Some theoretical issues of Chiral anomalous transports

Defu Hou

Central China Normal University, Wuhan

Outline

I. Introduction to anomalous transport
II. CME with non-constant Axial $\mu_{5} \& B$
III. Subtlety of the Wigner function used for CME

IV CME on lattice and Higher order correction
V. Conclusion and outlook
I. Introduction : Anomalous Transports
(Fukushima-Kharzeev-Warringa, Son-Zhitnitsky, Vilenkin

Micro-quantum anomaly $+\mathrm{B} / \Omega \rightarrow$ macro-transport (CME/CVE)

Search in HIC

Macro

Astrophysics, cosmology

Weyl semimetal
(non-degenerated bands)

Dirac semimetal (doubly degenerated bands)

Nature Phys. 12 (2016)
Phys. Rev. X.5 (2015)
Science350 (2015) 413

Strong EM Field/Rotation/polarization produced in HIG

Deng, Huang, 2015

Jiang,Lin,Liao, 2016

Li, Sheng, Wang 2016

Net axial charge generated

$$
\partial_{\mu} j_{5}{ }^{\mu}=-\frac{q^{2} N_{c}}{16 \pi^{2}} F \tilde{F}-\frac{g^{2} N_{f}}{8 \pi^{2}} \operatorname{tr} G \tilde{G}+2 i m \bar{\psi} \gamma^{5} \psi
$$

$F \tilde{F} \quad$ Parallel electric and magnetic fields
condensed matter
$\operatorname{tr} G \tilde{G} \quad$ Topological field configurations(instanton, sphaleron) Parallel chromo electric and magnetic fields
$2 i m \bar{\psi} \gamma^{5} \psi \quad$ Explicit breaking by quark
HIC mass

HIC

All three can lead to net axial charge $N_{5}=\int d^{3} x j_{5}{ }^{0}$
(See S. Lin's talk on Friday)

- Experimental situation in HIC (See H.Z.Huang's talk)
(1) Off central collisions generate inhomogeneous \& transient \vec{B}
(2) axial charge produced via topological fluct. plus mass effect (See S. Lin's talk on Friday)
(3) Beyond thermal equilibrium

- Theoretical investigations:

(1) Field theory

> K. Fukushima et. al., Phy. Rev. D. 78, 074033, 2008 Hou, Liu, Ren, JHEP 1105: 046, 2011
> D. Kharzeev et. al., arXiv: 1312.3348
(2) Holography

Yee. Rebhan et. al., JHEP 0911: 085, 2009
Shu Lin et. al., PRL114, 2015; PRD88. 2013
(3) Hydrodynamics \& Kinetic theory
D. T. Son et. al., PRL103, 2009, PRL106, 2011; Stephanov, Yin, PRL (2012)

Gao, Liang, Pu, Q Wang, XN Wang PRL109 2012,
Anomalous Viscous Fluid Dynamics (AVFD): Jiang, Shi, Yin, JL, PLB (2015); arXiv:1611.04586.

General properties and Subtleties

Axial anomaly:

$\Delta_{\rho \mu \nu}\left(Q_{1}, Q_{2}\right) \propto$

Vector Ward identity: $\quad Q_{1 \mu} \Delta_{\rho \mu \nu}\left(Q_{1}, Q_{2}\right)=Q_{2 \nu} \Delta_{\rho \mu \nu}\left(Q_{1}, Q_{2}\right)=0$
Naive Axial Vector Ward identity $\left(Q_{1}+Q_{2}\right)_{\rho} \Delta_{\rho \mu \nu}\left(Q_{1}, Q_{2}\right)=0$
UV diverge \rightarrow impossible to maintain (1) \& (2)
Gauge invariance \rightarrow vector Ward identity
Anomaly, $\left(Q_{1}+Q_{2}\right)_{\rho} \Delta_{\rho \mu \nu}\left(Q_{1}, Q_{2}\right)=-i \frac{e^{2}}{2 \pi^{2}} \epsilon_{\mu \nu \alpha \beta} Q_{1 \alpha} Q_{2 \beta}$
Universal to all orders of coupling, all temperature \& chemical potential .Necessary to explain $\pi^{0} \rightarrow 2 \gamma$

Anomalous, Ward identity in an electromagnetic field

$$
\begin{aligned}
& \frac{\partial}{\partial x_{\mu}}\left\langle J_{5 \mu}\right\rangle=i \eta \frac{e^{2}}{2 \pi^{2}} \varepsilon_{\mu \nu \rho \lambda} F_{\mu \nu}^{l} F_{\rho \lambda}^{l}=\frac{\partial}{\partial x_{\mu}} \Omega_{\mu} \\
& \Omega_{\mu}=\text { Chern-Simons }=\text { in } \frac{e^{2}}{4 \pi^{2}} \varepsilon_{\mu \nu \rho \lambda} A_{\nu} \frac{\partial A_{\lambda}}{\partial x_{\rho}}
\end{aligned}
$$

Naïve axial charge Q_5 is not conserved

Conversed axial charge $Q_{5}^{\prime}=Q_{5}+i \int d^{3}{ }^{3} \Omega_{4}$

$$
\frac{d Q_{5}^{\prime}}{d t}=0
$$

Q^{\prime} Should be used in the equilibrium thermodynamics (Rubakov)

II. Non-constant $\mu_{5} \& B /$ Subtlety of Constant Limits

Hou, Ren, Liu JHEP 05(2011)046
CME in general

$$
\mu_{5}\left(\mathbf{k}, k_{0}\right)
$$

 $\Leftarrow \mathbf{B}\left(\mathbf{q}-\frac{1}{2} \mathbf{k}, \omega-\frac{k_{0}}{2}\right)$

Constant limit:

$$
\left(\mathbf{k}, k_{0}\right) \rightarrow 0 \quad \text { and } \quad(\mathbf{q}, \omega) \rightarrow 0
$$

Always gives $\mathbf{J}=\eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B} \quad ? \quad \eta=N_{c} \sum_{f} q_{f}^{2}=$ Color-flavor factor

$$
\mu_{5}\left(\mathbf{k}, k_{0}\right)
$$

Constant μ_{5}, non-constant $\mathbf{B}: \quad \mathbf{k}=k_{0}=\mathbf{O}$
$\operatorname{limit}_{\mathbf{q} \rightarrow 0} \operatorname{limit}_{\omega \rightarrow 0} \Rightarrow \mathbf{J}=\eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B}$
limit $_{\omega \rightarrow 0} \operatorname{limit}_{q \rightarrow 0} \Rightarrow \mathbf{J}=\frac{1}{3} \times \eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B} \quad \begin{aligned} & \text { Kharzeev } \\ & \text { \& Warringar }\end{aligned}$
Artifact of one-loop approximation. The ambiguity disappears with higher order corrections. (Satow \& Yee)

Constant B, non-constant $\boldsymbol{\mu}_{5}\left(\mathbf{k}, \boldsymbol{k}_{\mathrm{o}}\right)$
\Downarrow

$$
\operatorname{limit}_{\mathbf{k} \rightarrow 0} \operatorname{limit}_{k_{0} \rightarrow 0} \Rightarrow \quad \mathbf{J}=0
$$

$$
\operatorname{limit}_{k_{0} \rightarrow 0} \operatorname{limit}_{\mathbf{k} \rightarrow 0} \Rightarrow \quad \mathbf{J}=\eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B}
$$

Follows from the EM gauge invariance and the nonrenormalization of the axial anomaly. Valid to all orders!
with $\mathrm{T}=0$ and $\mu=0$: relativistic invariance requires the two limit orders are equivalent:

$$
\mathbf{J}=0
$$

$\mathbf{J}_{C M E}\left(\mathbf{q}+\frac{1}{2} \mathbf{k}, \omega+\frac{1}{2} k_{0}\right) \quad$ vs. $\quad \mu_{5}\left(\mathbf{k}, k_{0}\right) \& \mathbf{B}\left(\mathbf{q}-\frac{1}{2} \mathbf{k}, \omega-\frac{1}{2} k_{0}\right)$

	IR li		$\mathbf{J}_{\text {CME }}$	Higher order
$\begin{aligned} & T=0 \\ & \mu=0 \end{aligned}$	$\lim _{k_{0} \rightarrow 0} \lim _{\vec{k} \rightarrow 0}$		0	none
	$\lim _{k \rightarrow 0} \lim _{k_{0} \rightarrow 0}$			
$\begin{aligned} & T \neq 0 \\ & \text { and/or } \\ & \mu \neq 0 \end{aligned}$	$\lim _{k \rightarrow 0} \lim _{k_{0} \rightarrow 0}$	$\lim _{\bar{q} \rightarrow 0} \lim _{\omega \rightarrow 0}$	$\eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B}$	none if IR safe
		$\lim _{\omega \rightarrow 0} \lim _{\bar{q} 0}$	$\frac{1}{3} \times \eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B}$	yes
	$\lim _{k_{0} \rightarrow 0} \lim _{k \rightarrow 0}$		0	none

III. Subtlety of the Wigner function used for CME

- Wigner function formulation

Vasak, Gyulassy , Elze (1987), Heinz et al (non-abelian plasma) (96)
The Wigner function that links various hydrodynamic quantities of the system to the Green's function

Gao et al obtain CME\& CVE and axial anomalies with a constant μ_{5}
Gao, Liang, Pu, qWang, xnWang (2012)
(see S. Pu's talk)
inhomogeneous and transient μ_{5} ?
Wu,Hou, Ren, 2016

- The electric current extracted from the wigner function

$$
\begin{aligned}
& J_{\mu}(x)=i e \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{tr} W(x, p) \gamma_{\mu} \\
&=i e \int d^{4} y \delta^{4}(y) U\left(x_{+}, x_{-}\right)<\bar{\psi}\left(x_{+}\right) \gamma_{\mu} \psi\left(x_{-}\right)> \\
&=\lim _{y \rightarrow 0} J_{\mu}(x, y) \\
& J_{\mu}(x, y)=i e U\left(x_{+}, x_{-}\right)<\bar{\psi}\left(x_{+}\right) \gamma_{\mu} \psi\left(x_{-}\right)>
\end{aligned}
$$

For a constant μ_{5}

$$
\begin{aligned}
& J_{\mu}=\eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} B_{\mu} \text { with } B_{\mu}=\frac{1}{2} \varepsilon_{\mu \nu \rho \lambda} u_{\nu} F_{\rho \lambda} \\
& u_{\mu}=\text { fluid velocity }
\end{aligned}
$$

For a non-constant μ_{5}, it is problematic because of UV divergence with the limit $y \rightarrow 0$

Considering a massless Dirac field in an external A_{μ} and $A_{5 \mu}$

* The action:

$$
S=\int d t \int d^{3} x L
$$

* The Lagrangian density:

$$
\begin{aligned}
& L=-\bar{\psi} \gamma_{\mu}\left(\partial_{\mu}-i e A_{\mu}-i \gamma_{5} A_{5 \mu}\right) \psi \\
& \text { with } A_{5 \mu}=\left(\bar{A}_{5},-i \mu_{5}\right)
\end{aligned}
$$

- Closed time path Green function formation
* A fermion propagator

$$
\begin{aligned}
& S_{C T P}(x, y)=\left(\begin{array}{ll}
S_{11}(x, y) & S_{12}(x, y) \\
S_{21}(x, y) & S_{22}(x, y)
\end{array}\right) \\
& S_{11}(x, y)_{\alpha \beta}=\left\langle T\left[\psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right]\right\rangle \quad S_{12}(x, y)_{\alpha \beta}=-\left\langle\bar{\psi}_{\beta}(y) \psi_{\alpha}(x)\right\rangle \\
& S_{21}(x, y)_{\alpha \beta}=\left\langle\psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right\rangle S_{22}(x, y)_{\alpha \beta}=\left\langle\tilde{T}\left[\psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right]\right\rangle
\end{aligned}
$$

T : time ordering $\quad \tilde{T}$: anti-time ordering

* The electric current

$$
J_{\mu}(x, y)= \begin{cases}-i e \operatorname{tr} S_{11}\left(x_{-}, x_{+}\right) \gamma_{\mu}=J_{\mu}^{1}(x, y) & y_{0} \geq 0 \\ -i e \operatorname{tr} S_{22}\left(x_{-}, x_{+}\right) \gamma_{\mu}=J_{\mu}^{2}(x, y) & y_{0}<0\end{cases}
$$

\star Expansion to the linear order in A_{μ} and $A_{5 \mu}$

full propagator:

$$
S_{a b}\left(x_{-}, x_{+}\right)
$$

free propagator
$=S_{a b}\left(x_{-}, x_{+}\right)-\sum_{c} \int d^{4} z S_{a c}\left(x_{-}-z\right) \gamma_{\rho 5}^{c} S_{c b}\left(z-x_{+}\right) A_{5 \rho}(z)$
$-e \sum_{c} \int d^{4} z S_{a c}\left(x_{-}-z\right) \gamma_{\rho}^{c} S_{c b}\left(z-x_{+}\right) A_{\rho}(z)$
$+e \sum_{c d} \int d^{4} z_{1} \int d^{4} z_{2} S_{a d}\left(x_{-}-z_{2}\right) \gamma_{\lambda 5}^{d} S_{d c}\left(z_{2}-z_{1}\right) \gamma_{\rho}^{c} S_{c a}\left(z_{1}-x_{+}\right) A_{\rho}\left(z_{1}\right) A_{5 \lambda}\left(z_{2}\right)$
$+e \sum_{c d} \int d^{4} z_{1} \int d^{4} z_{2} S_{a c}\left(x_{-}-z_{2}\right) \gamma_{\rho}^{c} S_{c d}\left(z_{2}-z_{1}\right) \gamma_{\lambda 5}^{d} S_{d a}\left(z_{1}-x_{+}\right) A_{\rho}\left(z_{2}\right) A_{5 \lambda}\left(z_{1}\right)$
with $\gamma_{\mu}^{1}=\gamma_{\mu}, \quad \gamma_{\mu}^{2}=-\gamma_{\mu}, \quad \gamma_{\mu 5}^{1}=\gamma_{\mu} \gamma_{5}, \quad \gamma_{\mu 5}^{2}=-\gamma_{\mu} \gamma_{5}$

gauge link:

$$
U\left(x_{-}, x_{+}\right)=1+i e \int_{x_{-}}^{x_{+}} d \xi_{v} A_{\nu}(\xi)+O\left(A^{2}\right)
$$

Problems of the Wigner function formalism

* The nonconserversion of the electric current
$\frac{\partial}{\partial x_{\mu}} J_{\mu}(x, y)=\frac{i}{8 \pi^{2}}\left[\varepsilon_{\mu \rho \beta \lambda} F_{\mu \rho}(x) F_{5 \beta \lambda}(x)+2 \varepsilon_{\mu \rho \alpha \beta} \frac{y_{\lambda} y_{\alpha}}{y^{2}} F_{\mu \rho}(x) \frac{\partial}{\partial x_{\beta}} A_{5 \lambda}(x)\right]$
with $F_{\mu \nu}(x)=\frac{\partial A_{v}}{\partial x_{\mu}}-\frac{\partial A_{\mu}}{\partial x_{\nu}}$,

$$
F_{5 \mu v}(x)=\frac{\partial A_{5 v}}{\partial x_{\mu}}-\frac{\partial A_{5 \mu}}{\partial x_{v}}
$$

* * by averaging the direction of y

$$
\frac{\partial}{\partial x_{\mu}} J_{\mu}(x)=\frac{\partial}{\partial x_{\mu}} J_{\mu}(x, 0)=\frac{3 i}{32 \pi^{2}} \varepsilon_{\mu \rho \beta \lambda} F_{\mu \rho}(x) F_{5 \beta \lambda}(x)
$$

$$
\partial_{\mu} J_{\mu} \neq 0
$$

The electric current is not conserved!
unless the axial potential is a pure gradient

$$
A_{5 \mu}=\frac{\partial \theta}{\partial x_{\mu}},
$$

* An incosistency

In principle, the electric current should satisfy the consistency

$$
\frac{\delta J_{\mu}(x)}{\delta A_{\nu}\left(x^{\prime}\right)}=\frac{\delta J_{\nu}\left(x^{\prime}\right)}{\delta A_{\mu}(x)}
$$

However, the electric current from Wigner function:

$$
\frac{\delta J_{\mu}(x, y)}{\delta A_{v}\left(x^{\prime}\right)}-\frac{\delta J_{v}\left(x^{\prime}, y^{\prime}\right)}{\delta A_{\mu}(x)}=\frac{i}{2 \pi^{2}}\left(\varepsilon_{\mu \rho \beta \lambda}+\varepsilon_{\mu \rho \alpha \beta} \frac{y_{\lambda} y_{\alpha}}{y^{2}}\right) \frac{\partial A_{5 \lambda}(x)}{\partial x_{\beta}} \delta^{4}\left(x-x^{\prime}\right)
$$

Averaging the direction of \mathbf{y}

$$
\frac{\delta J_{\mu}(x, y)}{\delta A_{v}\left(x^{\prime}\right)}-\frac{\delta J_{v}\left(x^{\prime}, y^{\prime}\right)}{\delta A_{\mu}(x)}=\frac{3 i}{16 \pi^{2}} \varepsilon_{\mu \rho \beta \lambda} F_{5 \beta \lambda} \delta^{4}\left(x-x^{\prime}\right)
$$

The consistency condition broken!

Applying to a general chiral case, the present form of the Wigner function formulation needs to be revised!

correction : the regulated Wigner function

a robust regularization scheme has to be introduced to the underlying field theory before defining the wigner function.
e.g. If the underlying field theory is regularized by PV scheme

$$
\begin{aligned}
& L=-\bar{\psi} \gamma_{\mu}\left(\partial_{\mu}-i e A_{\mu}-i \gamma_{5} A_{5 \mu}\right) \psi \\
& \begin{aligned}
J_{\mu}(x) & =i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{tr} W(x, p) \gamma_{\mu} \\
& =i \lim _{y \rightarrow 0} U\left(x_{+}, x_{-}\right)<\bar{\psi}\left(x_{+}\right) \gamma_{\mu} \psi\left(x_{-}\right)>
\end{aligned}
\end{aligned}
$$

PV regulator
\Leftarrow should be included in it
$\partial_{\mu} J_{\mu}=0 \quad \frac{\delta J_{\mu}(x)}{\delta A_{v}\left(x^{\prime}\right)}=\frac{\delta J_{v}\left(x^{\prime}\right)}{\delta A_{\mu}(x)}$
But the CME current would also be cancelled. The Bardeen like term should be added in.

$$
\begin{gathered}
J_{\mu}(x)=i e \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{tr}\left[W(x, p)+\sum_{s} C_{s} W\left(x, p \mid M_{s}\right)\right]= \\
J_{\mu}(x)=-i e \frac{1}{2}\left[\operatorname{Tr} \gamma_{\mu} \mathcal{S}_{0}(x, x)-\sum_{s} C_{s} \operatorname{Tr} \gamma_{\mu} \mathcal{S}_{s}(x, x)\right] \\
J_{\mu}(x)=e^{2} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} q_{2}}{(2 \pi)^{4}} e^{i\left(q_{1}+q_{2}\right) \cdot x} \Lambda_{\mu \rho \lambda}\left(q_{1}, q_{2}\right) A_{\rho}\left(q_{1}\right) A_{5 \lambda}\left(q_{2}\right)
\end{gathered}
$$

gives CME current :

$$
\lim _{q_{20} \rightarrow 0} \lim _{\vec{q}_{2} \rightarrow 0} \Lambda_{i j 4}\left(q_{1}, q_{2}\right)=-\frac{1}{2 \pi^{2}} \epsilon_{i k j} q_{1 k}
$$

CME current canceled at thermal equilibrium.

$$
\lim _{\vec{q}_{2} \rightarrow 0} \lim _{q_{20} \rightarrow 0} \Lambda_{i j 4}\left(q_{1}, q_{2}\right)=\frac{2 f(0)-1}{2 \pi^{2}} \epsilon_{i k j} q_{1 k}+O\left(q_{1}^{2}\right)
$$

Phenomenological implications of the subtleties regarding the order of limits

Axial charge generated via toplogical fluctuations dictated by the stochastic Eq with a white noise

$$
\left(\frac{\partial}{\partial t}-D \nabla^{2}+\frac{1}{\tau}\right) n_{5}=g(x)
$$

In Momentum sapce

$$
n_{5}(k)=\frac{g(k)}{-i k_{0}+D \vec{k}^{2}-\frac{1}{\tau}}
$$

Corresponding an axial potential

$$
A_{5 \mu}(k)=-i \delta_{\mu 4} \frac{n_{5}(k)}{\chi(k)}
$$

Average current vanishes, the correlation funct. $<J_{i}(x) J_{j}(y)$ is dominated by diffusion pole

$$
\begin{aligned}
& -i q_{20}+D \vec{q}_{2}^{2}+\frac{1}{\tau}=0 \\
& \frac{\left|q_{20}\right|}{\left|\vec{q}_{2}\right|}=D\left|\vec{q}_{2}\right|+\frac{1}{\left|\vec{q}_{2}\right| \tau} \geq \sqrt{\frac{D}{\tau}} .
\end{aligned}
$$

If $\sqrt{D / \tau} \gg 1$ the homog. $\operatorname{lmu} \mathbf{5}$ is a good approximation and classic form of CME current emerges ---Noneq. Phenom.

Towards equilibrium, $\quad \tau \rightarrow \infty, \quad \frac{\left|q_{20}\right|}{\left|\vec{q}_{2}\right|}=D\left|\vec{q}_{2}\right| \sim \frac{D}{|\vec{x}-\vec{y}|} \rightarrow 0$
Inverse limit-order prevails, and CME current disappears,

CME on Lattice

See Bo Feng"s talk

Yamamoto, PRL(2011)
using lattice QCD with Wilson term

$$
\begin{aligned}
I= & -\sum_{x} \sum_{\mu} \frac{1}{2 a}\left[\bar{\psi}(x)\left(\frac{1}{i} \gamma_{\mu}-r\right) U_{\mu}(x) \psi\left(x+a_{\mu}\right)\right. \\
& \left.-\bar{\psi}\left(x+a_{\mu}\right)\left(\frac{1}{i} \gamma_{\mu}+r\right) U_{\mu}^{\dagger}(x) \psi(x)\right] \\
& -\sum_{x} M \bar{\psi}(x) \psi(x)+\cdots
\end{aligned}
$$

$$
J_{i}(p)=-\Pi_{i j}(p) A_{j}(p)
$$

One-loop self-energy on lattice of size $N_{s}^{3} \times N_{t}$

$$
\Pi_{i j}^{(1)}(p)=\mathcal{I} \sum_{k} \epsilon_{i k j} p_{k}+\mathcal{O}(a)
$$

CME vanishes at continu. limit .
At zero temperature

$$
\begin{aligned}
\Pi_{i j}(q) & \equiv \Lambda_{i j 4}(q) \\
& =-\lim _{q_{4} \rightarrow 0} \frac{1}{q_{4}} \sum_{\rho} \frac{2}{a} \sin \frac{1}{2} a\left(Q_{1}+Q_{2}\right)_{\rho} \Lambda_{i j \rho}\left(Q_{1}, Q_{2}\right) \\
\Pi_{i j}(q) & =\frac{e^{2}}{2 \pi^{2}} \sum_{k} \epsilon_{i j k} q_{k}
\end{aligned}
$$

Feng,Hou, Liu, Ren, Wu, PRD95,(2017)

umerical calculations

Lattice size \mathcal{I}

$$
\begin{array}{ll}
N_{s}=6, N_{t}=4 & 1.347 \times 10^{-2} \\
N_{s}=12, N_{t}=4 & 2.439 \times 10^{-4} \\
N_{s}=20, N_{t}=4 & 8.886 \times 10^{-7} \\
N_{s}=50, N_{t}=8 & 4.512 \times 10^{-9}
\end{array}
$$

nalytical calculations(In the limit $\left.N_{s} \rightarrow \infty\right)$

$$
\mathcal{I}=12 \frac{1}{N_{t}} \sum_{I_{4}} \int \frac{d^{3} \boldsymbol{I}}{(2 \pi)^{3}} \frac{\mathcal{N}(I)}{\left[\sin ^{2} I+\mathcal{M}^{2}(I)\right]^{3}}=0
$$

Higher order correction to CVE

Under B \& vorticity $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \mathbf{v}$

$$
\begin{aligned}
\overrightarrow{\boldsymbol{J}}_{\mathrm{em}} & =\sigma_{\mathrm{em}}^{B} \vec{B}+\sigma_{\mathrm{em}}^{V} \overrightarrow{\boldsymbol{\omega}}, \\
\vec{J}_{\mathrm{b}} & =\sigma_{\mathrm{b}}^{B} \vec{B}+\sigma_{\mathrm{b}}^{V} \vec{\omega}, \\
\overrightarrow{\boldsymbol{J}}_{5} & =\sigma_{5}^{B} \vec{B}+\sigma_{5}^{V} \overrightarrow{\boldsymbol{\omega}}, \quad \text { Son \& Surowka } \\
\boldsymbol{\sigma}_{\mathrm{em}}^{\mathrm{B}}, \boldsymbol{\sigma}_{\mathrm{b}}^{\mathrm{B}}, \boldsymbol{\sigma}_{5}^{\mathrm{B}} & \rightarrow \mathrm{CME} \quad \boldsymbol{\sigma}_{\mathrm{em}}^{\mathrm{v}}, \boldsymbol{\sigma}_{\mathrm{b}}^{\mathrm{v}}, \quad \boldsymbol{\sigma}_{5}^{\mathrm{V}} \rightarrow \mathrm{CVE}
\end{aligned}
$$

Kubo formula :

Triangle anomaly \& hydrodynamics \& thermodynamics

$$
\boldsymbol{\sigma}_{5}^{\mathrm{v}}=\frac{\mu_{5}^{2}}{2 \pi^{2}}+\mathrm{cT}^{2} \quad \begin{aligned}
& \text { D. T. Son \& P. Surowka } \\
& \text { Y. Neiman \& Y. Oz }
\end{aligned}
$$

One-loop calculation Landsteiner et.al. $\quad \mathrm{C}=1 / 12$
Kinetic theory , Stephenov, Gao et.al.

Any higher order connection to c ?

- Possible relation with the gravity anomaly \rightarrow No (Landsteiner et.al)
- Coleman-Hill theorem for a field theory without gauge degrees of freedom at all \rightarrow (Golkan \& Son)
- A field theory with gauge degrees of freedom?

Higher order correction to CVE

Field Theoretic Formulation:

QED Lagrangian density

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4 e^{2}} V^{\mu \nu} V_{\mu \nu}-i \bar{\psi} \gamma^{\mu} D_{\mu} \psi+\frac{1}{2} h^{\mu v} T_{\mu \nu}+A^{\mu} J_{5 \mu} \\
V_{\mu \nu}=\partial_{\mu} V_{v}-\partial_{\nu} V_{\mu} \\
D_{\mu}=\partial_{\mu}-i V_{\mu} \\
T_{\mu \nu}=V_{\mu}^{\rho} V_{v \rho}-\frac{1}{4} g_{\mu \nu} V^{\rho \lambda} V_{\rho \lambda}+\frac{1}{4}\left(-D_{\mu} \bar{\psi} \gamma_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi+\bar{\psi} \gamma_{\mu} D_{v} \psi+\bar{\psi} \gamma_{\nu} D_{\mu} \psi\right) \\
J_{5}^{\mu}=i \bar{\psi} \gamma_{\mu} \gamma_{5} \psi
\end{gathered}
$$

Anomalous Ward identity

$$
\partial_{\mu} J_{5}^{\mu}=\frac{e^{2}}{16 \pi^{2} \sqrt{-g}} \epsilon^{\mu v \rho \lambda} V_{\mu \nu} V_{\rho \lambda}
$$

Kubo formula for CVE

$$
\mathcal{G}_{i j}(\vec{q})=-\int_{0}^{\infty} d t \int d^{3} \vec{r} e^{-i \vec{q} \cdot \vec{r}} \frac{\operatorname{Tr} e^{-\beta H}\left[J_{5 i}(\vec{r}, t), T_{0 j}(0,0)\right]}{\operatorname{Tr} e^{-\beta H}} \underset{\vec{q} \rightarrow 0}{\rightarrow} \sigma_{V} \epsilon_{i j k} q_{k}
$$

$$
\xi_{5}=\frac{\mu_{5}^{2}}{2 \pi^{2}}+c T^{2}
$$

Are there any corrections from higher orders?
S. Golkar and D. T. Son, arXiv:1207.5806: No (Yes)
$\mathrm{c}=\frac{1}{12}+\frac{\mathrm{N}_{\mathrm{c}}^{2}-1}{2 \mathrm{~N}_{\mathrm{c}}} \frac{\mathrm{g}_{0}^{2}}{48 \pi^{2}} \quad \overrightarrow{\mathrm{~N}_{\mathrm{c}} \rightarrow \infty} \quad \frac{1}{12}+\frac{\lambda}{96 \pi^{2}} \quad c=\frac{1}{12}+\frac{e_{0}^{2}}{48 \pi^{2}}$

V. Concluding Remarks

- The zero P \& zero E limits of μ_{5} do not commute and the difference is robust against Higer Order correction
- While the CSE is expected in RHIC, its magnitude may not reach the ideal value $\mathbf{J}=\eta \frac{e^{2}}{2 \pi^{2}} \mu_{5} \mathbf{B}$ because of inhomogeneity
- Nonrenormalization is true for most but not for all anomal. transp. coefs. We obtained 2-loop correction to CVE coef.
- Naive Wigner function can not be applicable to the case with non-constant μ_{5}. The problem stems from axial anomaly . The PV regulated WF leads consistent results

We examine the issues raised here with lattice formulation we obtained the same results as that in continuous case with QFT and Wigner function method .
B.Feng, H. Liu, H-c, Ren, Y. Wu

Thank you very much for your attention!

$n_{5} \neq 0$

Intuitive understanding of CME:
agnetic polarization -> rrelation between micro. IN \& EXTERNAL FORCE

Chiral imbalance ->
correlation between directions of SPIN \& MOMENTUM

Current along external B field!

Intuitive understanding of CVE:

otational polarization -> orrelation between micro. PIN \& EXTERNAL FORCE

Chiral imbalance -> correlation between directions of SPIN \& MOMENTUM

Current along fluid rotation axis

