Stray Field Measurements

E. Marin¹, B. Heilig², J.Pfingster³, D. Schulte¹

¹CERN, (Switzerland)

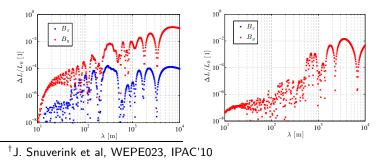
 $^2 {\rm Geological}$ and Geophysical Institute of Hungary, (Hungary) $$^3 {\rm University}$ of Oslo, (Norway)$

Tuesday, March 14th 2017 Session: Future Studies 20th ATF2 Project Meeting, CERN

Outline

2 MEASUREMENTS

- CTF3
- PS
- AD
- XBOX

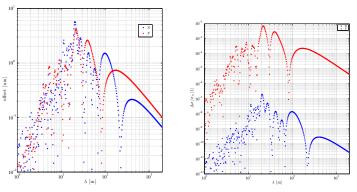

MOTIVATION

CLIC-BDS Sensitivity to Stray Fields

- In 2010 simulation study of stray field impact on CLIC [†]
 - Tolerance of \approx nT for the BDS (collimation section)
 - Mitigation techniques (shielding, feed-forward system)
 - Lack of measurements on equipment
- Presently J. Pfingster calculations confirm tolerances and critical sections to Stray Field variations

Due to position offset

Due to angle offset



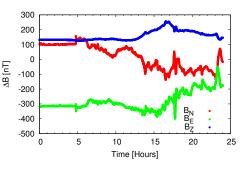
MEASUREMENTS

Rel. Beam size growth

ATF2 Sensitivity to Stray Fields

Beam Offset

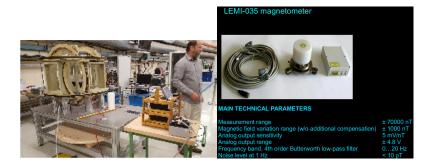
• Assumed $\Delta B = 1 \text{ nT}$


• Vertical beam position offset of 4 nm at $\lambda \approx 22$ m • $\frac{\Delta \sigma_y^*}{\sigma_{y0}^*}$ of 0.8% at $\lambda \approx 22$ m

[†]Calculations done by J. Pfingster

Magnetic Field Variation

- Natural Magnetic Fields (Earth's field, geomagnetic storm)
- \vec{B} -fields due to technical equipment
- Geomagnetic storm at Tihany Geophysical Observatory ^a
- Magnetic field expressed in XYZ components (X-North, Y-Eastern, Z-Vertical)
- Max. $\Delta \vec{B}$ observed during severe storm $\approx \mu T$ (infrequent and predictable)


^asimilar latitude as Geneva Data courtesy of B. Heilig

STRAY FIELD MEASUREMENTS @ CERN

MEASUREMENTS

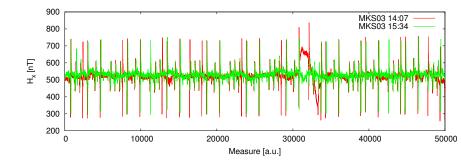
Measurement Set-up

- Compact, portable and easy to set-up
- Specifications are not perfectly fitted to our requirements
 - Data acquisition at 128 Hz
 - Filter cut-off of the magnetometer is at 20 Hz
 - Not operational under radiation

Scenes

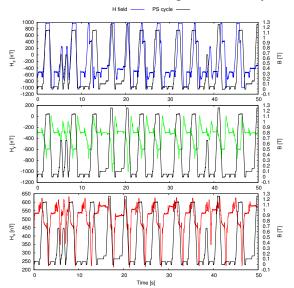
- 1st measurement campaign: 20/06/2016-29/06/2016
- 2nd measurement campaign: 16/01/2017-20/01/2017
- CTF3 • PS Ring XBOX • LINAC-4
- AD Hall PACMAN

CTF3


Measurement at the Klystron Gallery

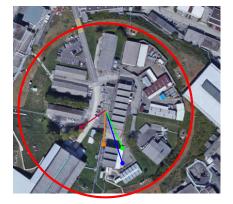
MKS03

- Modulator
- Scandinavia
- New MKS
- MKS03

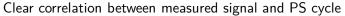

A common pattern was observed at all locations

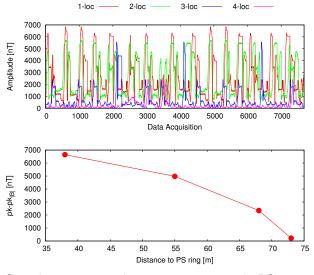
Is this coming from the PS?

Protron Synchrotron Pulsing


Clear correlation between measured signal and PS cycle

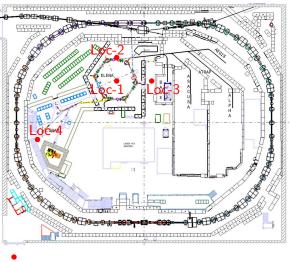
PS


Proton Synchrotron


PS

		Measurement Spots			
		L1	L2	L3	L4
Distance to center					27
Duration	[min]	12	9	2	5

PS



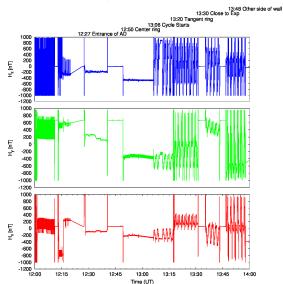
Signal is attenuated as we move towards PS center

Antiproton Decelerator

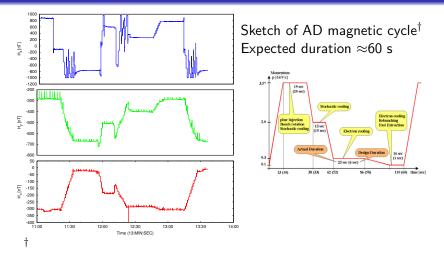
AD Locations

Loc-0

Antiproton Decelerator


Baseline measurement was taken outside bldg. 193 (Loc-0). Time[†] lapse: 12:27- 12:40

4 additional locations were considered for measurements inside the AD hall;


- Center of ELENA ring (Loc-1)
 - Cycling OFF (Time lapse: 12:50-13:06)
 - Cycling ON (Time lapse: 13:06-13:18)
- Tangent of the Ring (Loc-2) (Time lapse: 13:20-13:30)
- Close to Experiment (Loc-3) (Time lapse: 13:36-13:43)
- Close to AD ring (Loc-4) (Time lapse: 13:48-13:58)

Measurement

Observed variations of few μT when AD is pulsing

Zoom In @ Loc-1

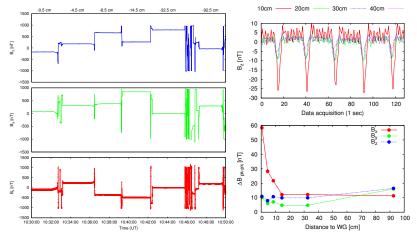
 $^{\dagger}\textsc{Figure}$ taken from Status and Prospects for the AD and ELENA, Lars V. Jorgensen / CERN / BE-OP

XBOX

MOTIVATION

MEASUREMENTS

XBOX



XBOX

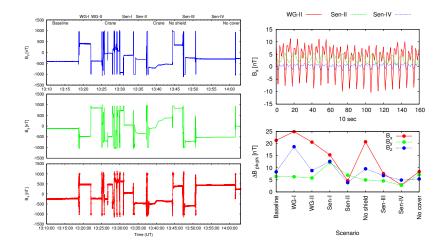
Klystron-C&D

 Measurements on 19/01/2017: Distance scan (vertically). Sensor was below the waveguide. X-axis perpendicular to waveguide

XBOX

Shielding

- Shield waveguide (soft-µ-material)
- Shield sensor (Aluminium pipe, soft-µ-material)

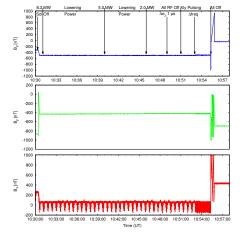

Scenario	Starting Time	Finishing Time	Observations
	[H:M:S]	[H:M:S]	
Baseline	13:10:00	13:18:00	Sensor 7cm below WG
WG-I	13:20:00	13:22:00	Shielding WG
WG-II	13:23:00	13:25:00	Shielding WG without contact
Sen-I	13:32:00	13:34:00	Shielding MS 25cm from WG
Sen-II	13:35:00	13:37:00	Shielding MS 7cm from WG
No shield	13:45:00	13:47:00	No shielding
Sen-III	13:49:00	13:51:00	Shielding MS 7cm from WG
Sen-III	13:52:00	14:00:00	Shielding MS 7cm from WG and covered
No cover	14:01:00	14:03:00	Shielding MS 7cm from WG without cover

MEASUREMENTS

CONCLUSIONS & PROSPECTS

XBOX

Shielding



XBOX

Source

- Power scan
- Pulse width scan

- On/Off low-level RF
- On/Off Solenoid

 ΔB_{p2p} measured would be consistent with a current of 13 mA (assuming an infinitely straight current) CONCLUSIONS & PROSPECTS

Conclusions & Prospects

- CLIC-BDS is most sensitive to wavelength (\approx 7 km), 12% $\mathcal{L}_{\rm loss}$ for 1 nT amplitude stray field variation without any countermeasure
- ATF2-FFS is most sensitive to wavelength (\approx 25 m), $\frac{\Delta \sigma_y^*}{\sigma_{y0}^*} \approx 0.8\%$ for 1 nT amplitude variation
- Natural and man-made magnetic field sources are well-above that tolerance at Earth's surface
- Variations of $\geq \mu {\it T}$ are observed at CTF3 due to the PS cycle
- $\bullet\,$ Variations of tens of nT are observed closed to the waveguides
 - $\bullet\,$ Signal can be effectively shielded with a soft- μ material
- Acquire and/or develop additional sensors
- Developing strategies for mitigating intolerable *B* variations
 Compensation schemes: active and/or passive
- Could the ATF2 facility be a potential location for testing such a compensation system?