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Partons and their evolution
To understand the concept of partons and their evolution we will again consider 
Quantum Electrodynamics.  We will study the following process                             and 
assume that we can focus on the photon emitted by an electron.  As a consequence of 
the  collinear singularity, photons are predominantly  emitted along the direction of the 
incoming electron.  To describe this situation, we use the collinear approximation for 
matrix elements that we already employed  when discussing the NLO corrections to the 
Drell-Yan process in  Lecture 1. 
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Partons and their evolution
We simplify the phase-space and obtain the approximate result for the cross section. To 
make it well-defined, we need to specify the integration boundaries.  The upper limit on 
the integration over the transverse momentum follows  from the kinematics; physically, it 
indicates the value of the transverse momentum for which the collinear approximation 
(or neglecting recoil of the final state Y) becomes invalid.   

Integration over z is regulated by requiring that soft singularities cancel.  The 
contribution of virtual corrections is fixed by requiring that inclusive quantities are 
insensitive to collinear logarithms (same idea as in the case of the resummations). 
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Partons and their evolution
The distribution function of an electron in an electron  has some instructive  properties.  

It is a simple delta-function at a low scale (this means that at a low scale there are no 
emissions and no modification of the spectrum, i.e. the original electron carries all the 
momentum).  As the scale grows, emissions happen  and the spectrum gets modified. 

An average momentum carried by an electron is different from the original one  because  
some of its momentum is transferred to  the (emitted) photon.  If an emitted photon 
momentum is tagged,  we can also talk about  the photon distribution function in an  
electron.  

Y
X

p

zp

Monday, September 11, 17
 

4



Partons and their evolution
As the previous analysis shows, emission of a single photon leads to the contribution to 
the cross section that is suppressed by the fine structure constant but, at the same 
time, enhanced by a large collinear logarithm. 

This formula looks sufficiently complicated but it can be turned into an integro-
differential (evolution) equation for the  distribution function.
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To obtain the same enhancement  for multiple photon emissions,  
we must have emissions ordered in pT,  i.e. transverse momenta 
must increase towards the hard process.  The resulting formula 
for the cross section  reads 
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Partons and their evolution

Taking a derivative with respect to the  log(s),  we obtain the  celebrated DGLAP 
(Dokshitzer - Gribov - Lipatov - Altarelli-Parisi) evolution equation  for the splitting 
function of an electron  in an electron.  In the derivation, we have neglected a possibility 
that an electron can  transform into a photon; this introduces a mixing into an evolution. 
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Partons and their evolution
Generalization to QCD is, in principle, straightforward (there are subtleties).  Quarks and 
gluons  are ``partons’’; partons can ``split’’ to each other.  Splitting is described in a 
collinear kinematics.    The coupling constant becomes scale-dependent.  Which quark 
flavors can be considered as  ``part of the proton’’ depends  on the hardness of the 
process (eventually, all of them).   The initial condition for the evolution at low scales is 
not known (in contrast to  our QED example, this is a non-perturbative problem). 
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Partons and their evolution

Altarelli-Parisi splitting kernels are known to third order in QCD perturbation theory. I will 
show here the results for the first order.
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Partons and their evolution
The DGLAP equations imply that parton distribution functions at any scale can be 
determined  if they are known at some scale.  So, the strategy is to parametrize PDFs at a 
relatively low  scale and then use evolution and various data to constrain (determine) 
PDFs. Propagation  of errors is an important question that is being constantly discussed 
and refined. 
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Another complication is that extraction of PDFs involves fixed order cross section 
computations. When fixed order results change (i.e. by accounting for higher order 
corrections), the PDFs change  as well (provided, of course, that data does not).  It is 
therefore customary to extract PDFs using fixed order cross sections of certain 
accuracy (LO, NLO, NNLO).  These (LO, NLO, NNLO) PDFs sets should be used to 
predict physical observables using matching orders in computed partonic cross 
sections. 
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Parton distribution functions

0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04
Ratio to NNPDF3.1

ggHiggs.v3.5

LHC 13 TeV
mH = 125 GeV

Higgs production: gluon fusion

NNPDF3.1

NNPDF3.0

CT14

MMHT14

ABMP16

Below are some phenomenological results that demonstrate the current state-of-the-
art in PDF determination for both  Drell-Yan and Higgs boson production.  In general, 
the situation appears to be quite reasonable, with results of different PDF-fitting 
groups showing signs of convergence (was not always the case). 
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W+ cross section tends to be slightly below the NNLO predictions 
(similar in ATLAS and CMS)
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Parton showers
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Parton showers
Parton showers are real workhorses among simulation tools for hadron colliders.  They 
are used everywhere.  Therefore, it is important to understand which physics is caputed 
by the  parton showers and which one is not.  This is quite a non-trivial issue that seems 
to cause  some confusion even among the experts. 

I will start this  discussion with a toy model of soft emissions in QED, ignoring all the  
directional information about emitted photons. 
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Parton showers
The inclusive cross section can not depend on the infra-red regulator or contain 
large logarithmic corrections (the KLN theorem). The virtual corrections are included by 
requiring that  the total cross section equals to the Born cross section (a statement 
known as the unitarity of a parton shower). As we have seen,  the same idea is used in  
resummations and in deriving  the DGLAP evolution equation.  
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Parton showers
We find that the probability to emit exactly n photons is given by the following expression 

and  the inclusive n-photon emission probability reads
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Parton showers
Parton showers are used  to generate events that occur with certain probabilities. The 
above  results  suggest a simple way to do that.  
Indeed, the probability to have an event with no photons is                           .
The inclusive probability to emit one  photon 

The energy of the emitted photon is described by the  variable r1 that is uniformly 
distributed.  Therefore, by generating a random number between zero and one, we can tell 
if the emission happened and -- if it did happen --  what is the energy of the emitted 
photon.  

If the first photon was emitted, the probability to emit the second is described by a similar 
formula, where the only change is the energy in the no-emission probability.

 This is the key  for the algorithm that is employed in constructing the parton showers. 
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Parton showers
It is now straightforward to provide the precise definition of the  algorithm that allows us 
to generate events iteratively. 

1. Decide if at least one emission happened.  To this end,  choose a random number 
between 0 and 1 and solve the equation for the photon energy. 

2. If the photon energy is smaller than the photon mass, no emissions happen; this is an 
``elastic’’ event.  Store the event.  Start over. 

3. If the photon energy exceeds the photon mass, the emission did happen and its 
energy (    ) has been determined.  Decide if the second emission happened. To this end, 
go back to point 1 and replace                .  Continue as long as emissions keep 
happening.  Once no emission occurs, store the full event. Start over if another event is 
needed. 
 
This procedure  allows us to generate  unweighted events and then  use them in 
exactly the same way as experimental events are used for physical  analyses.  Key 
requirement is an ability to describe growing  multiplicities as a probabilistic 
process  without ``a long-distance’’ memory.
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Parton showers
Having discussed the toy model, we have to understand how to generalize it to the case 
of  real gauge theories. I will again start with the QED and make use of the discussion 
that we had about parton distribution functions. 

We need to find a ``conserved’’ quantity -- a total probability-- that is connected to 
sequences of emissions in some way. To this end, recall that the integral of the electron 
distribution function in an electron is scale-independent and can be chosen to be one. 
Recall that we arrived at  the concept of the  distribution function considering arbitrary 
number of   collinear emissions.  We now put the two remarks together and we are 
ready to go. 
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Parton showers

We have introduced the so-called Sudakov form factor; as we will now show, it 
describes the no-emission probability. 
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Parton showers
We can solve the modified evolution equation iteratively, choosing the mass  of the 
electron as the initial scale.  The resulting equation is structurally identical  to the 
probability conservation equation where contributions of states with fixed  number of 
photons are well-defined. We also see immediately the physical meaning  of the 
Sudakov form factor -- it describes virtual corrections and summarizes  their impact 
on the probability of a no-emission process. 
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Parton showers
Integrating the last equation over z, we obtain the ``probability  conservation’’ equation. 
We can  re-write it as we did in case of the toy model if we change variables similar to 
what we  did before.  The probability to emit a photon with the particular transverse 
momentum and particular energy is flatly distributed in appropriate variables.  This 
allows  us to generate unweighted events in a way that is similar to what was discussed 
in the context of the toy model. 
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Parton showers
Here is an algorithm to generate events in the context of QED collinear splittings.

1) Start by generating a random variable r. Solve the equation                    for t1. If t1 < 
me2, no emission happened; exit and start over if needed. 

2) If t1> me2,  generate another random variable and solve the equation                         
for the variable z. 

3) Record a photon with momentum (randomize the direction of the transverse momentum) 

4) Go back to the point one.   Replace s with t1 and t1 with t2 and proceed with the 
generation of the kinematics of the second photon.  If successful, record an additional 
photon and continue  until no photon emission is generated. 

Monday, September 11, 17
 

21



Parton showers
We have seen that collinear emissions can be described using parton showers. 
However,  collinear emissions are not the only contributions in pQCD that leads to 
enhanced corrections;  the other potentially  large corrections are caused by  soft 
emissions. 

However, soft emissions  are different from the collinear ones since interferences appear 
naturally.  Dealing with an interference  within a parton shower framework is difficult 
because identifying positive-definite ``probabilities’’  becomes obscure.  There is an 
interesting way to deal with this problem which we will now describe. 

Consider a situation where a virtual photon splits into an electron-positron pair. We 
assume that the photon is boosted, so that electron-positron pair has some (smallish) 
opening  angle.  We will describe an emission of soft photons from this system. 
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Parton showers

We want to interpret the first term on the right hand side as an emission off the particle 1 
and the second contribution as an emission off the  particle 2.  To see how this 
interpretation  comes about, it is important to average W1,2  over carefully  chosen angles. 

Consider W1 and choose the reference vectors in the following way 

An average over a different azimuthal angle gives a similar result for W2(1,2;k).
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Parton showers
Putting the two functions together, we obtain the following result for the radiation 
function and for the cross section 

The cross section formula has now the singularities separated; we see that partons 
1 and 2 radiate independently  provided that they radiate within an opening angle 
between partons 1 and 2.  If, on the other hand,  the emission outside this open angle 
happens, the interference shuts down the radiation completely. 

What makes this construction attractive for  parton showers  is that we seem 
to be capable to describe soft  interferences by making educated choice of  the 
evolution variable -- the opening angle.   The evolution variables are largely arbitrary. 
By choosing angles rather than off-shellnesses or transverse momenta, we can re-use 
the previous construction of the parton shower and yet account for both soft and 
collinear enhancement. 
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Parton showers
Consider a process when a virtual photon splits into three partons with charges 
Q1,Q2,Q3 . We assume that the sum of the three charges vanishes and that none 
of them is zero.  This is not the case in QED but we can use this as a model for color
charges. 

Now consider the kinematic situation when the opening angle of 1 and 2 is small 
compared to the opening angle of 1( or 2) and 3. In these cases, some of the 
contributions to the above equation can be simplified. 
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Parton showers
Consider a contribution proportional to Q12; split each term into a pair of relevant 
radiator functions and average over the respective azimuthal angles. We find
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Parton showers
The final formula that we can write down is, therefore and it is susceptible to the 
description using the relative angle as ordered variable for events generation. Even 
if opening angles are not chosen to be primary variables, one can check at every 
step that the energy ordering is respected. Again, the fact that simple ordering 
allows us to account for the interferences makes this construction  very important 
for practical parton showers. 
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Parton showers
Generalization of our discussion to QCD is straightforward; there are a few issues that 
one has to address  but most of them do not require significant changes in physics or 
the algorithm.  Here is the list of the important points. 

1) The running coupling constant; 

2) Many different options for partons to branch; the different probabilities have to be 
generated  properly.

3) Secondary branchings --  radiated partons are not on the mass-shell; 

 4) Space-like and time-like showers (forward and backward  evolution algorithms are 
different);

 5) Alternative  ways to combine soft and collinear emissions -- large-Nc 
approximation in the so-called ``dipole showers’’. 

 6) Modeling of non-perturbative physics and parton-to-hadron transitions (double-
parton scattering, string fragmentation, cluster models).  
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