


Version 2.0
Under the Hood

Adrian Mönnich Indico Workshop 2.0
October 2017



The last years
2004-2014 – ZODB

One decade on ZODB
Massive growth

2014-2017 – SQLAlchemy/Postgres rewrite
Frontend changes are nice and people see them
Backend changes are the big thing “under the hood”



The Problems



The Database
ZODB

Poor maintainability (no DB-level indexes)
Not scalable
Niche product
Lack of active community
New developers are unlikely to have used it before



The Code
Legacy codebase

Grown over 10 years
Less thorough code reviewing
Unused code
Duplicate code
 Hard to maintain



The Rewrite



Code Base Evolution



97%
Amount of legacy code removed



39%
Total codebase size reduction



Quality



Modern Python
Getters/Setters.. Anyone likes Java?

def getdetailPayment(self):

return self._detailPayment

def setdetailPayment(self, detailPayment):

self._detailPayment= detailPayment

What about HTML in Python files?
tmp = """%s<textarea id="%s" name="%s" cols="%s" rows="%s" %s >%s</textarea>%s""" % (

desc, htmlName, htmlName, cols, rows, disable, v, param)

tmp = """ <td>%s</td><td align="right" align="bottom">""" % tmp

tmp = """%s </td> """ % tmp 😿

😿



Structure
Legacy – no real structure in many places

22% of total LOC in top-level package
MaKaC/rb_*.py

MaKaC/conference.py (12.5k LOC)
MaKaC/registration.py (6k LOC)
MaKaC/review.py (4k LOC)



Structure
2.0 – separate modules

indico/core/{auth,config,logger,…}.py

indico/web/{breadcrumbs,menu,…}.py

indico/web/{flask,forms,…}/

indico/modules/{admin,categories,users,…}/

indico/modules/events/{abstracts,reminders,timetable,…}/

indico/modules/events/reminders/{blueprint,controllers,views,…}.py



Code Style
Enforced style

pep8 / pycodestyle
isort
ESLint
sass-lint
pre-commit git hook & Travis CI



Backend





Database Benefits
Consistency

Enforced using FKs, CHECKs, unique indexes, triggers

Soft deletion
Things people delete ≠ Things people want deleted
Easy to undelete e.g. an event

Structured data
Recovering specific data from a backup is not too hard



Re-using Code
Existing tools & libraries

Celery Background tasks, Cronjobs
Bleach HTML sanitization
Marshmallow JSON serialization
WTForms HTML forms

Custom libraries
Developed by us
Usable outside Indico
Flask-PluginEngine, Flask-Multipass



Storage Abstraction

Where to store event materials?
Local filesystem?
EOS? (at CERN)
S3?
Another cloud provider?
 Simple storage abstraction layer

STORAGE_BACKENDS = {
'afs-prod': 'fs-readonly:/afs/cern.ch/project/indico',
'local': 'fs:/home/adrian/dev/indico/data/archive',
'eos-test': 'eos:host=eospublic.cern.ch,root=/eos/workspace/i/indico/test,fuse=true,datestamp=true'

}



Unit Tests
Every application should have tests

Ideal world: 100% test coverage
Reality: hard to cover everything in a big app

What do we focus on?
Critical functions
Edge cases
Utils (usually self-contained functions)



Configuration
How to know where the config is

Patch the code at install time (legacy) 😿
export INDICO_CONFIG=/opt/indico/etc/indico.conf

For your convenience…
/etc/indico.conf or ~/.indico.conf symlink
Used if env var is not set



Decoupling
Avoid hard dependencies between modules

“Link registrations by email when a user is created”
Call function in registration module from users module
Notify subscribers of “user registered” event

Use dependencies where it makes sense
“Create contribution for accepted abstract”
Call function provided by the contributions module

 Calling code from more generic modules is OK, not vice versa!



Frontend



Base Technologies



Choices…
Legacy framework needs to go away!

Our new “framework”?
Using jQuery & friends
Lightweight declarative framework (data attributes)
No real documentation (yet?)

2018: Look out for nice frameworks which…
…are developer-friendly
…are lightweight and not too intrusive
…do not target mainly single-page apps




