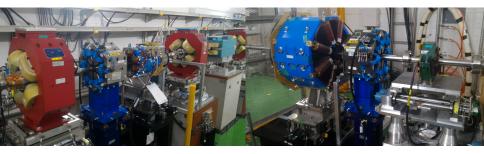
Octupoles study for ultra-low β_u^* at ATF2

Fabien Plassard 1,2 , Rogelio Tomás García 1 , Marcin Patecki 1 , Douglas Bett 1 , Eduardo Marin 1 and many ATF2 collaborators 3

 $^1{\rm CERN},$ Switzerland, Geneva $^2{\rm Universit\acute{e}}$ Paris Sud, France, Orsay $^3{\rm KEK},$ Japan, Tsukuba

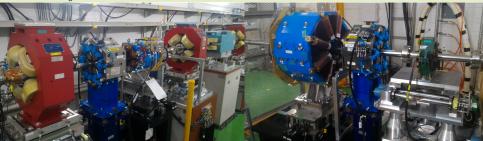
March 6th 2017

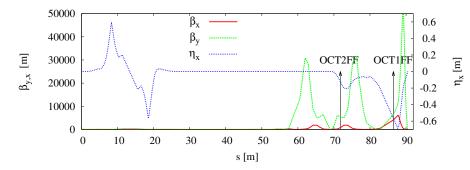
CLIC Workshop 2017



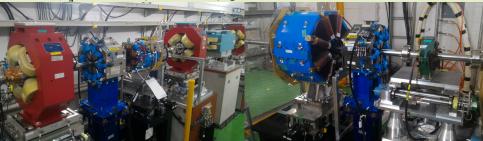
- Low- β_{y}^{*} study motivations
- 2 Octupole Beam Based Alignment
- 3 Octupole misalignment impact on tuning
- 4 Summary

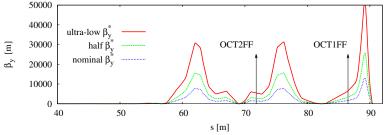
Low- β_y^* and octupoles study goals


ATF2 ultra-low β_y^* project aims to test a Final Focus System at the CLIC chromaticity level (\approx 5x higher than ILC)



Octupoles installed in ATF2 FF line and first test in Jan 2017


- Octupoles will be used to combat higher order aberrations of the ultra-low β_y^* optic and bring down σ_y^* from 29 to 20 nm
- also be used as nonlinear knobs for tuning at nominal, half and ultra-low β_{y}^{*}


Low- β_y^* and octupoles study goals

Low- β_y^* and octupoles study goals

Decreasing β^{*}_y makes the FFS more sensitive to beam line imperfections.
Identify main limiting factors : fringe field, multipolar errors, high order aberrations. wakefield or alianment

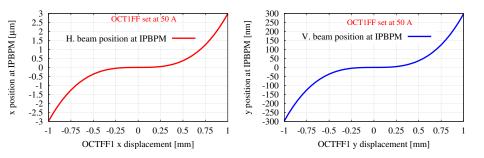
Octupoles misalignment tolerances

All the multipolar components measured at CERN (detailed in Michele Modena's report on the octupoles) have been added to the model

$R_{ref} = 20 \text{ mm}$	Average (units)	
b ₅	-0.93	
a5	-0.53	
b ₆	0.37	
a ₆	-0.41	
b7	-0.17	
a7	0.04	
b ₈	-0.02	
a ₈	-0.12	
b ₉	-0.01	
a 9	0.01	
b10	0.01	
a10	0.01	
b ₁₁	0.02	
a ₁₁	-0.06	
b ₁₂	-0.27	

Units		
2.20		
-1.11		
1.06		
-0.35		
-0.15		
0.01		
-0.04		
-0.02		
0.02		
-0.03		
0.02		
0.00		
b ₁₁ 0.00		
0.01		
-0.27		

Tolerances were recalculated :

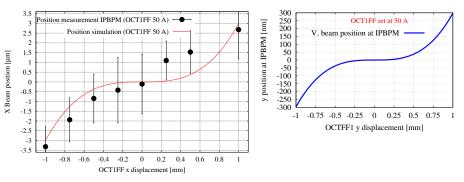

Magnet	X (μm)	Υ (μm)	ϕ (deg)
OCT1FF	130	23	≈ 0.1
OCT2FF	250	90	0.9

Tolerances reprensent a beam size increase of $\Delta \sigma_u^*$ = 2%

Before using octupoles for tuning one has to BBA them using IPBPM (for OCT1FF) and BPMs downstream of OCT2FF

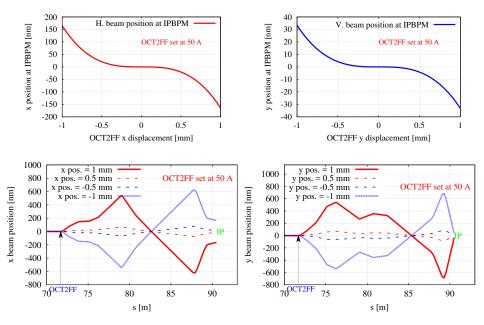
OCT1FF BBA using IPBPM

OCT2FF \Rightarrow max strength, furthest from IP \Rightarrow current = 50 (A) / G = 1302.2 (T/m³) **OCT1FF** \Rightarrow max strength, closest from IP \Rightarrow current = 50 (A) / G = 10556.7 (T/m³)

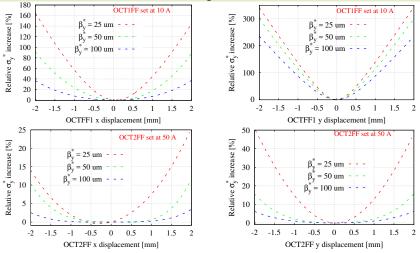


- Movers range is ±1 mm
- In January operation the IPBPM resolution was around 1µm which was enough to observe the horizontal position shift due to horizontal displacement of OCT1FF but not for the vertical plane

OCT1FF BBA using IPBPM


OCT2FF \Rightarrow max strength, furthest from IP \Rightarrow current = 50 (A) / G = 1302.2 (T/m³)

OCT1FF \Rightarrow max strength, closest from IP \Rightarrow current = 50 (A) / G = 10556.7 (T/m³)



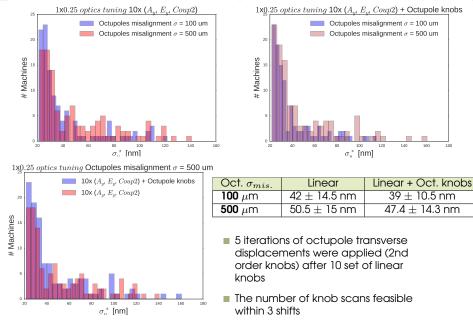
- In January operation the IPBPM resolution was around 1µm which was enough to observe the horizontal position shift due to horizontal displacement of OCT1FF but not for the vertical plane
- Significant progress from the FONT group have been done on IPBPM resolution in February operation making the BBA of OCT1FF vertical plane feasible for next runs

OCT2FF BBA using IPBPM or downstream BPMs

OCT1FF and OCT2FF BBA using IPBSM

Problem: In real machine one has to differentiate σ_y^* reduction from centering of the magnet and σ_y^* reduction from 2^{nd} order aberrations correction produced by octupoles transverse displacement.

- \Rightarrow Perform BBA on well tuned optics (Takes many shifts)
- \Rightarrow BBA with rotated octupoles (need to control rotation)


Tuning 1x0.25 optics : Octupole misalignment impact on performe

What is the impact on tuning of larger misalignment of the octupoles?

Can nonlinear knobs using transverse displacement of the octupoles can recover the beam size?

Tuning comparison was performed between Octupoles misalignment of σ = 100 μ and σ = 500 μ with and without transverse displacement of the octupoles

Tuning 1x0.25 optics : Octupole mis. impact on performances

Tuning measurement plan for future runs

- Octupoles impact on tuning simulation is in the order of several nanometers
- Such beam size reduction will be visible only by using the Shintake monitor at 174 degree mode \Rightarrow beam should be well tuned down to at least 70 nm to start using Octupole knobs and see their impact on σ_u^*
- During January and February operations beam time dedicated to ultra-low β_y^* study was too short to be able to squeeze the beam below the required beam size to use the IPBSM at 174 degree mode
- In order to prove the efficiency of the new octupoles, more beam time dedicated to ultra-low β_u^* optics tuning is required

Summary

- New pair of octupoles were installed and are ready to be use for beam tuning
- The small position kick at the IP when octupoles are moved in horizontal and vertical plane make the Beam Based Alignment difficult to perform
- Thanks to the new progress made by the FONT group on the IPBPM resolution in February operation, BBA of OCT1FF in both plane and OCT2FF in horizontal plane should be possible in the next operations
- Over misalignment of the octupoles impact quite strongly the tuning performance but the impact can be reduce by applying octupole knobs
- Beam size reduction thanks to the octupoles will be visible with the IPBSM if the beam is already well tuned
- The demonstration of octupole efficiency can only be done if enough beam tuning time is allocated to $\log -\beta_u^2$ study