

Standing Committee

T. Donskova (JINR) N. Ellis (CERN) M. Mulders (CERN) A. Olchevsky (JINR) K. Ross (CERN) G. Zanderighi (Oxford/CERN)

Enquiries and Correspondence Kate Ross CERN Schools of Physics Email: physics.school@cern.ch

Tatyana Donskova JINR - International Department Email: phs@jinr.ru

International Advisors F. Gianotti (CERN) V. Matveev (JINR) A. Skrinsky (BINP)

http://cern.ch/PhysicsSchool/ESHEP

Scientific Programme Field Theory and the E-W Standard Model A. Arbuzov (JINR) Flavour Physics and CP Violation M. Beneke (TUM) Cosmology and Dark Matter C. Boehm (IPPP/Annecy) Neutrino Physics Davidson (CNRS) Higgs Physics S. Dawson (BNL) **Special Lecture on Gravitational Waves** D. Fursaev (Dubna U./JIN **Practical Statistics for Particle Physicists** E. Gross (Weizmann) Physics Beyond the Standard Model QCD K. Melnikov (KIT) Heavy-Ion Physics G. Milhano (LIP) LHC Run-2 and Future Prospects P. Silva (CERN)

ESHEP 2017

CERN-JINR

X

FCT

5

UNIVERSIDADE DE ÉVORA

Discussion Leaders A. Bednyakov (JINR) A. Gladyshev (JINR) I. Ivanov (CFTP/IST)

I. Ivanov (CFTP/IST) M. Nardecchia (CERN) E. Re (CERN) R. Santos (ISEL)

Local Committee

N. Antunes (LIP) G. Barreira (LIP) M. Bezzeghoud (U. de Evora) R. Conceição (LIP/IST) P. Conde Muíño (LIP/FCUL) R. Gonçalo (LIP) I. Lopes (U. de Coimbra/LIP) J. Maneira (LIP/FCUL) A. Onofre (U. do Minho/LIP) J. Romão (CFTP/IST) J. Varela (LIP/IST)

BEYOND THE STANDARD MODEL' 17

DMITRY KAZAKOV JINR(DUBNA)

THE PRINCIPLES

- Three gauged symmetries SU(3)xSU(2)xU(1)
- Firee families of quarks and leptons (<u>3x2</u>, <u>3x1</u>, <u>1x2</u>, <u>1x1</u>)
- Brout-Englert-Higgs mechanism of spontaneous EW symmetry breaking -> Higgs boson
- CKM and PMNS mixing of flavours
- CP violation via phase factors
- Confinement of quarks and gluons inside hadrons
- Baryon and lepton number conservation
- CPT invariance -> existence of antimatter
 - The ST principles allow:
 - Extra families of quarks and leptons
 - Presence or absence of right-handed neutrino
 - 🖌 Majorana or Dirac nature of neutrino
 - 🖗 Extra Higgs bosons

THE LAGRANGIAN

THE PROBLEMS

The running couplings possess the Landau ghost poles at high energies

• The situation may change in GUTs due to new heavy fields @ the GUT scale

 requires modification of the SM at VERY high energies

THE PROBLEMS

Quantum corrections can make the vacuum unstable

🖉 the situation crucially depes top and Higgs mass values c severe fine-tuning and accl

The way out might be the new physics at higher scale

 10^{18}

THE PROBLEMS

- New physics at high scale may destroy the EW scale of the SM
- The Higgs sector is not protected by any symmetry
- This does not happen with the gauge bosons or fermions. Their masses are protected by gauge invariance and chiral nature of the EW sector
- Quantum corrections to the Higgs potential due to New physics

 $\frac{m_H}{m_{GUT}} \sim 10^{-14}$

- This is not the problem of the SM itself (quadratic divergences are absorbed into the <u>unobservable</u> bare mass).
- This creates power law dependence of the low energy physics on <u>unknown</u> high energy physics that is not acceptable
 - The way out might be the new physics at higher scale

THE OPEN QUESTIONS

Why's?

- why the SU(3)xSU(2)xU(1)?
- why 3 generations ?
- why quark-lepton symmetry?
- why V-A weak interaction?
- why L-R asymmetry?
- why B & L conservation?
- 🏺 etc

How's?

- how confinement actually works ?
- how the quark-hadron phase transition happens?
- how neutrinos get a mass?
- how CP violation occurs in the Universe?
- how to protect the SM from would be heavy scale physics?

- Is it self consistent ?
- Does it describe <u>all</u> experimental data?
- Are there any indications for physics beyond the SM?
- Is there another scale except for EW and Planck?
- Is it compatible with Cosmology? Where is dark matter?

IS THERE ANOTHER SCALE EXCEPT FOR EW AND PLANK?

THE WAYS BEYOND

- Extension of <u>symmetry</u> group of the SM : SUSY, GUT, new U(1)'s
 - -> may solve the problem of Landau pole, the problem of stability, the hierarchy problem, may give the DM particle
- Additional <u>particles</u>: Extra generations, extra gauge bosons, extra Higgs bosons, extra neutrinos, etc
 - -> may solve the problem of stability, DM
- Extra <u>dimensions</u>: Compact or flat extra dim -> Opens a whole new world of possibilities, may solve the problem of stability and the hierarchy problem, gives new insight into gravity
- New <u>paradigm</u> beyond local QFT: string theory, brane world, etc
 -> main task is unification with gravity and construction of quantum gravity

HEP PARADOX

THE UNIFICATION PARADIGM

D=10

Unification Theories

Electricity and magnetism are different manifestations of a unified "electromagnetic" force. Electromagnetism, gravity, and the nuclear forces may be parts of a single unified force or interaction. Grand Unification and Superstring theories attempt to describe this unified force and make predictions which can be tested with the Tevatron.

Unifie

Electromagnetic

Weak

Strong

 Unification of strong, weak and electromagnetic interactions within Grand Unified Theories is a new step in unification of all forces of Nature

Electroweak

 Creation of a unified theory of everything based on string paradigm seems to be possible

GUT

NEW SYMMETRIES

SUPERSYMMETRY

Supersymmetry is an extension of the Poincare symmetry of the SM

Poincare Algebra

$$[P_{\mu}, P_{\nu}] = 0,$$

$$[P_{\mu}, M_{\rho\sigma}] = i(g_{\mu\rho}P_{\sigma} - g_{\mu\sigma}P_{\rho}),$$

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(g_{\nu\rho}M_{\mu\sigma} - g_{\nu\sigma}M_{\mu\rho} - g_{\mu\rho}M_{\nu\sigma} + g_{\mu\sigma}M_{\nu\rho})$$

Super Poincare Algebra $Q_i, \ \bar{Q}_i$

$$\begin{split} &[Q_{\alpha}^{i}, P_{\mu}] = [\bar{Q}_{\dot{\alpha}}^{i}, P_{\mu}] = 0, \\ &[Q_{\alpha}^{i}, M_{\mu\nu}] = \frac{1}{2} (\sigma_{\mu\nu})_{\alpha}^{\beta} Q_{\beta}^{i}, \qquad [\bar{Q}_{\dot{\alpha}}^{i}, M_{\mu\nu}] = -\frac{1}{2} \bar{Q}_{\dot{\beta}}^{i} (\bar{\sigma}_{\mu\nu})_{\dot{\alpha}}^{\dot{\beta}}, \\ &\{Q_{\alpha}^{i}, \bar{Q}_{\beta}^{j}\} = 2\delta^{ij} (\sigma^{\mu})_{\alpha\beta} P_{\mu} \\ &\{Q_{\alpha}^{i}, Q_{\beta}^{j}\} = 2\epsilon_{\alpha\beta} Z^{ij}, \qquad Z^{ij} = Z_{ij}^{+}, \\ &\{\bar{Q}_{\dot{\alpha}}^{i}, \bar{Q}_{\dot{\beta}}^{j}\} = -2\epsilon_{\dot{\alpha}\dot{\beta}} Z^{ij}, \qquad [Z_{ij}, anything] = 0, \\ &\alpha, \dot{\alpha} = 1, 2 \qquad i, j = 1, 2, \dots, N. \end{split}$$

MOTIVATION FOR SUSY IN PARTICLE PHYSICS

Supersymmetry is a dream of a unified theory of all particles and interactions

Standard particles

SUPERSYMMETRY

Standard particles

SUSY particles

- Unification with gravity!
- Unification of the gauge couplings
- Solution of the hierarchy problem
- Explanation of the EW symmetry violation
- Provided the DM particle

Unification with gravity!

 $\{Q_{\alpha}^{i}, \overline{Q}_{\beta}^{j}\} = 2\delta^{ij}(\sigma^{\mu})_{\alpha\beta}P_{\mu} \implies \{\delta_{\varepsilon}, \overline{\delta}_{\overline{\varepsilon}}\} = 2(\varepsilon\sigma^{\mu}\overline{\varepsilon})P_{\mu}$ $\varepsilon = \varepsilon(x)$ local coordinate transf. \Rightarrow (super)gravity

Local supersymmetry = general relativity !

MOTIVATION FOR SUSY IN PARTICLE PHYSICS

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

The basis of a grand **Unified Theory**

Solution of the hierarchy problem

Cancellations of corrections and stabilization of the **Higgs** potential

Explanation of the EW symmetry violation

Provided the DM particle

$$\widetilde{\boldsymbol{\chi}}^{0} = N_{1}\widetilde{\boldsymbol{\gamma}} + N_{2}\widetilde{\boldsymbol{z}} + N_{3}\widetilde{\boldsymbol{H}}_{1}^{0} + N_{4}\widetilde{\boldsymbol{H}}_{2}^{0}$$

Neutralino=DM

Violation of symmetry comes from radiative corrections

QUANTUM STATES

Quantum states:Vacuum = $|E, \lambda >$ $Q|E, \lambda >= 0$ $[Q^i_{\alpha}, P_{\mu}] = [\bar{Q}^i_{\dot{\alpha}}, P_{\mu}] = 0$ Energy helicity

	State	Expression	# of states				
	vacuum	$ E,\lambda>$	1				
	1-particle	$\overline{Q_i} \mid E, \lambda \ge E, \lambda + 1/2 >$	$\left(\begin{array}{c}N\\1\end{array}\right)=N$				
	2-particle	$\overline{Q_i}\overline{Q_j} E, \lambda \ge E, \lambda + 1 >$	$\left(\begin{array}{c}N\\2\end{array}\right) = \frac{N(N-1)}{2}$				
	N-particle	$\left \overline{Q_1}\overline{Q_2}\overline{Q_N} \right E, \lambda \ge E, \lambda + N/2 >$	$\left(\begin{array}{c}N\\N\end{array}\right) = 1$				
Total # of states: $\sum_{k=0}^{N} = 2^{N} = 2^{N-1} bosons + 2^{N-1} fermions$							

SUSY MULTIPLETS

Chiral multiplet $N = 1, \ \lambda = 0$

Vector multiplet $N = 1, \lambda = 1/2$

16

Members of a supermultiplet are called superpartners

Extended supersymmetry

N=4	SUSY YM	helicity	-1 -1/2 0 1/2 1
	λ = -1	# of states	1 4 6 4 1
N=8	SUGRA	helicity	-2 -3/2 -1 -1/2 0 1/2 1 3/2 2
	λ = -2	# of states	1 8 28 56 70 56 28 8 1

$$N \le 4S$$
 — spin

 $N \le 4$ For renormalizable theories (YM) $N \le 8$ For (super)gravity **Bosons and Fermions come in pairs**

THE PARTICLE CONTENT OF THE MSSM

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge G ^a V ^k	gluon g^a Weak W^k (W^{\pm}, Z)	gluino \tilde{g}^{a} wino, zino $\tilde{w}^{k}(\tilde{w}^{\pm}, \tilde{z})$	8 1	$\begin{array}{c} 0 \\ 3 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$
\mathbf{V}'	Hypercharge $B(\gamma)$	bino $b(\tilde{\gamma})$	1	1	0
Matter	$\tilde{\tau}$ (~ ~)				
$\mathbf{L_i}$	$\begin{bmatrix} L_i = (\nu, e)_L \\ \tilde{L} & \tilde{L} \end{bmatrix}$	$(L_i = (\nu, e)_L)$	1	2	-1
$\mathbf{E_i}$	sleptons $\left\{ \begin{array}{c} E_i = e_R \\ \tilde{N} = \tilde{i} \end{array} \right\}$	leptons $\langle E_i = e_R$	1	1	2
$\mathbf{N_{i}}$	$\Gamma v_i = \nu_R$	$N_i = \nu_R$	1	1	0
$\mathbf{Q_i}$	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$(Q_i = (u, d)_L)$	3	2	1/3
$\mathbf{U_i}$	squarks $\langle \tilde{U}_i = \tilde{u}_R$	quarks $\langle U_i = u_R^c \rangle$	3*	1	-4/3
D_i	$ ilde{D}_i = ilde{d}_R$	$D_i = d_R^c$	3^*	1	2/3
Higgs				•	
${ m H_1}$	H_1	himmin of $\tilde{\tilde{H}}_1$	1	2	-1
${ m H_2}$	$\Pi ggses \left\{ H_2 \right\}$	$\frac{\text{mggsmos}}{\tilde{H}_2}$	12.	2	1
S	Singlet s	singlino s	1	1	0

THE R-PARITY

The Usual Particle : R = + 1

SUSY Particle : R = -1

B - Baryon Number L - Lepton Number S - Spin

The consequences:

 $R = (-)^{3(B-L)+2S}$

- The superpartners are created in pairs
- The lightest superparticle is stable

- The lightest superparticle (LSP) should be neutral the best candidate is neutralino (photino or higgsino) χ_0
- It can survive from the Big Bang and form the Dark matter in the Universe

THE INTERACTIONS IN THE MSSM

SUPERPARTNERS PRODUCTION AT THE LHC

THE DECAY OF SUPERPARTNERS

squarks $\tilde{q}_{L,R} \rightarrow q + \chi_i^{\sim 0}$ $\tilde{q}_L \rightarrow q' + \chi_i^{\pm}$ $\tilde{q}_{L.R} \rightarrow q + g$ $\tilde{l} \rightarrow l + \chi_{i}^{0}$ sleptons $\tilde{l}_L \rightarrow v_I + \chi_i^{\pm}$ **Final states** neutralino chargino $\widetilde{\chi}_{i}^{\pm} \rightarrow e + v_{e} + \widetilde{\chi}_{i}^{0}$ $\widetilde{\chi}_{i}^{0} \longrightarrow \widetilde{\chi}_{1}^{0} + l^{+} + l^{-}$ $\widetilde{\chi}_i^{\pm} \rightarrow q + \overline{q'} + \chi_i^{0}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + q + \overline{q}'$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{\pm} + l^{\pm} + v_{l}$ $g \rightarrow q + \overline{q} + \overline{\gamma}$ gluino $\gamma + \not E_T$ $\tilde{g} \rightarrow g + \tilde{\gamma}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + v_{l} + \overline{v}_{l}$ \mathbf{F}_{T}

22

SOFT BUSY BREAKING

gauginos

scalar fields

Over 100 of free parameters !

SUSY Models and Signatures **T.Hebbeker**

24

particle phys Direct production at colliders at high energies

Indirect manifestation at low energies Rare decays ($B_s \rightarrow s\gamma, B_s \rightarrow \mu^+\mu^-, B_s \rightarrow \tau\nu$ g-2 of the muon

Search for long-lived SUSY particles

 Relic abundancy of Dark Matter in the Universe
 DM annihilation signal in cosmic rays **Direct DM interaction with nucleons**

Nothing so far ...

CREATION AND DECAY OF SUPERPARTNERS ²⁶ IN CASCADE PROCESSES @ LHC

Typical SUSY signature: Missing Energy and Transverse Momentum

EXP AND THEOR FRAMEWORK

Two ways to present and analyse data:

```
I. High energy input:
introduce universal parameters at high energy scale (GUT)
Example m_0, m_{1/2}, A_0, \tan\beta of MSSM
```

Advandage: small number of universal parameters for all masses Disadvantage: strictly model dependent (MSSM, NMSSM, etc)

2. Low energy input: use low energy parameters like masses of superpartners Example \tilde{m}_g , \tilde{m}_q , \tilde{m}_χ or m_A , $\tan \beta$

Advandage: less model dependent Disadvantage: many parameters, process dependent

Both approaches are used

WHAT IS THE LHC REACH?

Masses of superpartners

WHAT IS THE LHC REACH NOW?

Universal parameters

SUPERSYMMETRY @ LHC

- SUSY limits for strong int's are pushed above I TeV
- This already requires fine tuning - little hierarchy prob
- No guiding lines

SUPERSYMMETRY @ LHC

Chargino / neutralino production

Direct production of "electroweakino" pairs

- decays via sleptons / sneutrinos
- using benchmarks to illustrate different scenarios (depend on mixings and nature of lightest slepton)

No light EWkinos

 χ_1^{\perp}

WHERE ARE WE NOW?

FUTURE SUSY SEARCHES

SUSY is certainly a compelling candidates of BSM physics, so we should keep searching for her without leaving any stone unturned.

* Taking the gauge coupling unification seriously, SUSY may have some chance to be seen at LHC, and a good chance at the FCC:

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

ельник, 19 августа 13 г.

GUT MODELS

SO(10) - Optimal GUT

Matter fields - just one representation

 $\underline{16} = (u_1 \ u_2 \ u_3 \ d_1 \ d_2 \ d_3 \ \nu_e \ e^- \ u_1^c \ u_2^c \ u_3^c \ d_1^c \ d_2^c \ d_3^c \ \nu_e^c \ e^+)_{Left}$ SU(5) decomposition $\underline{16} = \underline{5}^* + \underline{10} + \underline{1} \qquad fermions,$ $\underline{45} = \underline{24} + \underline{10} + \underline{10}^* + \underline{1} \qquad gauge \ bosons$

GUT symmetry is broken spontaneously by Brout-Englert-Higgs Mechanism SU(5) $SU(5) \xrightarrow{\Sigma} SU(3) \times SU(2) \times U(1) \xrightarrow{H} SU(3) \times U(1)$ Higgs Multiplets $<\Sigma_{24} >= \begin{pmatrix} V & & & \\ & V & & \\ & & -3/2 V & \\ & & -3/2 V \end{pmatrix} \qquad < H_5 >= \begin{pmatrix} & \circ & \\ & 0 & \\ & 0 & \\ & v/\sqrt{2} \end{pmatrix} \\ V \sim 10^{15} \ GeV \qquad \qquad \qquad v \sim 10^2 \ GeV$ SO(10) Higgs Multiplets 16 or 126; 45 or 54 or 210 $SO(6) \otimes SO(4) \sim SU(4) \otimes SU_L(2) \otimes SU_R(2)$ $M_1 \gg M_2 \gg \cdots M_W$
GRAND UNIFICATION

Solves many problems of the SM:

- absence of Landau pole
- Decreases the number of parameters
- All particles in a single representation (16 of SO(10))
- Unifies quarks and leptons -> spectrum and mixings from «textures»
- A way to B and L violation

- Unification of the gauge couplings
- stabilization of the hierarchy

Low energy SUSY

Creates new problems:

- Hierarchy of scales $M_W/M_G \sim 10^{-14}$
- Large Higgs sector is needed for GUT symmetry breaking

Crucial predictions:

- Proton decay $P \to e^+ \pi, P \to \bar{\nu} K^+$
- Neutron-antineutron oscillations
- $|\Delta(B-L)| = 1 (|\Delta(B-L)| = 2)$ processes

Experiment: mean life time > $10^{31} - 10^{33}$ years

 $au_{proton} \sim 10^{32} years$ $au_{Universe} \approx 14 \cdot 10^9 years$

SUSY GUT

Crucial points:

- SUSY leads to unification
- SUSY solves the hierarchy problems for GUTs
- No GUT without SUSY

New properties:

- Later unification higher GUT scale
- Longer proton life-time $au \sim M_{GUT}^4$
- New modes of proton decay

NEW SYMMETRIES

- Appear in some GUT models
- Inspired by string models

Used as possible BSM signal with energetic single jet or diet events

EXTRA U(1)', SU(2)'

Used as possible Dark matter candidate - Dark photon

Mixture of a usual EM U(1) photon and a new U(1)' one

$$\mathcal{L} \sim F_{\mu\nu} F^{'\mu\nu}$$

Dedicated experiment to look for conversion of a usual photon into a dark one

ADDITIONAL GAUGE BOSONS

Experiment

- Search for Z' (Di-muon events)
- Search for W' (single muon/ jets)
- Search for resonance decaying to t-tbar
- Search for diboson resonances
- Monojets + invisible

No indication so far - experimental limits on Z' and W' masses around few TeV

NEW PARTICLES

Is it the SM Higgs boson or not?

What are the alternatives?

EXTENDED HIGGS SECTOR

- A. Singlet extension
- B. Higgs doublet extension
- C. Higgs triplet extension

Custodial symmetry as guiding principle for extensions

indicates that an approximate global symmetry exists, broken by the vev to the diagonal 'custodial' symmetry group

Thus the Higgs field transforms under

$$\rho = \frac{\sum_{i=1}^{n} [I_i(I_i+1) - \frac{1}{4}Y_i^2]v_i}{\sum_{i=1}^{n} \frac{1}{2}Y_i^2v_i} \sim 1$$

 $SU(2)_L \times SU(2)_R : \Phi \to L\Phi R^{\dagger}$

For both SU(2)-singlet with Y=0

and SU(2) doublet with Y=+-1

Any number of singlets and doublets respects custodial symmetry at tree level. Not so for arbitrary triplet models ...

	Model	Particle content
	SM	h CP-even
	2HDM/ MSSM	h,H CP- even A CP-odd H
	NMSSM	HI,H2,H3 CP-even AI,A2 CP- odd
	Composite	h CP-even + excited states

EXTENDED HIGGS SECTOR

How to probe?

Probe deviations from the

 Perform direct search for additional scalars

PRECISION PHYSICS OF THE HIGGS BOSONS

43

EXTRA HIGGS BOSONS

44

Summary of 8 TeV and

HEAVY HIGGS BOSON DECAYS

500 m_H [GeV]

10

10² 0

10

10'

14

IIIH3/A2

IIIH3/A2

- The Higgs physics has already started
- This is the task of vital importance.
- May require the electron-positron collider

NEW PARTICLES AXION OR AXION-LIKE PARTICLES

Javier Redondo, EPS HEP 2017

PECCEI-QUINN MECHANISM - AXION

- Any theory promoting heta to a dynamical field, $heta(t,\mathbf{x})$,will dynamically set heta o 0 after some time...

- High T, no preference for Initial Conditions! At time $t\sim 1/m_a$ axion field seeks its minimum

- Some amount of axion Dark matter is unavoidable!

WHAT IS THE MASS TO GET $\Omega_{CDM}h^2 = 0.12$? 49

Less minimal axion models have further possibilities

NEW PARTICLES

NEUTRINOS

DIRAC OR MAJORANA?

$$\nu_D = \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} \quad \nu_{M_1} = \begin{pmatrix} \xi_1 \\ \xi_1^* \end{pmatrix}, \quad \nu_{M_2} = \begin{pmatrix} \xi_2 \\ \xi_2^* \end{pmatrix}$$

NEUTRINO MASSES

 $CP: \delta, \alpha, \beta?$

52

$0\beta\beta\nu$ **NEUTRINOLESS DOUBLE** associated with decreased of the indication to be

E. Conti et al. Phys. Rev. B 68 (2003) 054201

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW PARTICLES

The Dark Matter is made of:

Macro objects – Not seen

Not from

the SM

WIMP

- New particles right heavy neutrino
 - axion (axino)
 - neutralino
 - sneutrino
 - gravitino
 - heavy photon
 - heavy pseudo-goldstone

mSUGRA

- light sterile higgs

might be invisible (?)

detectable in 3 spheres less theory favorable might be undetectable (?) WINP is our chance!

possible, but not But we have to look elsewhere ! related to the other models

Creation at the LHC

 $q + \overline{q} \rightarrow X + \overline{X}$

 Ω_{X}

9

DARK MATTER

DARK MATTER: DIRECT DETECTION

DARK MATTER: INDIRECT DETECTION

- Dark matter may pair annihilate or decay in our galactic neighborhood to:
- positrons
- high-energy photons
- neutrinos
- antiprotons
- antideutrons

INDIRECT DM: POSITRON RESULTS

INDIRECT DM: PHOTON RESULTS

- Rapid improvements in recent years, Fermi-LAT now excludes WIMP makes up to ~100 GeV for certain annihilation channels
- The future is the Cherenkov Telescope Array, which will extend the reach by two orders in mass up to masses

~ 10 TeV

DARK MATTER/NEW PHYSICS

NEW DIMENSIONS

EXTRA SPACE DIM

 $1 + 3 \rightarrow 1 + n, n > 3$

Motivations

1. String theory

2. Interesting possibility that opens wide opportunities

- String theory suffers conformal anomalies that make it inconsistent.
- Conformal anomaly cancels at D=26 for a bosonic string and D=10 for a fermionic string

EXTRA SPACE-TIME DIMENSIONS

KALUZA-KLEIN APPROACH

MULTIDIMENSIONAL GRAVITY

$$\frac{\text{Action}}{S_E} = \int d^{4+d} \hat{x} \sqrt{-\hat{G}} \frac{1}{16\pi G_{N(4+d)}} \mathcal{R}^{(4+d)}[\hat{G}_{MN}],$$

K-K Expansion

$$S_E = \int d^4x \sqrt{-g} \left\{ \frac{1}{16\pi G_{N(4)}} \mathcal{R}^{(4)}[g_{MN}^{(0)}] + \text{non-zero KK modes} \right\}$$

Newton constant

 $G_{N(4)} = \frac{1}{V_{(d)}} G_{N(4+d)}$

$$V_{(d)} = R^d$$

Plank Mass

$$M_{Pl} = (G_{N(4)})^{-1/2} \quad \longleftarrow \quad M \equiv (G_{N(4+d)})^{-\frac{1}{d+2}}$$

Reduction formula

$$M_{Pl}^2 = V_{(d)} M^{d+2}$$

THE ADD MODEL

Interactions with the fields on the brane

$$S_{int} = \int d^{4+d} \hat{x} \sqrt{-\hat{G}} \hat{T}_{MN} \hat{h}^{MN}(x,y) \quad \Rightarrow \sum_{n} \int d^{4}x \frac{1}{M_{Pl}} T^{\mu\nu}(x) h^{(n)}_{\mu\nu}(x)$$

The # of KK gravitons with masses

 $m_n \le E < M$

$$\mathcal{N}(E) \sim \int_0^{ER} d\mathcal{N}(|n|) \sim S_{d-1} \frac{M_{Pl}^2}{M^{d+2}} \int_0^E m^{d-1} dm = \frac{S_{d-1}}{d} \frac{M_{Pl}^2}{M^{d+2}} E^d \sim R^d E^d$$

 $\sim \frac{1}{M_{Pl}^2} \mathcal{N}(E) \sim \frac{E^d}{M^{d+2}}.$

PARTICLE CONTENT OF THE ADD MODEL

(4+d)-dimensional picture:

• (4+d)-dimensional massless graviton + matter

4-dimensional picture

- 1 massless graviton $G^{(0)}$ (spin 2) + matter
- KK tower of massive gravitons $G^{(n)}(\text{spin } 2)$
- (d-1) KK spin 1 decoupling fields
- $(d^2 d 2)/2$ KK tower of real scalar decoupling fields $(d \ge 2)$
- KK tower of scalar fields (zero mode radion)

The SM fields are localized on the brane, while gravitons propagate in the bulk

The "gravitational" coupling is

 $1/M^{1+d/2}$

HEP PHENOMENOLOGY

New phenomena: graviton emission & virtual graviton exchange

• KK states production $e^+e^- \rightarrow \gamma G^{(n)}$ $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

EP PHENOMENOLOGY II

- $e^+e^- \to G^{(n)} \to f\bar{f}(HH,gg)$ • Virtual graviton exchange $\mathcal{A} = \frac{1}{M_{Pl}^2} \sum_{\sigma} \left\{ T_{\mu\nu} \frac{P^{\mu\nu} P^{\rho\sigma}}{s - m_n^2} T_{\rho\sigma} + \sqrt{\frac{3(d-1)}{d+2}} \frac{T_{\mu}^{\mu} T_{\nu}^{\nu}}{s - m_n^2} \right\}$ $S = \frac{1}{2M^4} \sum_{n} \frac{1}{s - m_n^2} \approx \frac{1}{M_{Pl}^2} S_{d-1} \frac{M_{Pl}^2}{M^{d+2}} \int^{\Lambda} \frac{m^{d-1}dm}{s - m^2}$ $= \frac{S_{d-1}}{2M^4} \left\{ i\pi \left(\frac{s}{M^2}\right)^{d/2-1} + \sum_{k=1}^{\lfloor (d-1)/2 \rfloor} c_k \left(\frac{s}{M^2}\right)^{k-1} \left(\frac{\Lambda}{M}\right)^{d-2k} \right\}$

RANDALL-SANDRUM MODELS

RANDALL-SANDRUM MODELS CONT'D

$$\begin{split} S_{eff} &= \frac{1}{2} \int_{B_2} d^4 z \left[\frac{1}{M_{Pl}} h^{(0)}_{\mu\nu}(z) T^{\mu\nu} - \sum_{n=1}^{\infty} \frac{w_n}{\Lambda_{\pi}} h^{(n)}_{\mu\nu} T^{\mu\nu} - \frac{1}{\Lambda_{\pi}\sqrt{3}} T^{(2)\mu}_{\mu} \right] \\ & \Lambda_{\pi} = M_{Pl} e^{-k\pi R} \approx \sqrt{M^3/k} \\ \bullet \text{Massless graviton} & \longrightarrow & \sim M_{Pl} \\ \bullet \text{massive K-K gravitons} & m_n = \beta_n k \longrightarrow & \sim \Lambda_{\pi} \end{split}$$

massless radion

HEP PHENOMENOLOGY

- Drell-Yan process
- Excess in dijet process

$$\begin{array}{ll} q\bar{q} \to h^{(1)} \to l^+ l^-, \\ gg \to h^{(1)} \to l^+ l^-, \end{array} \quad q\bar{q}, gg \to h^{(1)} \to q\bar{q}, gg \end{array}$$

Exclusion plots for resonance production

First and subsequent KK modes

The x-section of D-Y production

HEP PHENOMENOLOGY II

Angular dependence

$$\begin{split} Spin \ 0 &=> f(\theta) = 1,\\ Spin \ 1 &=> f(\theta) = 1 + \cos^2 \theta,\\ f(\theta) &= 1 + \cos^2 \theta,\\ f(\theta) &= 1 - 3\cos^2 \theta + 4\cos^4 \theta,\\ gg &\to h^{(1)} \to e^+e^-,\\ f(\theta) &= 1 - \cos^4 \theta. \end{split}$$

Accelerator signatures

 change of Newton's law at short distances (detectable only in case of 2 large extra dim) new short range forces (light scalars and

$$V(r) = -G \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

 λ (µm)

1000

ED CONCLUSION

ADD Model

- The Mew/MpL hierarchy is replaced by
- For M small enough it can be checked at modern and future colliders

$$\frac{R^{-1}}{M} \sim \left(\frac{M}{M_{Pl}}\right)^{2/d} \sim 10^{-\frac{30}{d}}$$

- For d=2 cosmological bounds on M are high (> 100 TeV), but for d>2 are mild
- Preictions of modification of the Newton's law may be checked

RS Model

- The Mew/MpL hierarchy is solved without new hierarchy
- A large part of parameter space will be studied in future collider experiments
- With the mechanism of radion stabilization the model is viable
- Cosmological scenarios are consistent (except the cosmological constant problem)

STRING THEORY

$$l_S = \sqrt{\alpha'}$$

full spectrum:

winding states:

$$\begin{split} M^2 &= \frac{w^2 R^2}{l_S^4} \\ M^2 &= \frac{m^2}{R^2} + \frac{w^2 R^2}{l_S^4} \end{split}$$

74

STRING THEORY

* There are five types of string theories (IIA, IIB, I, two Heterotic)

* All five string theories are only consistent in 10 space-time dimensions

* All five string theories have world-sheet supersymmetry and lead to space-timesupersymmetry in 10 dimensions

* All five string theories are related and part of a single ''theory'': M-theory

M-theory is a patchwork of the constituent theories plus many "rules". It seems unclear, at present, what its fundamental degrees of freedom are.

Need to compactly six or seven dimensions to obtain d=4 theory

gravity...

Two-fold degeneracy in space X: continuous one in size and shape (moduli) and discrete one topology

Topology determines the structure of d=4 theory

Moduli appearing as scalar fields determine values of couplings in d=4

... and a p-brane

$$S_D = \frac{1}{l_S^{D-2}} \int d^D x \sqrt{-g} R + \dots + \frac{1}{l_S^{p-3}} \int d^{p+1} x \sqrt{-\gamma} tr(F_{\alpha\beta} F^{\alpha\beta}) + \dots$$

in **D=**4:

in D=10/11:

$$S_{4} = \underbrace{V}_{1} \int d^{D}x \sqrt{-g_{4}}R_{4} + \dots + \underbrace{v}_{1} \int d^{p+1}x \sqrt{-g_{4}} tr(F_{\mu\nu}F^{\mu\nu}) + \dots$$

$$\frac{1}{16\pi G_{N}} \overline{16\pi g_{YM}^{2}}$$

STRING THEORY

Heterotic string

STRING THEORY PHENO

• Higgs from untwisted sector \Rightarrow gauge-Higgs unification $\lambda_{
m top} = g_{
m GUT} \Rightarrow m_{
m top} \sim {\sf IR}$ fixed point $\simeq 170 \; {\sf GeV}$ Yukawa couplings: hierarchies à le Froggatt-Nielsen $\begin{array}{c} \text{...ers of a since strong many questions} \\ \text{...ers of a since strong questions} \\ \text{...ers$

NEW PARADIGM

BRAIN WORLD

String theory contains not just strings but extended objects - branes - of all dimensions

Q: Do we really live on a brane?
A: We have to check it
Q: Do we have good reasons to believe in it?
A: No, but it is appealing
Q: Why D>4?
A: String theory loves it
Q: Is it what we believe in?
A: We believe in BIG deal

CONCLUDING REMARKS

MLHC experiments are at the front line of mystery land: be patient

- **Marget #1: Higgs sector**
- **Matter Target #2: Dark Matter**
- **Marget #3: Neutrino sector**
- **M** Target #4: New physics (supersymmetry)
- Future development of HEP crucially depends on LHC outcome
- Complimentary searches for dark matter and insights in neutrino physics are of extreme importance

The areas that were left behind come to the front: confinement, exotic hadrons, dense hadron matter