurements done with LAL interferometer

Cedrat mover:

Little unusual behavior around 3V (mid-stroke), as vertical displacement should be negative for overall range.
Specs : 1V step, 10 sec holding time

PI piezo mover : obvious flaw Because horizontal mover pushes on hinge (see limited stroke due to pre-stressed), vertical disp. is no longer symmetrical with respect of 5 V setting voltage (mid-stroke).
Consequently, BPM-C "drop" is higher than expected (\sim Cedrat value).

Specs : 0.5V step, 10 sec holding time

3. Vertical movers calibration (linear fit)

($\mathrm{R}^{2}>0.9996$)

		(Cedrat)		(PI)	
		Setting voltage range [V]			
		-1 to 7	2 to 4	0 to 10	4 to 6
		Gain (slope) [$\mu \mathrm{m} / \mathrm{V}$]			
Cycle (or special note)	Direction (up=inc. Voltage)	Y_IPA-IPB	Y_IPA-IPB	Y_IPC	Y_IPC
1	up	30.6649	30.4838	29.9912	30.0559
1	down	30.6418	30.4955	29.9787	30.1042
2	up	30.6260	30.4899	29.9757	30.0947
2	down	30.6370	30.4938	29.9789	30.1028
3	up	30.6257	30.4965	29.9708	
3	down	30.6695	30.4972	29.9789	
4	up	30.6247	30.5016	29.9716	
4	down	30.6711	30.4913	29.9798	

Avg gain $[\mu \mathrm{m} / \mathrm{V}]$ (arith. mean from above data)	30.6451	30.4937	29.9782	$\mathbf{3 0 . 0 8 9 4}$
SD $[\mu \mathrm{m} / \mathrm{V}]$ (from above data)	0.0203	0.0054	0.0063	0.0227

	Gain from factory calibration in close loop [mm/V]		
mover	Cedrat $(2012.11 .06)$	PI	mover
CH1-07013	30.42	missing	1
CH2-07013	30.59	missing	2
CH3-07013	30.67	missing	3
CH1-11014	30.34	missing	4

Gain $[\mu \mathrm{m} / \mathrm{V}]$ (overall fit for a 4 cycle path)	30.6454	30.4943	29.9782	30.0855

Vertical Cedrat mover system - residual (-1 to 7V)

(Residual = measured displacement minus calculated disp. from linear fit)

Cycle \#1 - Residual [nm] vs setting voltage [V]

Setting voltage [V]
Cycle \#2 - Residual [nm] vs setting voltage [V]

Cycle \#3 - Residual [nm] vs setting voltage [V]

-3000

Cycle \#4 - Residual [nm] vs setting voltage [V]

Vertical Cedrat mover system - residual (-1 to 7V ; 4 cycles)

Vertical PI mover system - residual (0 to 10V)

Cycle \#1 - Residual vs Setting voltage

Cycle \#2 - Residual [nm] vs setting voltage [V]

Cycle \#3 - Residual [nm] vs setting voltage [V]

Cycle \#4 - Residual [nm] vs setting voltage [V]

Vertical PI mover system - residual (0 to 10V ; 4 cycles)

Cycle 1 to 4 - Residual vs Setting voltage

Vertical calibrations (full range, linear fit) - analysis

a) At full range, smaller gain standard deviation for PI than Cedrat (0.0063 vs $0.0203 \mu \mathrm{~m} / \mathrm{V}$), but lack of data to be relevant (only 4 cycles).
b) Cedrat : Accident in the ranges -1 to -0.8 V and 6.4 to 7 V . With reduced range (i.e. previous ranges excluded), tripod system raw accuracy is $-2.1 /+1.9 \mu \mathrm{~m}$ (max deviation from linear fit) \rightarrow accuracy $\sim 1 / 120$ of stroke (reduced stroke) when $\sim 1 / 700$ is expected (for a single actuator)!
c) PI : Good accuracy for the tripod system : $-0.28 /+0.32 \mu \mathrm{~m}$ for full range operation, reduced to $-0.14 /+0.27 \mu \mathrm{~m}$ when rejecting 0 to 0.5 V (warm up?) and 9.5 to 10 V (shift) \rightarrow accuracy ~ 1/1000 of stroke as expected.

4. Vertical movers calibration

(non-linear fit + slightly reduced stroke) Residual from cubic polynomial fit

Working around mid stroke

Vertical Cedrat movers system - residual from linear fit (2 to 4V ; 4 cycles)

Cycle 1 to 4 - Cedrat residual [nm] vs Setting voltage

Working around mid stroke

Vertical Cedrat movers system - residual from cubic polynomial fit (2 to 4V ; 4 cycles)

Cycle 1 to 4 - Cedrat residual vs Setting voltage - 2 to 4 V

	Cedrat polynomial fit coeffs (2 to 4V travel)			
	$\mathrm{a}\left[\mathrm{nm} / \mathrm{V}^{\wedge} 3\right]$	$\mathrm{b}\left[\mathrm{nm} / \mathrm{V}^{\wedge} 2\right]$	$\mathrm{c}[\mathrm{nm} / \mathrm{V}]$	$\mathrm{d}[\mathrm{nm}]$
4 ups	100.914	-718.608	32021.1	-61998.8
4 downs	73.6114	-315.872	30362.7	-60108.8

Working around mid stroke
 Vertical PI movers system - residual from linear fit (2 to 4V ; 2 cycles over 4 [corrupted data])

Residual [nm] vs setting voltage [V]

Working around mid stroke

Vertical PI movers system - residual from cubic polynomial fit (2 to 4V ; 2 cycles)

Cycle 1 to 4 - Pi residual vs Setting voltage - 4 to 6V

Setting voltage [V]

	Pl polynomial fit coeffs (4 to 6 to 4V travel)			
	a [nm/V^3]	b [nm/V^2]	$c[n m / V]$	$d[n m]$
2 ups	-31.4916	556.339	-33253.6	126186
2 downs	-28.3160	370.133	-31664.9	122681

Vertical calibrations (cubic polynomial fit) - analysis

Cedrat's systematic error can be dramatically reduced with cubic polynomial fit. In this case, Cedrat is close to the PI's accuracy level, especially with short range around midstroke.

Full range with rejected data :
$\mathrm{PI} \rightarrow$ raw rel. accuracy $\sim 8 \times 10^{-4}$ ($200 \mathrm{~nm} / 270 \mu \mathrm{~m}$)
Cedrat \rightarrow raw rel. accuracy ${ }^{\sim} 1.1$ to 1.7×10^{-3} (200 or $300 \mathrm{~nm} / 174 \mu \mathrm{~m}$)
Raw accuracy $=$ no statistical analysis (only 4 cycles taken)

Around mid-stroke, 2 V range :
Lack of data for PI (only 2 cycles), but both Cedrat and PI tend to be within a band of
$+/-60 \mathrm{~nm}$ for the same reduced stroke ($60 \mu \mathrm{~m}$).
\rightarrow raw rel. accuracy ${ }^{\sim} 10^{-3}(60 \mathrm{~nm} / 60 \mu \mathrm{~m})$

5. Vertical movers stability at mid stroke

Stability checks were done at

- LAL in 2013.06 (F. Bogard) (just before shipping goods to KEK)
- KEK in 2016.10 (S. Wallon).

Set-up / method (2013)
Raw data corrected by subtracting linear component (16 hits moving windows) to compensate shifting measurements. Measurement at 5 Hz during 100 sec .

Origin of shifting

Probably mostly comes from the thermal dilation of the mechanical parts (interferometer head support). (Laser wave length shift is compensated. Interferometer head is made of invar.)

Set-up / method (2016)
2013 method was reused to compare 2013 and 2016 results (except 200 sec records in 2016, i.e expected BPMs scanning time with beam on).
... But raw data were used too, as thermal shifting is not obvious : on one hand, resultant thermal dilation is reduced thanks a shorter support for the 2016 setup ; on the other hand, 2016 measurements (following pages) do not show a correlation between temp. and measured displacement during 200 sec records.

Cedrat vertical movers stability at mid stroke

 (at LAL in June 2013)

Mirror on BPM-AB, all Cedrats at 3V (with feedback) Sampling rate : 5 Hz ; Linear shift extracted (16 hits window)

SD [nm] :
$1^{\text {st }}$ meas. : $5.93^{(1)} / 6.26^{(2)}$
$2^{\text {nd }}$ meas. : $5.98 / 7.74$
$3^{\text {rd }}$ meas. : $5.49 / 5.56$
$4^{\text {th }}$ meas. : $2.80 / 2.82$
(1) From histogram
(2) Recalculated in 2017 from 2013 corrected data (with 15 last corrected data rejected)

Cedrat vertical movers stability at mid stroke

 (at KEK in Oct. 2016)

Mirror on BPM-C, all PIs at 5V (with feedback)
Sampling rate : 5 Hz ; Linear shift extracted (16 hits window)

SD $=3.67 \mathrm{~nm}$ (corrected data)
\rightarrow SD remains in the same range as in 2013
... But during measurement, air temp. was quasi-constant : $27.126{ }^{\circ} \mathrm{C}$ to $27.125^{\circ} \mathrm{C}$. A $1 / 1000{ }^{\circ} \mathrm{C}$ temp. rise leads to about 2 nm thermal expansion for a 10 cm long Al part. \rightarrow measurements shift is not a thermal expansion issue.

SD $=7.37$ nm (raw data)

PI vertical movers stability at mid stroke

 (at LAL in June 2013)

Mirror on BPM-C, all PIs at 5V (with feedback)
Sampling rate : 5 Hz ; Linear shifting extracted (16 hits)

Measurements shift despite air sensor probe giving a constant temp. (2.683 to $2.684^{\circ} \mathrm{C}$).
(Two other trials were done at that time with very close standard deviations).

PI vertical movers stability at mid stroke

 (at KEK in Oct. 2016)

Mirror on BPM-C, all PIs at 5V (with feedback)
Sampling rate : 5 Hz ; Linear shifting extracted (16 hits)

$\mathrm{SD}=2.04 \mathrm{~nm}$
(from raw data SD $=3.30 \mathrm{~nm}$)
\rightarrow SD remains in the same range as in 2013

Temperature : During measurement, temp. continuously went up from $27.264^{\circ} \mathrm{C}$ to $27.292^{\circ} \mathrm{C}$

Conclusion

1. Lateral PI mover has a slightly limited stroke (max disp. 252 to 268 mm), but works continuously.
2. $X Y$ couplings not as expected, especially for PI (large positive and negative "drop").
3. Vertical calibrations

With linear fit, PI movers tripod system meet the "expected" specs (rel. accuracy ~ 1/1000 of stroke), but not the Cedrat one (~ $1 / 1000$, far from no less than $1 / 700$).
Some leads for Cedrat movers (but useful for PI):
a) Eliminate the systematic error to improve accuracy by using 2 cubic polynomial fits (one for up, one for down) instead a single cst (gain). \rightarrow rel. acc. ${ }^{\sim} 8 \times 10^{-4} / 1.1$ to 1.7×10^{-4} (PI/Cedrat).
b) Work within a short range (2 V) around midstroke \rightarrow rel. acc. ${ }^{\sim} 10^{-3}$ for both movers
c) Avoid scanning at max voltage (keep a 0.5 V at end of range, even 0.6 V for Cedrat).
4. Vertical stability (worse case SD) at 3.3 nm (PI) and 7.4 nm (Cedrat). Stability expected to be better when BPMs disp. system installed in the chamber at IP (than done on a table on the ground).
5. Campaign of measurements done too quickly in Oct. 2016.
More data should have been gathered (\rightarrow statistical study, warm up effect analysis).
New campaign of measurements to be done?

