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! Brief notes on Quantum Field Theory
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What is the Standard Model?

The SM is

! — the most successful physical model ever

! — constructed within the Quantum Field Theory (QFT)

! — based on symmetry principles

! — minimal

! — a model with an enormous predictive power

But we do not understand why it works so well. . .

Questions to the SM:

! Is the SM a fundamental theory?

! If not, where is the limit of its applicability?

! Are the fields and interactions of the SM fundamental?

! Can it be joined with gravity?

! Does it give hints where to look for anything beyond it?
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Particle (field) content of the SM (I)

Courtesy to Wikipedia: "Standard Model of Elementary Particles" by MissMJ - Own work by uploader, PBS NOVA

[1], Fermilab, Office of Science, United States Department of Energy, Particle Data Group.
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Particle (field) content of the SM (fermions)

So we have (i.e. observe)
fermions (spin = 1/2) and bosons (with spin = 0 or 1)

Fermions are of two types: leptons and quarks. They are:

— 3 charged leptons (e, µ, τ );

— 3 neutrinos νe, νµ, ντ (or ν1, ν2, ν3, see lect. by S. Davidson)

— 6 quarks of different flavors, see lect. by M. Beneke;

Each quark can have one of three colors, see lect. by
K. Melnikov;

Each fermion has 2 degrees of freedom, e.g. can be left or right

Each fermion particle has an anti-particle, f ̸= f̄

N.B.1. The later was not yet verified for neutrinos

N.B.2. Traditionally fermions are called matter fields
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Particle (field) content of the SM (bosons)

In the SM we have a few boson fields:

— 8 vector (spin=1) gluons

— 4 vector (spin=1) electroweak bosons: γ, Z , W+, W−

— 1 scalar (spin=0) Higgs boson

Gluons and photon are massless∗ and have 2 degrees of
freedom (polarizations)

Each gluon has one color and one anti-color

Z and W bosons are massive∗∗ and have 3 degrees of freedom
(polarizations)

N.B.1. Gluons and EW bosons are gauge bosons which
transmit∗∗∗ interactions between matter fields

N.B.2. Electrically neutral bosons (H, γ, Z , and gluons)
coincide with their anti-particles, e.g. γ ≡ γ̄
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Interactions in the SM (I)

How many fundamental interactions are there in Nature?

How many interactions are there in the Standard Model?

To answer the last question we have to look at the SM
Lagrangian.
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Interactions in the SM (II)

The complete SM Lagrangian look quite long and cumbersome:

+ . . .

Our task is to derive the long expression and realize that it is
nothing else but the short one. Question: But why can it be so?
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Principles and symmetries of the SM

Principles (keep in mind SM ⊂ QFT):

! correspondence: to QM, QED, Fermi model etc.

! minimality: only observed and/or unavoidable objects

! unitarity: 0 ≤ P ≤ 1 and P(Ω) = 1

! renormalizability: finite predictions for observables

! gauge interactions between fermions and vector fields

! SYMMETRIES

Symmetries:

! the Lorentz symmetry

! the CPT symmetry

! the gauge symmetries: SU(3)C ⊗ SU(2)L ⊗ U(1)Y

! Global symm. in the Higgs sector (spontaneously broken)

! unrevealed symmetries (between generations, for anomaly
cancellation, conformal, etc.)
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Elements of Quantum Field Theory

Assume that we remember the basics of Quantum Mechanics.
But QFT can be constructed on its own. We just have to check
the correspondence.

Let us fix the notation: ! = 1 and c = 1
µ = {0,1,2,3} is a Lorentz index (Greek letters)
pµ is a four-momentum, p = (p1,p2,p3) is a three-momentum
pq = pµqµ = p0q0 − p1q1 − p2q2 − p3q3 is a scalar product of
two vectors, which is a relativistic invariant

gµν =

⎛

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎠

, gµνpν = pµ, gµµ = 4

∂

∂xµ
= ∂µ = (∂0,−∂1,−∂2,−∂3)

x0 = t is time, p0 = E is energy
p2 = pp = p2

0 − p2 = E2 − p2 = m2 is the on-mass-shell
condition (valid for any free particle)

10 / 38



QFT: scalar field
Postulate a scalar quantum field as

ϕ(x) =
1

(2π)3/2

∫

dp
√

2p0

(

e−ipx a−(p) + e+ipx a+(p)
)

[a−(p), a+(p′)] = δ(p − p′), [a−(p), a−(p′)] = [a+(p), a+(p′)] = 0

Its Lagrangian reads

L =
1

2
(∂µϕ∂µϕ− m2ϕ2)

Variation (ϕ → ϕ+ δϕ) of the corresponding action should be
equal to zero in accord with the least action principle:

δ

∫

dxL =

∫

dx

(

∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

)

= 0

EXERCISE: Check that this gives the Klein-(Fock)-Gordon
equation of motion

(m2 + ∂2
µ)ϕ(x) = 0

Check that the postulated above field ϕ(x) satisfies it
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QFT: the Fock space

a−(p) and a+(p′) are annihilation and creation operators. They
act in the Fock space which consists of vacuum |0⟩

a−(p)|0⟩ = 0, ⟨0|a+(p) = 0, ⟨0|0⟩ = 1

and field excitations, i.e. states of the form

|f ⟩ =
∫

dp f (p)a+(p)|0⟩, |g⟩ =
∫

dpdq g(p,q)a+(p)a+(q)|0⟩, . . .

The most simple excitation a+(p)|0⟩ ≡ |p⟩ is used to describe a
single on-mass-shell particle with momentum p. Then
a+(p)a+(q)|0⟩ is a two-particle state etc.

N.B. The Fock space is ∞-dimensional

EXERCISES: 1) Find the norm ⟨p|p⟩, 2) check that the operator
N =

∫

dp a+(p)a−(p) acts as a particle number operator.
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QFT: charged scalar field

A charged scalar field is defined as

ϕ(x) =
1

(2π)3/2

∫

dp
√

2p0

(

e−ipxa−(p) + e+ipxb+(p)
)

ϕ∗(x) =
1

(2π)3/2

∫

dp
√

2p0

(

e−ipxb−(p) + e+ipx a+(p)
)

[a−(p), a+(p′)] = [b−(p), b+(p′)] = δ(p − p′), [a±, b±] = 0

a± and b± are creation (and annihilation) operators of particles
and anti-particles, respectively (or vice versa)

The Lagrangian reads

L = ∂µϕ
∗∂µϕ− m2ϕ∗ϕ

N.B.1. ϕ and ϕ∗ are related by generalized conjugation

N.B.2. ϕ and ϕ∗ are NOT particle and anti-particle
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QFT: massive vector fields (I)
A massive charged vector field (remind W boson∗) is defined as

Uµ(x) =
1

(2π)3/2

∫

dp
√

2p0

∑

n=1,2,3

en
µ(p)

(

e−ipxa−
n (p) + e+ipx b+

n (p)
)

U∗
µ(x) =

1

(2π)3/2

∫

dp
√

2p0

∑

n=1,2,3

en
µ(p)

(

e−ipxb−
n (p) + e+ipx a+

n (p)
)

[a−
n (p), a+

l (p
′)] = [b−

n (p), b+
l (p

′)] = δnlδ(p − p′), [a±, b±] = 0

en
µ(p) are polarization vectors

en
µ(p)e

l
µ(p) = −δnl , pµen

µ(p) = 0

EXERCISE: Using the above orthogonality conditions, show
that

∑

n=1,2,3

en
µ(p)e

n
ν(p) = −

(

gµν −
pµpν

m2

)
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QFT: massive vector fields (II)

For a massive charged vector field

L = −
1

2
(∂µU∗

ν − ∂νU∗
µ)(∂µUν − ∂νUµ) + m2U∗

µUµ

The corresponding Euler-Lagrange equation reads

∂ν(∂µUν − ∂νUµ) + m2Uµ = 0

EXERCISE: Using the above equation, show that ∂νUν = 0,
i.e. the Lorentz condition

N.B. The Lorentz condition removes one of four independent
field components

QUESTION: How can it be that the signs before the mass
terms in the scalar and vector field Lagrangians are different?
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QFT: massless vector fields

A massless neutral vector field (photon) is defined as

Aµ(x) =
1

(2π)3/2

∫

dp
√

2p0

eλ
µ(p)

(

e−ipx a−
λ (p) + e+ipx a+

λ (p)
)

[a−
λ (p), a

+
ν (p

′)] = −gλνδ(p − p′)

eλ
µ(p)e

λ
ν (p) = gµν , eλ

µ(p)e
ν
µ(p) = gλν

N.B. Formally this field has four polarizations, but only two of
them correspond to physical degrees of freedom

The corresponding Lagrangian reads

L = −
1

4
FµνFµν , Fµν ≡ ∂µAν − ∂νAµ
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QFT: spinor fields (I)

A Dirac fermion field is defined as

Ψ(x) =
1

(2π)3/2

∫

dp
√

2p0

∑

r=1,2

(

e−ipxa−
r (p)ur (p) + e+ipx b+

r (p)vr(p)
)

Ψ(x) =
1

(2π)3/2

∫

dp
√

2p0

∑

r=1,2

(

e−ipxb−
r (p)v̄r (p) + e+ipxa+

r (p)ūr (p)
)

[a−
r (p), a+

s (p
′)]+ = [b−

r (p), b+
s (p

′)]+ = δrsδ(p − p′)

[a+
r (p), a

+
s (p

′)]+ = [a−
r (p), b+

s (p
′)]+ = . . . = 0

EXERCISE: Show that a+
r (p)a

+
r (p) = 0, i.e. the Pauli principle

EXERCISE: Define a Majorana fermion field
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QFT: spinor fields (II)

ur , ur , ūr , and v̄r are four-component spinors, so
Ψ(x) ≡ {Ψα(x)} is a four-vector column, α = {1,2,3,4}
and Ψ(x) is a four-vector row

ūu =
4

∑

α=1

ūαuα =
4

∑

α=1

uαūα = Tr(uū)

Spinors are solutions of the (Dirac) equations:

(p̂ − m)ur (p) = 0, ūr (p)(p̂ − m) = 0

(p̂ + m)vr (p) = 0, v̄r (p)(p̂ + m) = 0

p̂ ≡ pµγµ = p0γ0 − p1γ1 − p2γ2 − p3γ3, m ≡ m · 1

with normalization conditions

ūr (p)us(p) = −v̄r (p)vs(p) = 2m δrs
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QFT: Dirac’s gamma matrixes

The gamma matrixes (should) satisfy the commutation
condition

[γµ, γν ]+ = 2gµν1 ⇒ γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 = −1

and the condition of Hermitian conjugation

γ†µ = γ0γµγ0

The latter leads to the rule of the Dirac conjugation:

Ψ = Ψ†γ0, ū = u†γ0, v̄ = v†γ0

N.B. Explicit expressions for gamma matrixes are not unique,
but they are not necessary for construction of observables.
Why?

EXERCISE: Show that the Dirac conjugation rule is consistent
with the set of Dirac equations given on the previous slide
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QFT: Left and Right spinors

One can show that the Dirac equations have two independent
solutions u1,2 which correspond to different polarization states.
But it is useful to consider also another choice. We introduce

γ5 ≡ iγ0γ1γ2γ3 ⇒ [γµ, γ5]+ = 0, γ2
5 = 1, γ†

5 = γ5

By definition left and right spinors are

ΨL ≡ PLΨ, ΨR ≡ PRΨ, PL,R ≡
1 −,+ γ5

2
, Ψ = ΨL +ΨR

The Dirac conjugation gives ΨL ≡ Ψ1+γ5
2 , ΨR ≡ Ψ1−γ5

2

N.B.1. In Weyl’s representation of γ matrixes ΨL = 1+γ5
2 Ψ.

N.B.2. Definition of left and right spinors as polarization sates
s ↓↑ p and s ↑↑ p is wrong. It is just an approximation working
in ultra-relativistic kinematics |p| ≫ m

EXERCISE: Prove the PL,R is a basis of orthogonal projection
operators is the space of spinors:

PL + PR = 1, P2
L = PL, P2

R = PR , PRPL = PLPR = 0
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QFT: Lagrangian for spinor fields
Remind some properties of gamma matrixes

Trγµ = Trγ5 = 0, Trγµγν = 4gµν , Trγ5γµγν = 0,

Trγµγνγαγβ = 4(gµνgαβ − gµαgνβ + gµβgνα),

Trγ5γµγνγαγβ = −4iεµναβ

The equations for u and v are chosen so that we get the
conventional Dirac equations

(iγµ∂µ − m)Ψ(x) = 0, i∂µΨ(x)γµ + mΨ(x) = 0

These equations follow also from the Lagrangian

L =
i

2

[

Ψγµ(∂µΨ)− (∂µΨ)γµΨ

]

− mΨΨ ≡ iΨγµ∂µΨ− mΨΨ

N.B. QFT Lagrangians (Hamiltonians) should be Hermitian:
L† = L. QUESTION: Why?

EXERCISE: Find two bugs on the CERN mugs
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The SM Lagrangian (on a T-shirt)
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QFT: Evolution of states

Up to now we considered only free non-interacting fields.
Studies of transitions between free states is the main task of
QFT. Collective, nonperturbative effects, bound states etc. are also

of interest of course.

Let us postulate the transition amplitude M of a physical
process:

M ≡ ⟨out |S|in⟩, S ≡ T exp

(

i

∫

dxLI

(

ϕ(x)
)

)

The initial and final states are

|in⟩ = a+(p1) . . . a
+(ps)|0⟩, |out⟩ = a+(p′

1) . . . a
+(p′

r )|0⟩

The differential probability to evolve from |in⟩ to |out⟩ is

dw = (2π)4δ(
∑

p′
i)

n1 . . . ns

2E1 . . .Es
|M|2

r
∏

j=1

dp′
j

(2π)32E ′
j

here ni is the particle number density of i th particle beam
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QFT: Interaction Lagrangians

Nontrivial transitions happen due to interactions of fields. QFT
prefers∗ dealing with local interactions ⇒ LI = LI

(

ϕ(x)
)

Examples of interaction Lagrangians:

gϕ3(x), hϕ4(x), yϕ(x)Ψ(x)Ψ(x)

eΨ(x)γµΨ(x)Aµ(x), GΨ1(x)γµΨ1(x) ·Ψ2(x)γµΨ2(x)

IMPORTANT: Always keep in mind the dimension of your
objects! The reference unit is the dimension of energy (mass):

[E ] = [m] = 1 ⇒ [p] = 1, [x ] = −1

An action should be dimensionless

[

∫

dxL(x)
]

= 0 ⇒ [L] = 4

EXERCISE: Show that [ϕ] = [Aµ] = 1 and [Ψ] = 3/2. Find the
dimensions of the coupling constants g, h, y , e, and G in the
examples of LI above
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QFT: Time ordering

By definition

T A1(x1) . . .An(xn) = (−1)kAi1(xi1) . . .Ain(xin) with x0
i1
> . . . > x0

in

where k is the number of fermion field permutations

N.B. Objects like A1(x)A2(y) with x = y are not well defined,
they lead to divergences

Perturbative expansion of S matrix exponent leads to terms like

ingn

n!
⟨0|a−(p′

1) . . .a
−(p′

r )

∫

dx1 . . . dxnTϕ3(x1) . . .ϕ
3(xn)a

+(p1) . . . a
+(ps)|0⟩

Remind that fields ϕ also contain creation and annihilation operators.

By permutation of operators a−(p)a+(p′) = a+(p′)a−(p) + δ(p − p′)

we move a− to the right and a+ to the left. At the end we get either 0

because a−|0⟩ = 0 or some terms proportional to ⟨0|0⟩ = 1

EXERCISE: Show that [a−(p),ϕ(x)] = eipx

(2π)3/2
√

2p0

and

[a−
r (p),Ψ(x)]+ = eipx ūr (p)

(2π)3/2
√

2p0
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QFT: the Green functions

By definition the causal Green function is given by

⟨0|Tϕ(x)ϕ(y)|0⟩ ≡ −iDc(x − y)

It is a building block for construction of amplitudes

One can show (see textbooks) that

(∂2 + m2)Dc(x) = δ(x)

so that Dc is the Green function of the Klein-Gordon operator,

Dc(x) =
−1

(2π)4

∫

dp e−ipx

p2 − m2+i0

For other fields we have

⟨0|T Ψ(x)Ψ(y)|0⟩ =
i

(2π)4

∫

dp e−ip(x−y)(p̂ + m)

p2 − m2+i0

⟨0|T Uµ(x)U
∗
ν (y)|0⟩ =

−i

(2π)4

∫

dp e−ip(x−y)(gµν − pµpν/m2)

p2 − m2+i0

⟨0|T Aµ(x)Aν(y)|0⟩ =
−i

(2π)4

∫

dp e−ip(x−y)gµν

p2+i0
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QFT: the Wick theorem

The Wick theorem states that for any combinations of fields

T A1 . . .An ≡
∑

(−1)k ⟨0|TAi1Ai2 |0⟩ . . . ⟨0|TAim−1
Aim |0⟩ : Aim+1

. . .Ain :

The sum is taken over all possible ways to pair the fields

The normal ordering operation acts as

: a−
1 a+

2 a−
3 a−

4 a+
5 a−

6 a+
7 : = (−1)k a+

2 a+
5 a+

7 a−
1 a−

3 a−
4 a−

6

Using the Wick theorem we construct the Feynman rules for simple
gφ3 and hϕ4 interactions. But for the case of gauge interactions we
need something more. . .
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QFT: the Noether theorems (I)

There are two major types of symmetries in the SM: global and
local ones

The 1st Noether theorem:
If the action is invariant with respect to the global Lie group Gr

with r parameters, then there are r linearly independent
combinations of Lagrange derivatives which become complete
divergences; and vice versa.

If the field satisfies the Euler-Lagrange equations, then
divJ = ∇J = 0, i.e. the Noether currents are conserved.

Integration of those divergences over 3-dim space (with certain
boundary conditions) leads to r conserved charges.

EXERCISE: Remind examples from QED and Poincaré global
symmetries
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QFT: the Noether theorems (II)

Much more important for us is the 2nd Noether theorem:

If the action is invariant with respect to the infinite-dimensional
r -parametric group G∞,r with derivatives up to the k th order,
then there are r independent relations between Lagrange
derivatives and derivatives of them up to the k th order; and vice
versa.

N.B. The 2nd Noether theorem provides r conditions on the
fields which are additional to the standard Euler-Lagrange
equations. These conditions should be used to exclude double
counting of physically equivalent field configurations.

Examples of infinite-dimensional groups are local gauge
transformations (see below) and the general coordinate
transformations in General Relativity
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QFT: Gauge symmetry (I)
The free Lagrangians for electrons and photons

L0(Ψ) = iΨγµ∂µΨ− mΨΨ, L0(A) = −
1

4
FµνFµν

are invariant with respect to the global U(1) transformations

Ψ(x) → exp(ieθ)Ψ(x), Ψ(x) → exp(−ieθ)Ψ(x), Aµ(x) → Aµ(x)

One can note that Fµν is invariant also with respect to local
transformations Aµ(x) → Aµ(x) + ∂µω(x). For fermions the
corresponding transformations are

Ψ(x) → exp(ieω(x))Ψ(x), Ψ(x) → exp(−ieω(x))Ψ(x)

How to make the fermion Lagrangian being also invariant?

The answer is to introduce the covariant derivative:

∂µ → Dµ, DµΨ ≡ (∂µ − ieAµ)Ψ, DµΨ ≡ (∂µ + ieAµ)Ψ

Then we get the QED Lagrangian:

LQED = −
1

4
FµνFµν + iΨγµDµΨ− mΨΨ

= −
1

4
FµνFµν + iΨγµ∂µΨ− mΨΨ+ eΨγµΨAµ
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QFT: Gauge symmetry (II)
EXERCISES: 1) Check the covariance: DµΨ → eieω(x)(DµΨ),
2) construct the Lagrangian of scalar QED

Let’s look at the photon free Lagrangian

L0(A) = −
1

4
(∂µAν − ∂νAµ)

2 = −
1

2
AνKµνAν ,

Kµν = gµν∂
2 − ∂µ∂ν ⇒ Kµν(p) = pµpν − gµνp2

Operator Kµν(p) has zero modes (since pµKµν = 0), so it is not
invertable. Definition of the photon propagator within the functional
integral formalism becomes impossible. The reason is the unresolved
symmetry.

The solution is to introduce a gauge fixing term into the Lagrangian:

L0(A) = −
1

4
FµνFµν−

1

2ξ
(∂µAµ)

2 ⇒

⟨0|T Aµ(x)Aν(y)|0⟩ =
−i

(2π)4

∫

dp e−ip(x−y) gµν + (ξ − 1)pµpν/p2

p2 + i0

N.B. Physical (observable) quantities do not depend on the value of ξ
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QFT: Non-abelian Gauge symmetry
Transformations for a non-abelian case read

Ψi → eigωata
ij Ψj , [ta, tb] = if abc tc

Ba
µ → Ba

µ + ∂µω
a + gf abcBb

µω
c , Fµν ≡ ∂µBa

ν − ∂νBa
µ + gf abcBb

µBc
ν

where ta are the group generators, f abc are the structure constants

Introduce the covariant derivative

∂µΨ → DµΨ ≡ (∂µ − igBa
µta)Ψ

and we get

L(Ψ,B) = iΨγµDµΨ+ L(B),

L(B) = −
1

4
F a
µνF a

µν −
1

2ξ
(∂µBa

µ)
2 = −

1

4

(

∂µBa
ν − ∂νBa

µ

)2

−
1

2ξ
(∂µBa

µ)
2 −

g

2
f abc

(

∂µBa
ν − ∂νBa

µ

)

Bb
µBc

ν −
g2

4
f abc f adeBb

µBc
νBd

µBe
ν

N.B.1. L(B) contains self-interactions. N.B.2. mB ≡ 0, why?

N.B.3. Non-abelian charge g is universal
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QFT: Faddeev-Popov ghosts

Exclusion of double-counting due to the physical equivalence of the
field configurations related to each other by non-abelian gauge
transformations is nontrivial. Functional integration over those
identical configurations (or application of the BRST method) leads to
the appearance of the so-called Faddeev-Popov ghosts:

L(Ψ,B) → L(Ψ,B) + Lgh

Lgh = −∂µc̄a∂µca + gf acbc̄aBc
µ∂µca = −∂µc̄a∂µca − gf acb∂µc̄aBc

µca

where c and c̄ are ghost fields, they are fermions with a boson-like
kinetic term.

IMPORTANT: Ghosts are fictitious particles. In the Feynman rules
they (should) appear only as virtual states in propagators

N.B. Ghosts in QED are non-interacting since f abc = 0 there
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QFT: Regularization of UV divergences

Higher-order terms in perturbative series contain loop integrals, e.g.

I2 ≡
∫

d4p

(p2 + i0)((k − p)2 + i0)
∼

∫ ∞

0

|p|3 d |p|
|p|4

∼ ln∞

Introduction of a cut-off M leads to a finite, i.e. regularized value of
the integral:

Icut−off
2 = iπ2

(

ln
M2

k2
+ 1

)

+O
(

k2

M2

)

= iπ2

(

ln
M2

µ2
− ln

k2

µ2
+ 1

)

+O
(

k2

M2

)

Another possibility is the dimensional regularization where
dim = 4 → dim = 4 − 2ε

Idim.reg.
2 = µ2ε

∫

d4−2εp

(p2 + i0)((k − p)2 + i0)
= iπ2

(

1

ε
− ln

k2

µ2
+ 2

)

+O (ε)

N.B. The origin of UV divergences is the locality of interactions
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QFT: Renormalization

Let’s consider a three-point (vertex) function in the gφ3 model

G =

∫

dx dy dz ϕ(x)ϕ(y)ϕ(z)F (x , y , z, )

F dim.reg. =
A

ε
δ(y − x)δ(z − x) + . . . ⇒ G =

A

ε

∫

dxϕ3(x) + . . .

IMPORTANT: Divergent terms are local.

A QFT model is called renormalizable if all UV-divergent terms are of
the type of the ones existing in the (semi)classical Lagrangian.
Otherwise the model is called nonrenormalizable.

EXAMPLES:

a) renormalizable models: QED, QCD, SM [’t Hooft & Veltman],
hϕ4, gϕ3

b) nonrenormalizable models: G(ΨγµΨ)2, General Relativity

N.B. Models with dimensionful ([G] < 0) coupling constants are
nonrenormalizable
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QFT: Subtractions and counter terms

In renormalizable models all UV divergences can be subtracted from
amplitudes and shifted into counter terms in L. Each∗ term in L gets
a renormalization constant:

L =
Z2

2
(∂ϕ)2 −

Zmm2

2
ϕ2 + Z4hϕ4 =

1

2
(∂ϕB)

2 −
m2

B

2
ϕ2 + hBϕ

4

where ϕB =
√

Z2ϕ, m2
B = m2ZMZ−1

2 , hB = hZ4Z−2
2 are bare field,

mass, and charge,

Zi(h, ε) = 1 +
Ah

ε
+

Bh2

ε2
+

Ch2

ε
+O(h3)

Remonrmalization constants are chosen in such a way that
divergences in amplitudes are cancelled out with divergences in Zi .
That happens order by order.

N.B. R. Feynman: “I think that the renormalization theory is simply a
way to sweep the difficulties of the divergences of electrodynamics
under the rug.”
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QFT: Renormalization group

Physical results should not depend on the auxiliary scale µ:

F (k , g,m)
∞−→ Freg(k ,M, g,m)

M→∞−→ Fren(k , µ, g,m)
RG−→ Fphys(k ,Λ,m)

where Λ is some dimensionful scale

Charge (and mass) become running, i.e. energy-dependent:

g → g

(

g,
µ′

µ

)

, β(g) ≡
dg

d lnµ

∣

∣

∣

∣

gB=const

N.B.1. Renormalization scale unavoidably appears in any scheme

N.B.2. Scheme and scale dependencies are reduced after including
higher orders of the perturbation theory
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QFT: Dimensional Transmutation

Resummation of multi-leg Feynman diagrams (with loops) in
a QFT model provides the so called effective potential V (φ)

S. Coleman and E. Weinberg (PRD’1973) have shown that starting
from a mass less (conformal invariant) semi-classical Lagrangian
(e.g. for a scalar field) one can get an effective potential which is
infra-red divergent:

Vclassical(φ) =
λ

4!
φ4 →

[

resummation + renormalization

]

→

Vquantum(φ) =
λ

4!
φ4 +

λ2φ4

256π2

(

ln
φ2

Λ2
−

25

6

)

The stability condition V ′(⟨φ⟩) = 0 provides a relation between
⟨φ⟩ ̸= 0, M and λ. The dimensionless coupling constant is traded for
a dimensionful scale Λ

Conformal anomaly generates non-zero condensate and mass

N.B. Relation αQCD(Q2) = 4π
β0 ln(Q2/ΛQCD)

is another example of

dimensional transmutation
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