Exploring long L^* option at ATF2

Fabien Plassard 1,2 , Rogelio Tomás García 1

 $^1{\rm CERN}$, Switzerland, Geneva $^2{\rm Universit\acute{e}}$ Paris Sud, France, Orsay

March 6th 2017

CLIC Workshop 2017

Motivations for long L* study at ATF2

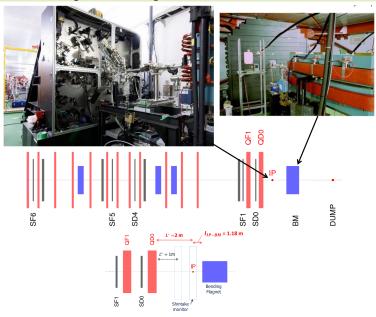
- 2 Technical changes : moving the Shintake monitor
- 3 Optics design comparison

Motivations for long L* study at ATF2

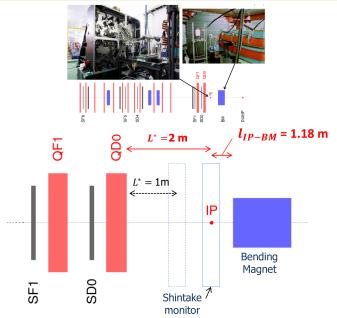
CLIC IR design converge toward the long L^{\ast} for the FFS :

Announced changes to the detector model

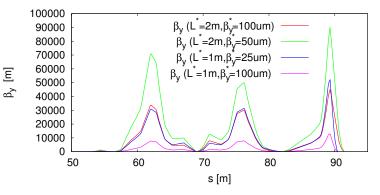
• The detector team has decided to concentrate for the time being on a **single** detector with all-silicon tracking.


No more push-pull

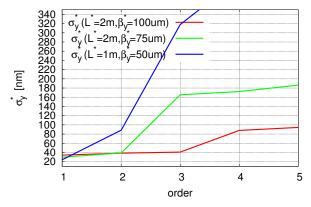
- A number of **parameters have been** frozen to allow consistent studies on detector optimisation and performance.
- For the forward region design they concentrate now on the long L* solution with QD0 in the tunnel, i.e. outside the detector. The exact value of L* has been defined as 6 m.
 This has major implications for MDI



- Several points need to be proved experimentally to check its feasibility :
 - Chromaticity correction at the IP
 - TUNING
 - Stabilization of the beam to the nanometer level at the IP
 - Influence of wakefields
 - Impact of ground motion on the beam size

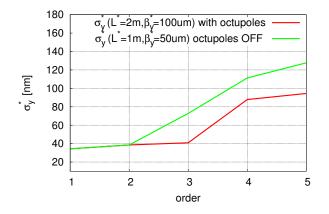

Technical changes : moving the Shintake monitor

Technical changes : moving the Shintake monitor


Optics design comparison

	L* (m)	eta_y^* (mm)	eta_y^{QD0} (m)	ξ_y
CLIC 3TeV	3.5	0.07	Ĩ75 000	50000
CLIC 3TeV	6	0.12	300 000	50000
ATF2	1	0.1	10 000	10 000
ATF2	1	0.025	40 000	40 000
ATF2	2	0.1	40 000	20 000
ATF2	2	0.05	80 000	40 000

Status of long L* performance (preliminary)


After matching the desired twiss parameters, normal and skew sextupoles and octupoles were optimized to minimize the beam size

- Optics design optimization is not done yet and should continue
- Present status shows very preliminary chromatic and high order aberrations correction
- No time for deeper study on nonlinear optics

Status of long L* performance (preliminary)

 \blacksquare One can expect that the use of the octupoles will be necessary for long L^\ast study

Summary

- Long L* option is in very early stage and present result should not be taken as definitive performances
- This configuration is very challenging from technical and optics design point of view
- It can be very interesting to have experimental proof of feasibility for the long in the long term plan of ATF2 :
 - Chromaticity correction
 - tuning
 - IP beam stabilization to nanometer level
 - Ground motion feedforward impact for longer L*