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The Hubble diagram and the age of the Universe

Two teams have worked in parallel on the search for distant supernovæ: the Super-
nova Cosmology Project (SCP) [9] and the High-Z Supernova Search Team (HZT) [10].
In 1998, they independently published the Hubble diagram of type Ia supernovæ (see
Fig. 4.3). The SCP group used a catalogue of 42 SN Ia composed of 18 SN Ia with
z < 0.101 and 24 SN Ia with 0.180 < z < 0.830. The analysis of the HZT group relies
on 34 close SN Ia and 16 SN Ia with 0.16 < z < 0.62. Figure 4.3 summarizes the
observations of both teams. Since then, the number and the maximal redshift of the
observed supernovæ have increased greatly.

High-Z SN Search team 
Supernova Cosmology Project 

High-Z SN 
Search team 
Supernova 
Cosmology 
Project 

Ωm0 = 0.3, ΩΛ0 = 0.7
Ωm0 = 0.3, ΩΛ0 = 0.0
Ωm0 = 1.3, ΩΛ0 = 0.0D

is
ta

n
ce

 m
o
d
u

lu
s 

(m
–M

) 44 

42 

40 

38 

36 

34 

3 

2 

1 

0 

–1 

1.0 

0.5 

0.0 

–0.5 

(m
–M

)–
(m

–M
) Ω

m
0
 =

 0
.3

, 
Ω

Λ
0 

=
 0

.0

0.01 0.10 1.00 1.0 2.0 1.5 0.5 0.0 2.5 
z 

Ω
Λ

Ωm0

No 
bi

g-
ba

ng 99.7 % 

95.4 % 

68.3 % 

Acceleratio
n

Deceleratio
n

Eternal expansion

Contraction 

H
yperbolic

Spherical

B
oom

erang 

+ 

M
A
X
IM

A
 

Fig. 4.3 The Hubble diagram for the supernovæ of both HZT and SCP teams compared with

the predictions of three ΛCDM models. The bottom panel shows the difference between the
data and a Universe with (Ωm0, ΩΛ0) = (0.3, 0). (right): The constraints on the cosmological

parameters (Ωm0, ΩΛ0) obtained by both experiments, compared with those obtained from

the cosmological background (see Chapter 6) based on the observations of MAXIMA and
BOOMERanG balloons. Adapted from Ref. [11].

4.1.2.2 Implication for the cosmological parameters

As soon as the redshift is not too small, the relation between the distance luminosity
and the redshift becomes non-linear and the next-to-leading order term is proportional
to 1

2 (1 − q0)z2 [see (3.99)]. The analysis of both teams proves that the deceleration
parameter satisfies

q0 < 0 (4.1)

at 2.8σ with no other hypothesis than Ωm0 > 0. This conclusion follows from the pa-
rameterization (3.92) that does not make any hypothesis on the material composition

I. Introduction Recap

Time and distances
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Fig. 3.10 (left): The angular distance DA(z)/DH0 as a function of the redshift z for three
cosmological models, defined by (Ωm0, ΩΛ0) = (1, 0), (0.05, 0) and (0.2, 0.8), respectively, as

plain, dotted and dashed lines. (right): The luminosity distance DL(z)/DH0 as a function of

the redshift z for the three same cosmological models.

3.3.4.2 Distances duality relation

If the number of photons is conserved, which is usually the case if the Maxwell equa-
tions are valid, and if the absorption from the medium in which they propagate is
small, then (for a proof, see Ref. [15])

DL = rs(1 + z),

so that (3.75) implies a duality relation between the angular and luminosity distances

DL = (1 + z)2DA. (3.78)

Unlike (3.75), this relation can be tested experimentally [16].

3.3.4.3 Distance modulus

The luminosity distance is usually expressed in terms of the distance modulus, m−M ,
defined such that it vanishes if the source is located conventionally6 at 10 pc,

m−M = −2.5log [φ(z)/φ(10 pc)] . (3.79)

Using (3.76) and noticing that at 10 pc, the luminosity distance is also 10 pc, we
obtain m −M = 5 log[DL(z)/10 pc]. Using the expression 10 pc = DH0/3 × 108 h, it
can be deduced that

m−M = 25 + 5 log

[
3000

DL

DH0

]
− 5 log h. (3.80)

6Note that the −2.5 factor is arbitrary and was chosen to match the magnitudes of stars initially
defined by Hipparcos.
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Fig. 3.10 (left): The angular distance DA(z)/DH0 as a function of the redshift z for three
cosmological models, defined by (Ωm0, ΩΛ0) = (1, 0), (0.05, 0) and (0.2, 0.8), respectively, as

plain, dotted and dashed lines. (right): The luminosity distance DL(z)/DH0 as a function of

the redshift z for the three same cosmological models.

3.3.4.2 Distances duality relation

If the number of photons is conserved, which is usually the case if the Maxwell equa-
tions are valid, and if the absorption from the medium in which they propagate is
small, then (for a proof, see Ref. [15])

DL = rs(1 + z),

so that (3.75) implies a duality relation between the angular and luminosity distances

DL = (1 + z)2DA. (3.78)

Unlike (3.75), this relation can be tested experimentally [16].

3.3.4.3 Distance modulus

The luminosity distance is usually expressed in terms of the distance modulus, m−M ,
defined such that it vanishes if the source is located conventionally6 at 10 pc,

m−M = −2.5log [φ(z)/φ(10 pc)] . (3.79)

Using (3.76) and noticing that at 10 pc, the luminosity distance is also 10 pc, we
obtain m −M = 5 log[DL(z)/10 pc]. Using the expression 10 pc = DH0/3 × 108 h, it
can be deduced that

m−M = 25 + 5 log

[
3000

DL

DH0

]
− 5 log h. (3.80)

6Note that the −2.5 factor is arbitrary and was chosen to match the magnitudes of stars initially
defined by Hipparcos.

Courtesy Peter&Uzan textbook



I. Introduction

The Universe is flat. How weird!!

Chapter 5

Inflation – a mixture of my notes
with those from C. Lacey L4’s
lecture course

5.1 The basic principle
We derived the relation between eq.?? and the other cosmological parameters.

WK =
H2

0
H2

WK,0

a2

|W� 1| thus gives the fractional contribution of the curva ture term in the Fried-
mann equation. If the universe is spatially flat, K = 0, then RHS = 0 in the above
equation, so W = 1 at all times.
More generally, there is a relation between the curvature constant K and the
present-day values of W and H:

K =
(W0 �1)H2

0
c2 (5.1)

where W0 ⌘ W(t0). For K 6= 0, W(t) 6= const.
If |Kc2

a2 |⌧ 8pGr

3 , then W ⇡ 1, and the universe behaves like a spatially flat universe
around that time. Since rm µ a�3 and rr µ a�4, the total density term 8pGr

3 grows
more rapidly than the curvature term |Kc2

a2 | as a ! 0, so W ! 1 at early times even
if W0 6= 1.
We can also relate W to the curvature radius. From eq.(??),

rcurv =
ap
|K|

=
c
H

1p
|1�W|

(5.2)
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I. Introduction

The Universe is dominated by DE 
How weird!!

For light emitted in the past at time te from a galaxy moving with the cosmic flow,
and received today at time t0, also in a galaxy moving with the cosmic flow,

1+ z =
a(t0)
a(te)

=
1

a(te)
(3.4)

leading to the generic relation

a(t) =
1

(1+ z)
. (3.5)

3.3 Hubble rate as a function of the Universe con-
stituents

The Hubble rate describes the evolution of distances with time and is related to
the receding velocity of galaxies through the simple relation

v =
dl(t)

dt
=

ȧ
a

l(t) = H(t) l(t)

where l(t) is given by eq.(??). leading to the very famous relation between the
Hubble rate and the scale factor

H(t) =
ȧ
a

To go further and do physical cosmology, one needs to express the relation be-
tween the Hubble rate H(t) and the energy content of the Universe. This can be
done through the Friedmann equation

✓
ȧ
a

◆2
+

K
a2 =

8 p G r

3
+

L

3

by simply replacing ( ȧ
a by the Hubble rate:

H2 =
8 p G r

3
+

L

3
� K

a2

where r is the energy density of all species in the Universe, K the curvature, G
the gravitational constant and L the cosmological constant. Making use of the
definitions of cosmological parameters for matter and radiation

Wm,r = rm,r/rc,

8

H2 ' ⇤

3
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H '
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⇤
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ȧ
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r
⇤

3
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Constant energy density leads to an accelerated expansion of the 
Universe



5% matter; 70% dark energy 

what is the rest?



Baryons can be dark  
but cannot be (all)  
the dark matter. 

But there is definitely new physics (whatever it is...)
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Only ~5% max of baryons

B a r y o n s  i n  t h e  U n i v e r s e
I. Introduction

Consistent with CMB!

Where are the baryons?

IV. Towards modern Cosmology



5% matter; 70% dark energy 

what is the rest?



J. Oort, 1932

I. Introduction

more mass in the Coma Cluster 
than is visible 

Doppler redshift values of stars moving near the galactic plane; 
The Galaxy needs to be twice as massive to prevent stars to escaping

F. Zwicky 1933

based on 21 radial velocities of galaxies in the Coma cluster 

IV. Towards modern Cosmology



I. Introduction

(many people contributed!)
The rotation of galaxies was discovered in 1914 — Slipher (1914) 

Freeman (1970) for M33 and NGC 300: 
rotation curve peaks at the edge of the optical disk 
so ~ 1/3 of the mass outside the optical radius.

Shostak & Rogstad (1973), 
Seielstad & Wright (1973).  
M31: (Roberts 1975a, 
Roberts & Whitehurst 1975); 
Final straw: Bosma (1978)

1970ApJ...159..379R

Rotation curves of galaxies

IV. Towards modern Cosmology

https://ned.ipac.caltech.edu/cgi-bin/objsearch?objname=M31&extend=no&out_csys=Equatorial&out_equinox=J2000.0&obj_sort=RA+or+Longitude&zv_breaker=30000.0


Famous evidence for non standard physics

We need DM to explain the flat rotation curves far from the GC

2 2
c

2
c

2 2

G M(r)v    M(r) = 4 (r) d

v1 dM(r)(r) =   = 
4  dr

r

4  G r

r 

r
U

S S

S U o ³

~r-3

3

But the highest mass density would be in the inner part of the galaxy…

I. Introduction IV. Towards modern Cosmology



Nothing found (so far but …) 
they can’t be all the missing mass

I. Introduction

EROS and MACHO
 (La Silla vs Mount Stromlo Observatory, Australia)

well not in that range …

IV. Towards modern Cosmology



Courtesy: EROS experiment. They were looking for  "brown dwarfs" or "MACHOs" which belong 
gravitationally to our Galaxy. This was made possible by their gravitational microlensing effects on stars 
in the Magellanic Clouds (two dwarf galaxies, Milky Way satellites).

Microlensing effect... 
Before and two years after (during the maximum of amplification)

IV. Towards modern CosmologyI. Introduction



Dark Matter is every where

But what is the DM?

I. Introduction

NGC 4621 Credit: WikiSky/SDSS
Cluster of galaxies

NGC 6814 Credit: NASA

IV. Towards modern Cosmology



G r a v i t a t i o n a l  l e n s i n g  e v i d e n c e …
I. Introduction

Illustration Credit: NASA, ESA, and Z. Levay (STScI)  
Science Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center),  
K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago),  
and M. Gladders and E. Wuyts (University of Chicago)

Reconstruction (lower left) of the brightest galaxy whose image has been  
distorted by the gravity of a distant galaxy cluster.  

The small rectangle in the center shows the location of the background galaxy  
on the sky if the intervening galaxy cluster were not there.  
The rounded outlines show distinct, distorted images of the background galaxy  
resulting from lensing by the mass in the cluster. The image at lower left is a  
reconstruction of what the lensed galaxy would look like in the absence of the cluster,  
based on a model of the cluster's mass distribution derived from studying the  
distorted galaxy images.  



Courtesy Michael Sachs

+  W e a k  l e n s i n g …
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M o r e  l e n s i n g  e v i d e n c e …

X-ray emitted by gas 
(Thomson interactions, Bremsstrahlung,…)
But the gravitational potential is dominant 
in the blue region where no light is emitted 

I. Introduction



5% matter; 70% dark energy 

what is the rest? 

well seems a sort of dark matter



Now that we know the ingredients 
in the Universe,  

how do we form objects like this?



J. Peebles

Primordial fluctuations in the Early Universe grow under gravity (Peebles, 66) 

I(x) / x

3

e

x � 1
x =

h⌫

T

�T

T
' 10�5

I. Introduction

http://adsabs.harvard.edu/abs/1970ApJ...162..815P

Followed Peebles, P. J. E., Astrophys. J., 142, 1317 (1965)

V. Primordial Fluctuations



more matter;  
will accrete and  

clump under gravity

less matter; 
will become even emptier with gravity



I. Introduction

J. Silk

V. Primordial Fluctuations
baryonic fluctuations  

baryonic fluctuations do not survive the 
baryon scattering off the photon background. 
(Question first asked by Misner for neutrinos)



W a s  P e e b l e s  r i g h t ?

courtesy wikipedia!

Y E S !
s o  e i t h e r  S i l k  w r o n g  o r  

m o r e  m a t t e r  t h a n  b a r y o n s

V. Primordial Fluctuations



I. Introduction V. Primordial Fluctuations

All regions of the sky have a temperature around 2.7k!  
How come?

leads to
H(t) =

a

t
= H

a

a�
1
a

with
H

a

=
a

t
a

• In the radiation era (a = 1/2), we have

t1/2 ' 2.4 1019 s and H
a

= 2 10�20 s�1

• In the matter era (a = 2/3), we have

t2/3 ' 5 1017 s and H
a

= 1.3 10�18 s�1

3.6 Horizon (Revision, see R. Gregory’s lectures)
The horizon is the furthest distance one can probe and is simply given by

d(t) =
c

H(t)
.

Since H(t) µ 1/t this simply goes to show that d(t) µ c t as one would naively
expect. However one does not see exactly d(t) = ct but a fraction of it (2/3 if the
Universe is dominated by matter and 1/2 if the Universe is dominated by radia-
tion). Objects inside our horizon are visible while objects outside our horizon are
essentially decoupled from us. There is no reason why the physics inside such
objects should be the same as in objects inside the horizon as information cannot
travel such distances. Yet we observed that scales outside the horizon share the
same average temperatures as smaller scales which had been in contact causal.

11

cold spot

hot spot >> galaxy scale (1 Mpc ~ 10^27 cm)



I. Introduction

All regions of the sky have a temperature around 2.7k + 10^-5

>> galaxy scale (1 Mpc ~ 10^27 cm)

How come such a tiny difference on such gigantic scales? 

Courtesy ESA 2015
Planck experiment

V. Primordial Fluctuations

cold spot

hot spot



I. Introduction

Horizon problem

V. Primordial Fluctuations
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Hubble Volume 

Inflation 

Figure 6.3. Particles on the comoving grid before (top) and after (bottom) inflation. Open 
circles are the same particles on top and bottom. Before inflation, the comoving Hubble radius 
was quite large, encompassing dozens of cells on the grid. After inflation, the comoving Hubble 
radius has shrunk to just one cell. (In this caricature, the scale factor has grown by a factor 
of order 7; during inflation the scale factor increases by greater than e^°.) The shrinkage of 
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constant during inflation. 
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Remember that spatial curvature becomes important for r ⇠ rcurv. Here c/H is the
effective horizon size (see Chap.??).
Current observations imply W0 ⇡ 1 ) K ⇡ 0. Henceforth, we will usually assume
K = 0 - this simplifies the Friedmann eqn.
In general, can write total density as

r(t) = rm(t)+rr(t)+rv (5.3)

so define
Wm(t) =

rm(t)
rcrit(t)

(5.4)

Wr(t) =
rr(t)

rcrit(t)
(5.5)

Wv(t) =
rv

rcrit(t)
(5.6)

Then
W(t) = Wm(t)+Wr(t)+Wv(t) (5.7)

NB even if total W = 1 (constant with time), the Ws for the individual components
need not be constant with time.
Inflation was proposed to solve

• the flatness problem (getting a zero curvature today would require incredible
fine-tuning with normal evolution)

• explain why regions which seem causally disconnected would share the
same (monopole) temperature.

It is thought that at extremely early times (before the radiation-dominated era), the
universe went through a period of extremely rapid expansion called inflation. The
details of how this happened (including the time at which it occured) are currently
extremely uncertain, but the general picture is as follows: During inflation, the
energy density is dominated by potential energy of a scalar field f, with p ⇡
�rc2 ⇡�V (f). f is not exactly constant, but varies only slowly during inflation,
so that

H2(a)⇡ 8pG
3

V (f)

c2 ⌘ H2
f

⇡ const (5.8)

so we get almost exponential expansion, similar to the vacuum-dominated case

a(t) µ eH
f

t (5.9)

Main idea: rapid change in physical lengths; no change in the physics.
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p = �⇢c2 = �V (�)

What is driving the expansion? 
Potentially a scalar field (like Higgs)

if V ~ constant

H(a) =
ȧ

a
= H� now integrate
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I. DecouplingII CMB & LSS e� stay impacted by collisions with photons until extremely late but not true as
there is recombination mechanism!!!

4.6.1 Photon thermal decoupling – rough estimate without re-
combination

Below 511 keV,
e�+ e+ $ gg

cannot be maintained any longer. Annihilations happen extremely fast due to the
large cross section and the matter-anti matter asymmetry. The photon decoupling
is given by

G

g�e,p ' sT c ne = H ) G

g�e,p ' sT c 10�9 n
g

= H

which leads to
sT c 10�9 n

g

(T0) a�3 = H
a

a�1/a

i.e.

a =

✓
sT c 10�9 n

g

(T0)

H
a

◆1/(3�1/a)

.

We thus estimate the photon decoupling to happen at

Tdec(g) ' T0

✓
7 10�21 s�1

H
a

◆�2/3

' 100 K.

The fact that the photons do not feel its interactions with matter before the matter
ceased to be affected by the collisions with the photons is extremely important.

4.7 Recombination
To compute the proper time of decoupling we have however to take into account
the recombination phenomenon. So far we assumed that all electrons and protons
were free and therefore able to interact with photons. However one should account
for reactions of the kind

e�+ p $ H + g

and
2e�+H++

e $ He + g.

17

moment when photons are free  
(elastic scattering rate with photons < Hubble rate)

High energy = Compton interactions 
Low energy = Thomson interactions

e� stay impacted by collisions with photons until extremely late but not true as
there is recombination mechanism!!!

4.6.1 Photon thermal decoupling – rough estimate without re-
combination

Below 511 keV,
e�+ e+ $ gg

cannot be maintained any longer. Annihilations happen extremely fast due to the
large cross section and the matter-anti matter asymmetry. The photon decoupling
is given by

G

g�e,p ' sT c ne = H ) G

g�e,p ' sT c 10�9 n
g

= H

which leads to
sT c 10�9 n

g

(T0) a�3 = H
a

a�1/a

i.e.

a =

✓
sT c 10�9 n

g

(T0)

H
a

◆1/(3�1/a)

.

We thus estimate the photon decoupling to happen at

Tdec(g) ' T0

✓
7 10�21 s�1

H
a

◆�2/3

' 100 K.

The fact that the photons do not feel its interactions with matter before the matter
ceased to be affected by the collisions with the photons is extremely important.

4.7 Recombination
To compute the proper time of decoupling we have however to take into account
the recombination phenomenon. So far we assumed that all electrons and protons
were free and therefore able to interact with photons. However one should account
for reactions of the kind

e�+ p $ H + g

and
2e�+H++

e $ He + g.

17

e� stay impacted by collisions with photons until extremely late but not true as
there is recombination mechanism!!!

4.6.1 Photon thermal decoupling – rough estimate without re-
combination

Below 511 keV,
e�+ e+ $ gg

cannot be maintained any longer. Annihilations happen extremely fast due to the
large cross section and the matter-anti matter asymmetry. The photon decoupling
is given by

G

g�e,p ' sT c ne = H ) G

g�e,p ' sT c 10�9 n
g

= H

which leads to
sT c 10�9 n

g

(T0) a�3 = H
a

a�1/a

i.e.

a =

✓
sT c 10�9 n

g

(T0)

H
a

◆1/(3�1/a)

.

We thus estimate the photon decoupling to happen at

Tdec(g) ' T0

✓
7 10�21 s�1

H
a

◆�2/3

' 100 K.

The fact that the photons do not feel its interactions with matter before the matter
ceased to be affected by the collisions with the photons is extremely important.

4.7 Recombination
To compute the proper time of decoupling we have however to take into account
the recombination phenomenon. So far we assumed that all electrons and protons
were free and therefore able to interact with photons. However one should account
for reactions of the kind

e�+ p $ H + g

and
2e�+H++

e $ He + g.

17
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The one-arrow process e�+ p ! H + g is referred to recombination. The neutral
Hydrogen formed at BBN is indeed destroyed by the reverse reaction

H + g ! e�+ p

till the photon energy becomes too low to break the neutral Hydrogen bound state.
At that stage the electrons can recombine with protons to form again neutral Hy-
drogen. The binding energy of the Hydrogen atom is about 13.6eV so a crude
estimate shows that electrons must be free until E

g

= 13.6 eV, which translates
into a temperature of

3 K T = E = 13.6 eV ) T ⇠ 5 104 K.

This is too crude however because this assumes only one transition from the fun-
damental to fully ionised state. In reality one will pass through all energy levels
which are given by

En =�EB

n2

with EB = 13.6 eV. The transition from 1 to 2 requires a photon energy of about

E2 �E1 =�EB

22 +
EB

12 = 10.2 eV

and so on.
But one should also remember that there are many more photons than protons and
electrons. Hence dissociation is very efficient. Typically the number of Hydrogens
ions which are expected to get sufficiently excited to not recombine is given by

np+ = n
g

(E > 10.2 eV)

However this also assumes that one photon of such energy causes the Hydrogen
to reach the first excited state and causes immediate ionisation. In reality this is
again too crude and one needs to follow the next steps to get a better estimate of
the moment at which all the electrons and protons would ”recombine” to form
neutral Hydrogen that will not be dissociated any longer.
Let us start by describing the distribution of charges in the medium. The number
of free electrons is governed by

dne

dt
=�3 H n � hsvi(ne np �ne,eq np,eq)

so

dne

dt
=�3 H n � hsvi (ne np �nH)

18

e� stay impacted by collisions with photons until extremely late but not true as
there is recombination mechanism!!!

4.6.1 Photon thermal decoupling – rough estimate without re-
combination

Below 511 keV,
e�+ e+ $ gg

cannot be maintained any longer. Annihilations happen extremely fast due to the
large cross section and the matter-anti matter asymmetry. The photon decoupling
is given by

G

g�e,p ' sT c ne = H ) G

g�e,p ' sT c 10�9 n
g

= H

which leads to
sT c 10�9 n

g

(T0) a�3 = H
a

a�1/a

i.e.

a =

✓
sT c 10�9 n

g

(T0)

H
a

◆1/(3�1/a)

.

We thus estimate the photon decoupling to happen at

Tdec(g) ' T0

✓
7 10�21 s�1

H
a

◆�2/3

' 100 K.

The fact that the photons do not feel its interactions with matter before the matter
ceased to be affected by the collisions with the photons is extremely important.

4.7 Recombination
To compute the proper time of decoupling we have however to take into account
the recombination phenomenon. So far we assumed that all electrons and protons
were free and therefore able to interact with photons. However one should account
for reactions of the kind

e�+ p $ H + g

and
2e�+H++

e $ He + g.

17The one-arrow process e�+ p ! H + g is referred to recombination. The neutral
Hydrogen formed at BBN is indeed destroyed by the reverse reaction

H + g ! e�+ p

till the photon energy becomes too low to break the neutral Hydrogen bound state.
At that stage the electrons can recombine with protons to form again neutral Hy-
drogen. The binding energy of the Hydrogen atom is about 13.6eV so a crude
estimate shows that electrons must be free until E

g

= 13.6 eV, which translates
into a temperature of

3 K T = E = 13.6 eV ) T ⇠ 5 104 K.

This is too crude however because this assumes only one transition from the fun-
damental to fully ionised state. In reality one will pass through all energy levels
which are given by

En =�EB

n2

with EB = 13.6 eV. The transition from 1 to 2 requires a photon energy of about

E2 �E1 =�EB

22 +
EB

12 = 10.2 eV

and so on.
But one should also remember that there are many more photons than protons and
electrons. Hence dissociation is very efficient. Typically the number of Hydrogens
ions which are expected to get sufficiently excited to not recombine is given by

np+ = n
g

(E > 10.2 eV)

However this also assumes that one photon of such energy causes the Hydrogen
to reach the first excited state and causes immediate ionisation. In reality this is
again too crude and one needs to follow the next steps to get a better estimate of
the moment at which all the electrons and protons would ”recombine” to form
neutral Hydrogen that will not be dissociated any longer.
Let us start by describing the distribution of charges in the medium. The number
of free electrons is governed by

dne

dt
=�3 H n � hsvi(ne np �ne,eq np,eq)

so

dne

dt
=�3 H n � hsvi (ne np �nH)

18

The one-arrow process e�+ p ! H + g is referred to recombination. The neutral
Hydrogen formed at BBN is indeed destroyed by the reverse reaction

H + g ! e�+ p

till the photon energy becomes too low to break the neutral Hydrogen bound state.
At that stage the electrons can recombine with protons to form again neutral Hy-
drogen. The binding energy of the Hydrogen atom is about 13.6eV so a crude
estimate shows that electrons must be free until E

g

= 13.6 eV, which translates
into a temperature of

3 K T = E = 13.6 eV ) T ⇠ 5 104 K.

This is too crude however because this assumes only one transition from the fun-
damental to fully ionised state. In reality one will pass through all energy levels
which are given by

En =�EB

n2

with EB = 13.6 eV. The transition from 1 to 2 requires a photon energy of about

E2 �E1 =�EB

22 +
EB

12 = 10.2 eV

and so on.
But one should also remember that there are many more photons than protons and
electrons. Hence dissociation is very efficient. Typically the number of Hydrogens
ions which are expected to get sufficiently excited to not recombine is given by

np+ = n
g

(E > 10.2 eV)

However this also assumes that one photon of such energy causes the Hydrogen
to reach the first excited state and causes immediate ionisation. In reality this is
again too crude and one needs to follow the next steps to get a better estimate of
the moment at which all the electrons and protons would ”recombine” to form
neutral Hydrogen that will not be dissociated any longer.
Let us start by describing the distribution of charges in the medium. The number
of free electrons is governed by

dne

dt
=�3 H n � hsvi(ne np �ne,eq np,eq)

so

dne

dt
=�3 H n � hsvi (ne np �nH)

18



II. Recombination 2.0II CMB & LSS

The one-arrow process e�+ p ! H + g is referred to recombination. The neutral
Hydrogen formed at BBN is indeed destroyed by the reverse reaction

H + g ! e�+ p

till the photon energy becomes too low to break the neutral Hydrogen bound state.
At that stage the electrons can recombine with protons to form again neutral Hy-
drogen. The binding energy of the Hydrogen atom is about 13.6eV so a crude
estimate shows that electrons must be free until E

g

= 13.6 eV, which translates
into a temperature of

3 K T = E = 13.6 eV ) T ⇠ 5 104 K.

This is too crude however because this assumes only one transition from the fun-
damental to fully ionised state. In reality one will pass through all energy levels
which are given by

En =�EB

n2

with EB = 13.6 eV. The transition from 1 to 2 requires a photon energy of about

E2 �E1 =�EB

22 +
EB

12 = 10.2 eV

and so on.
But one should also remember that there are many more photons than protons and
electrons. Hence dissociation is very efficient. Typically the number of Hydrogens
ions which are expected to get sufficiently excited to not recombine is given by

np+ = n
g

(E > 10.2 eV)

However this also assumes that one photon of such energy causes the Hydrogen
to reach the first excited state and causes immediate ionisation. In reality this is
again too crude and one needs to follow the next steps to get a better estimate of
the moment at which all the electrons and protons would ”recombine” to form
neutral Hydrogen that will not be dissociated any longer.
Let us start by describing the distribution of charges in the medium. The number
of free electrons is governed by

dne

dt
=�3 H n � hsvi(ne np �ne,eq np,eq)

so

dne

dt
=�3 H n � hsvi (ne np �nH)

18



The departure from equilibrium happens when nH >NH,eq or equivalently ne np >
ne,eq np,eq while, before departure, the relation

nenp

nH
=

ne,eq np,eq

nH,eq

is satisfied. The latter can be rewritten using the equilibrium number densities

ni,eq =

✓
mi Ti

(2p)

◆3/2
e�

mi
Ti

as

nenp

nH
=

ne,eq np,eq

nH,eq
⌘
✓

me T
(2p)

◆3/2
e�

(me+mp�mH)
T (4.1)

(where we neglect the electron mass in the ratio mp/mH and therefore took mp/mH =
1) leading to

ne np

nH
=

✓
me T
(2p)

◆3/2
e�

13.6 eV
T

if we consider the fully ionised Hydrogen.
The fraction of ionised Hydrogen is given by the number of free electrons

ne = Xe nB

with nB the number density of Baryons. Therefore we can define this fraction as

Xe =
ne

ne +nH
=

np

np +nH
,

which is such that

1�Xe =
nH

ne +nH
.

and therefore implies
ne = np.

The number density of electrons after partial or complete recombination is then
given by

ne,p = nH
Xe

(1�Xe)

so that
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ne np

nH
=

✓
me T
(2p)

◆3/2
e�

eH
T

(where we now account for a partially ionised Hydrogen, i.e. the first excited state
of Hydrogen, with eH = 10.2 eV) is in fact

Xe np

(1�Xe)
=

✓
me T
(2p)

◆3/2
e�

eH
T

or similarly
Xe ne

(1�Xe)
=

✓
me T
(2p)

◆3/2
e�

eH
T .

This expression can be finally written, using Xe =
ne

ne+nH
) ne = Xe (ne +nH), as

X2
e

(1�Xe)
=

1
(ne +nH)

✓
me T
(2p)

◆3/2
e�

eH
T

which is known as the Saha equation.
This equation holds until equilibrium but particles are bound to fall out of equi-
librium at later stages. To describe the fraction of ionisation with time, one needs
to go back to the Boltzmann equation

dne

dt
=�3 H ne � hsvi (ne np �nH)

which can be written as

a�3 d
�
nea3�

dt
= ne,eq np,eq hsvi

✓
nH

nH,eq
�

ne np

ne,eq np,eq

◆

(see Dodelson)

a�3 d
�
nea3�

dt
= nB hsvi

 
nH

nB

✓
me T
(2p)

◆3/2
e�

eH
T �

ne np

nB

!

using eq. ??.
Then from

a�3 d
�
nea3�

dt
= nB hsvi

 
nH

nB

✓
me T
(2p)

◆3/2
e�

eH
T �

ne np

nB

!
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we obtain

a�3 d
�
nea3�

dt
= nB hsvi

 
(1�Xe)

✓
me T
(2p)

◆3/2
e�

eH
T �X2

e nB

!

which can be finally expressed (since there is no more annihilation, nB a3 is con-
stant) as

dXe

dt
= hsvi

 
(1�Xe)

✓
me T
(2p)

◆3/2
e�

eH
T �X2

e nB

!

Clearly the fraction of ionisation depends on the ability for a proton and electron
to combine but it depends also on the energy level which is reached by CMB
photons.
Calculations then lead to

Xe ! 0 when z ' 1100,

corresponding to a temperature of

T = T0 (1+ z)⇠ 3 103 K.

Since the recombination temperature is much higher than the photon and electron
decoupling temperature, the decoupling of both species with each other happens
at recombination.

We have seen that photons and electrons decouple when the electrons recombine
with proton to form neutral Hydrogen atoms, that is at recombination. Conse-
quently, before T ' 3000 K, the medium is opaque while after T ' 3000 K, pho-
tons can freely propagate and reach us.
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(elastic scattering rate with photons < Hubble rate)
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Fig. 4.17 (left): The past light cone of an observer O intersects the surface of last scattering
on a sphere of diameter A′B′ that determines the size of the observable Universe. The size

of the causally connected regions (A′A′′,...) is determined by the intersection with the future

light cone from the Big-Bang hypersurface. (right): The horizon at decoupling and the surface
of last scattering.

As can be seen from Fig. 4.17, the regions in causal contact at the time of decoupling
are smaller than the size of the observable Universe. Thus, the surface of last scattering
includes around

N ∼
(
η0 − ηdec

ηdec

)3

∼ 8(1 + zdec)
3/2 ∼ 105 − 106 ≫ 1

regions in causal contact. Such a causal region at decoupling is now observed under
an angle

θ ∼ 2
ηdec

η0 − ηdec
∼ 1o. (4.154)

It is difficult to explain why the temperature of the cosmic microwave background
is the same up to 10−3% in the entire sky, while the latter is composed of about
106 causally independent regions. The standard cosmological model predicts that only
small regions of the surface of last scattering should be correlated, whereas larger
scales should necessarily be uncorrelated.

Another way to formulate the horizon problem is to give an estimate of the number
of initial cells, with an initial characteristic Planck size length, present today in the
observable Universe. This number is typically of order

N ∼
(

1 + zpl

ℓPH0

)3

∼ 1087.

Here again, the study of galaxies tends to show that their distribution is homogeneous
on larger scales, so it is difficult to understand how initial conditions fixed on 1087

causally independent regions can appear so identical (at a 10−5 level!).
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6.3.1 Last scattering surface
We have seen that photons and electrons decouple when the electrons recombine
with proton to form neutral Hydrogen atoms, that is at recombination. Conse-
quently, before T ' 3000 K, the medium is opaque while after T ' 3000 K,
photons can freely propagate and reach us. Since one expects that they come
from all directions, at every moment t we should be able to detect photons aris-
ing from a distance l = ct to us (and in all directions). The furthest we can see
corresponds to the moment when the photons could freely propagate, defined by
t = trec ⌘ trecombination.

The maximal length of an object at the time of recombination is defined by l? '
c trec ' 158 kpc (corresponding to the size of the horizon). This corresponds to
an object with a size of ⇠ 170 Mpc today.

6.3.2 Cosmological distances
Cosmological distances are defined as follows:

• Luminosity distance:

DL(z) = (1+ z) fk

✓Z dz
H0 E(z)

◆

• Angular distance:

DA(z) =
DL

(1+ z)2

By confronting the observed

Dobs
A? =

l?
Q?

= 17 Gpc.

to the estimate obtained using

DA(z) =
DL

(1+ z)2

at recombination, namely

DA? =
1

(1+ z?)
fk

 Z
•

z=z?

dz
H0
p

Wr +Wm +W

L

+Wk(1+ z)2

!

Making use of the different component energy density evolution with redshift we
finally get:
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DA?=

1
(1+ z?)

fk

 Z
•

z=z?

dz
H0
p

Wr,0(1+ z)4 +Wm(1+ z)3 +W

L

+Wk(1+ z)2

!
= 17 Gpc.

which gives an indication of the matter content at recombination.

6.3.3 Black Body spectrum and monopole
Due to the thermal (and thermodynamics) history of the Universe the photons
obey a Planck distribution that is preserved after decoupling. This Black body
distribution spectrum is given by

B(n) =
2hn

3

c2
1

e
hn

(kT ) �1

with n the frequency, h the Planck constant, T the temperature and k the Boltz-
mann constant corresponding to a temperature of about T0 = 2.73K.

This thermal spectrum was first ”discovered” by Penzias and Wilson in 1965 (us-
ing Dicke’s telescope) and interpreted as the evidence for relic photons from the
Big Bang by R. Dicke, J. Peebles, P. Roll and D. Wilkinson in 1965 in a paper
entitled ”Cosmic Black-Body Radiation”. It means that whatever the direction we
look at, the photons which we detect have a main temperature of T0 = 2.73K, thus
indicating that the Universe has considerably cooled down since the quark gluon
phase transition and nucleosynthesis formation.

In absence of anisotropies or more complex physics due to the astrophysics in our
own galaxies, an observer should therefore see a uniform distribution of photons
across the sky. This is called the monopole and we will see why after.

6.3.4 Dipole
However as an observer we need to take into account the fact that we have our
own velocity with respect to the sun and our sun also has a virialised (rotation)
velocity with respect to the galaxy. This induces a Doppler shift in the velocity in
a specific direction (and wavelength l) which is given by

~n.~v
c

=
Dl

l

=
DT
T

.

Indeed
ECMB = E g (1+~v.~n/c)
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The standard Big-Bang model

T0 = 2.725 ±0.001 K (4.136)

at 2σ. We define the dimensionless parameter

Θ2.7 ≡
T0

2.725
K. (4.137)

This temperature corresponds to an energy of Eγ0 = 2.345× 10−4 eV.
The observed spectrum is compatible with a blackbody spectrum

I(ν) ∝ ν3

eν/T − 1
. (4.138)

Figs. 4.13 and 4.14 compare the measurements of the spectrum of the cosmic microwave
background to that of a blackbody at 2.725 K.

The fact that this spectrum is so close to a blackbody proves that the fossil radiation
could have been thermalized, mainly thanks to interactions with electrons. However,
for redshifts lower than z ∼ 106, the fossil radiation do not have time to be thermalized.
Any energy injection at lower redshift would induce distortions in the Planck spectrum
and can thus be constrained from these observations (see Fig. 4.13).
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Fig. 4.13 (left): Comparison between the measurements of the cosmic microwave background

spectrum to a blackbody at 2.725 K. (right): Upper bound on the injected energy compatible
with the constraints from FIRAS on the distortions of the cosmic background spectrum. From

Ref. [48].

CMB photons have a Planck distribution at a temperature T0. From the expressions
(4.11) and (4.12), we can conclude (gγ = 2) that

nγ0 = 410.44 Θ3
2.7 cm−3 ργ0 = 4.6408× 10−34Θ4

2.7 g · cm−3. (4.139)

This implies that ργ0 = 0.26032 eV · cm−3 = 4.96× 10−13 eV4. We then deduce from
(4.29) that the current entropy density is

Black Body spectrum
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so
f (ECMB) =

1
eECMB/TCMB �1

⌘ 1
eE g (1+~v.~n/c)/TCMB �1

such that we can redefine

f (ECMB) =
1

eE g/T �1

with
T = TCMB/(1+~v.~n/c)⇠ TCMB (1�~v.~n/c) .

Hence
~v.~n

c
=

T � TCMB

TCMB
⌘ DT

T̄
.

with T̄ = TCMB the average temperature.
Neglecting Earth velocity with respect to the sun, our sun’s velocity is about
10�3 c so we do expect a small change in the temperature of about

DT
T̄

' 10�3.

At every position on the last scattering surface (which is furthest we can measure
the CMB temperature), one can define the variation of temperature as follows:

DT
T̄

=
v
c

cosq.

leading to a strong prediction of a ”cosq” pattern across the sky. This has been
observed and clearly shows that some regions are hotter than others (with a small
difference of temperature of 10�3). This is now referred to as the Cosmic Mi-
crowave Background dipole.
In practice, the measurement of such shift has actually be used to constrain the
sun’s velocity and position [I will list the references and the dispute with Smooth].

6.3.5 Anisotropies angular power spectrum
To describe the temperature variations, we can generalise the previous approach
so that the temperature field is now a function of direction

T (~n) = T̄ (1+Q(~n))

where T̄ stands for the average temperature. From this definition, we obtain that

Q(~n) =
(T (~n)� T̄ )

T̄
⌘ DT

T̄
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which can be decomposed using Fourier as

Q(~x) =
Z d3k

(2p)3 ei~k~x
Q(~k)

Hence at last scattering, and in the direction~n, the contrast of temperature can be
expressed as

Q(Da? ~n) =
Z d3k

(2p)3 ei~k.~nDa?
Q(~k)

Since the last scattering surface is the surface of a sphere of fixed radius Da?, we
can use spherical harmonics to describe the angular variations of the temperature
field on the sphere.

Spherical harmonics decomposition

Spherical harmonics are the basis functions of any function f mapped onto a
sphere

f (~w) =
Â

l
Â

m
flm Ylm(~w)

with

flm =
Z d3w

(2p)3 f (~w) Ylm(~w)

Therefore we can describe the angular dependence of the temperature field on the
last scattering surface as

Q(Da? ~n) =
Â

l
Â

m
Qlm Ylm(~n).

with

Qlm =
Z d3n

(2p)3 Q(Da? ~n) Ylm(~n)

Qlm =
Z d3n

(2p)3

Z d3k
(2p)3 ei~k.~nDa?

Q(~k) Ylm(~n)

We can go further by making use of

• the Rayleigh relation (cf scattering problems)

ei z cosq =
•

Â

n=0
an jn(z) Pn(cosq)

with jn spherical Bessel functions and an = in(2n+1).

39

Anisotropies of temperature

that is

ei~k.~nDa? = 4p

•

Â

l=0

al

(2l +1)
jl(k Da?)

Â

m
(�1)m Y m

l (~k) Y�m
l (~n)

Inserting the plane wave decomposition into the expression of the Qlm coefficients
we thus obtain

Qlm = 4p

Z d3k
(2p)3

•

Â

l0=0
Â

m0

al0

(2l0+1)
jl0(k Da?) Q(~k) Y m

l (~k)
Z d3n

(2p)3 Y m0?
l0 (~n) Y m

l (~n)
| {z }

Qlm = 4p

Z d3k
(2p)3

al

(2l +1)
jl(k Da?) Q(~k) Y m

l (~k)
1

2l +1
dll0 dmm0

Qlm = 4p

Z d3k
(2p)3 il jl(k Da?) Q(~k) Y m

l (~k)

CT
l coefficients

The power spectrum hQ?
l0m0Qlmi is then given by

hQ?
l0m0 Qlmi=

(4p)2

(2p)6

Z
d3k0

Z
d3k jl0(k0Da?) jl(k Da?) Q(~k0)?Q(~k) Y m0?

l0 (~k0)Y m
l (~k)

The power spectrum of fluctuations PT (k) can be obtained in terms of of the
Fourier transform of the density fluctuations and therefore temperature fluctua-
tions

P(k) = |
Z

dr

r

exp(ikx).dx|2

leading to ✓
dr

r

◆2
=

k3

(2p

2)
P(k)

[?]

Q(~k0)?Q(~k) = (2p)3
d(k� k0) PT (k)

that is

D

2
T =

k3

2p

2 PT .

Hence
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Bessel functions — damped oscillations

hQ?
l0m0 Qlmi =

(4p)2

(2p)3

Z
d3k jl0(k Da?) jl(k Da?) PT (k) Y ?

l0m0(~k) Ylm(~k)

=
(4p)2

(2p)3

Z
k2dk jl0(k Da?) jl(k Da?) PT (k)

Z
dWk Y ?

l0m0(~k) Ylm(~k)

=
(4p)2

(2p)3 dl0l dm0m

Z
k2dk jl(k Da?)

2 PT (k)

where we made use of
R

dWk Y ?
l0m0(~k) Ylm(~k) = dl0l dm0m.

Using the relation D

2
T = k3

2p

2 PT , we can rewrite hQ?
l0m0 Qlmi as

hQ?
l0m0 Qlmi = 4p dl0l dm0m

Z
d lnk jl(k Da?)

2
D

2
T (k)

= CT
l dl0l dm0m

If D

2
T (k)⇡ constant,

Z
d lnk jl(k Da?)

2 =
1

2l(l +1)
which give

hQ?
l0m0 Qlmi ' 4p

D

2
T (k)

2 l (l +1)
dl0l dm0m

= CT
l dl0l dm0m

and therefore

CT
l ' 4p

D

2
T (k)

2 l (l +1)
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the coefficients of the Ylm decomposition 
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Planck satellite 
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in the sky



the red curve = baryons only

the suppression of  small-scales is indicative of  the presence of  baryons

II CMB & LSS Anisotropies of temperature

Therefore there must be more than the baryons



END of LECTURE 2


