HEAVY-ION PHYSICS [LECTURE 2]

Guilherme Milhano

LIP Lisbon & CERN TH guilherme.milhano@cern.ch

The 2017 European School of High Energy Physics — Évora, Portugal — 13-14 Sep 2017

\checkmark hard probes

- ✓ quarkonia suppression
- ✓ high-pt hadrons and jets

✓ wrap-up

QUARKONIA MELTING

 colour screening in a deconfined plasma reduces binding of quarks

- ✓ bound states of heavy quarks [c-cbar: J/ ψ , $d\psi$ '][b-bba[r₁ $\Upsilon_e + \mu^r$, $V(r) = -+\sigma r$ $V(r) = -+\sigma r$
- ✓ effect should increase with increasing QGP temperature
- ✓ a very simple, attractive and powerful idea [Matsui, Satz 1986]

J/Ψ SUPPRESSION

:: first measured at CERN SPS [$\sqrt{s}=17$ GeV]

RHIC vs LHC

:: higher temperature at LHC, but more suppression at RHIC ?

RECOMBINATION

- ✓ number of c-cbar pairs increases with collision energy
 - ✓ quarks from different pairs have increasing probability of binding together at hadronization [later] stage :: cf statistical hadronization models

LHC

10⁴

vs (GeV)

:: the simple idea quickly becomes less simple...

JHEP 1207 (2012) 191

 10^{3}

RHIC

 10^{2}

:: also, quarkonia production in vacuum [pp] not fully understood...

SEQUENTIAL SUPPRESSION

✓ different states should melt at different temperatures

high-pt hadrons and jets

HADRON SUPPRESSION

- ✓ hadrons yields are strongly suppressed with respect to pp
 - ✓ effect increases with increasing centrality [larger and hotter QGP]

HADRON SUPPRESSION

- ✓ hadron spectrum is steeply falling
 - ✓ suppression implies energy loss of what became the hadron [parton]
 - this suppression was coined 'jet quenching' even before any jet was observed in heavy-ion collisions

- \checkmark energetic hadrons come from hard partons
 - ✓ first step in understanding hadron suppression is to tackle parton energy loss
 - ✓ take a QGP as discrete set of non-interacting [screened] and recoilless scattering centres expanding or not [here not]
 - ✓ interaction between parton and QGP on timescale much shorter than characteristic QGP time scales [compute for fixed configuration and average over ensemble later on]
 - ✓ momentum exchange purely transverse medium gauge field written as

$$A_{\rm med}^{-}(q) = 2\pi\,\delta(q^{+})\,\int_{0}^{\infty}dx^{+}\,e^{iq^{-}x^{+}}A_{\rm med}^{-}(\boldsymbol{q},x^{+})$$

✓ assuming gaussian distribution, medium properties enter via 2-point correlator

$$\langle A_{\mathrm{med}}^{a,-}(\boldsymbol{q},t)A_{\mathrm{med}}^{*\,b,-}(\boldsymbol{q}',t')\rangle = \delta^{ab}\,n(t)\,\delta(t-t')\,(2\pi)^2\delta^{(2)}(\boldsymbol{q}-\boldsymbol{q}')\,\gamma(\boldsymbol{q}^2)$$

PARTON ENERGY LOSS

- ✓ parton can exchange 4-momentum with QGP
 - ✓ transfer to QGP results in [elastic] energy loss
 - transfer from QGP results in energy gain which can stimulate radiation :: medium induced radiation is the leading mechanism for parton energy loss

[average momentum square transfer per unit length]

SINGLE EMISSION [BDMPS-Z]

$$\Delta E = \int_0^L dz \int_0^{\omega_c} \omega d\omega \frac{dI_{med}}{d\omega dz} \sim \alpha_s \omega_c \sim \alpha_s \hat{q} L^2$$

BEYOND BACK THE ENVELOPE [PATH-INTEGRAL]

:: eikonal [straight line] parton trajectory resumming multiple exchanges

:: off-eikonal [transverse motion] parton trajectory resumming multiple exchanges

:: observables computed from medium averages of G correlators

HOW TO PROBE ANYTHING

so far we haven't invoked the best way probing anything

scatter something off it

Abstruse Goose

scatter something off it

cannot [easily] understand a frog from scattering it off another frog

Abstruse Goose

k'

k

HOW TO PROBE ANYTHING

scatter something you understand off it

deep inelastic scattering is the golden process for proton/nucleus structure determination

dial Q² = -q²=- (k'- k)² to probe distances $\lambda = \hbar/Q$

QGP too short-lived for external probes to be of any use :: to mimic DIS paradigm need multi-scale probes produced in the same collision as the QGP

jet is a jet is a jet is a jet

[theory view] the offspring of the QCD branching of a hard parton

jet is a **jet** is a **jet** is a jet

[theory view] the offspring of the QCD branching of a hard parton

jet is a **jet** is a **jet** is a **jet**

[theory view] the offspring of the QCD branching of a hard parton

> [experimental view] ✓ collimated bunch of particles

> > [strictly] defined by a jet algorithm

jet is a jet is a jet is a jet

UNIQUE AMONGST QGP PROBES

• multi-scale

:: broad range of spatial and momentum scales involved in jet evolution in QGP

multi-observable

:: different observable jet properties sensitive to different QGP scales and properties

very well understood in vacuum

- :: fully controlled benchmark
- feasible close relative of a standard scattering experiment

A JET IN QGP :: HARD PRODUCTION

robust arguments for non-modification wrt vacuum :: familiar physics

all will be easy [denial]

A JET IN QGP :: PARTON SHOWER

shower constituents exchange [soft] 4-momentum and colour with QGP :: shower modified into interleaved vacuum+induced shower :: modified coherence properties :: single parton intuition and results do not carry through trivially :: multi-scale problem :: some shower constituents de-correlate :: some QGP becomes correlated

Mehtar-Tani, Milhano, Tywoniuk :: Int.J.Mod.Phys. A28 (2013) Mehtar-Tani, Tywoniuk, Salgado :: many Blaizot, Dominguez, Iancu, Mehtar-Tani :: JHEP 1406 (2014) Apolinário, Armesto, Milhano, Salgado :: JHEP 1502 (2015)

this is tough [anger]

very little known about QGP induced modifications of already ill-understood hadronization in vacuum

jet-QGP interaction modifies color connections in the jet and thus hadronization pattern [in any reasonable effective model] can learn about hadronization modifications at an EIC

1

if you let me do away with this, I will produce some results [bargaining]

A JET IN QGP :: JET RECONSTRUCTION

uncorrelated QGP background needs to be subtracted :: jetcorrelated QGP should not :: do experimental and phenomenological procedures do the same [and the right] thing? :: how can I know?

this is probably hopeless [depression]

A JET IN QGP :: OBSERVABLES

keeping in mind all the caveats compute something that has been/you want to be measured and understand what it might be sensitive to and how it can help removing the caveats

work with what you have to eventually have more [acceptance]

THE FIVE STAGES OF HEAVY ION JET PHENOMENOLOGY

denial :: anger :: bargaining :: depression :: acceptance

the theoretical, phenomenological, and experimental challenges posed by the complexity of jets in heavy ion collisions are the best shot we have at furthering our understanding of the QGP

from partons [hadrons] to jets

MULTIPLE EMISSIONS :: VACUUM ANTENNAS

- bona fide description of multiple gluon radiation requires understanding of emitters interference pattern
 - qqbar antenna [radiation much softer than both emitters] as a TH lab

::vacuum::

• transverse separation at formation time

$$r_{\perp} \sim \theta_{q\bar{q}} \, \tau_f \sim \frac{\theta_{q\bar{q}}}{\theta^2 \omega}$$

• wavelength of emitted gluon

$$\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}$$

for $\lambda_{\perp} > r_{\perp}$ emitted gluon cannot resolve emitters, thus emitted coherently from total colour charge

large angle radiation suppressed :: angular ordering

MEDIUM ANTENNAS

MAJOR EFFORT Mehtar-Tani, Salgado, Tywoniuk Casalderrey-Solana & Iancu Blaizot, Dominguez, Iancu, Mehtar-Tani Mehtar-Tani, Milhano, Tywoniuk [review]

$$\Lambda_{med} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\sqrt{\hat{q}L}}$$

 new medium induced colour decorrelation scale

$$\tau_d \sim \left(\frac{1}{\hat{q}\theta_{q\bar{q}}^2}\right)^{1/3}$$

 such that decorrelation driven by timescale

[DE]COHERENCE OF MULTIPL EMISSIONS

• qqbar colour coherence survival probability $\Delta_{med} = 1 - \exp\left\{-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2t^3\right\} = 1 - \exp\left\{-\frac{1}{12}\frac{r_{\perp}^2}{\Lambda_{med}^2}\right\}$

12

• time scale for decoherence

$$\tau_d \sim \left(\frac{1}{\hat{q}\theta_{q\bar{q}}^2}\right)^{1/3}$$

• total decoherence when L > τ_d

- ➤ colour decoherence opens up pha
 - large angle radiation [anti-an]
 - ► geometrical separation [in sof

space for emission

ar ordering]

nit]

 $\omega \rightarrow 0$

FROM ANTENNAS TO JETS

✓ $r_t < \Lambda_{med}$:: antenna unresolved by medium :: vacuum like

- ✓ $r_t > \Lambda_{med}$:: medium probes antenna :: strong suppression of interference :: independent radiation from each constituent
- \checkmark in-medium jet dynamics driven by number of resolved charges

HADRON AND JETS

- ✓ hadrons belong to jets
- ✓ jets more suppressed than hadrons...
 - ✓ the QGP resolves the jets ['sees' its components]

what can jets do for you?

better, what can you do with jets?
significant progress requires detailed understanding of the sensitivity of each observable

A TOOL :: MONTE-CARLO EVENT GENERATORS

 \checkmark MCs implement most known jet quenching physics

- many MCs in the market [Q-PYTHIA, PYQUEN, MATTER, MARTINI, Hybrid,...] implementing various 'alternatives'
- ✓ MCs allow for fair comparison with data
- MC status not the same as in pp :: we don't know all the physics yet !
- MCs that have been validated for a wide set of observables can be used as an exploration tool

JEWEL [AN MC | LIKE]

Zapp, Krauss & Wiedemann, JHEP 1303 (2013) 080

- ► jet evolution and interaction with medium described within single formalism
 - jet evolution well understood in pp :: use standard tools from pp description
 - dynamical model of jet evolution anchored in analytical understanding of pQCD
- ► key assumptions
 - medium seen by jet as collection of quasi-free partons
 - use infra-red continued perturbation theory to describe all jet-medium interactions
 - formation times govern the interplay of different sources of radiation [vacuum-like and medium induced]
 - ► LPM effect encoded through eikonal limit analytical results

- ► two possible operating modes in JEWEL
 - medium partons not included in event record :: no tracking of medium response
 - ► medium partons that interact with jet **included** in event record
 - > part of the medium becomes correlated with jet and thus part of jet
 - requires subsequent background subtraction :: only 4-momentum acquired by medium partons should survive not that in thermal distribution
 - no further re-scattering of medium partons :: jet-correlated medium arguably too hard

[MANY] LESSONS FROM THE FIRST JET MEASUREMENT

- di-jet asymmetry
 - :: energy imbalance of back-to-back jets

$$A_J = \frac{p_{\perp,1} - p_{\perp,2}}{p_{\perp,1} + p_{\perp,2}}$$

- A_J distribution
 shifted to larger
 asymmetries
- no modification of acoplanarity distribution

ATLAS :: PRL 105 (2010)

[MANY] LESSONS FROM THE FIRST JET MEASUREMENT

measurement of increase of di-jet asymmetry without disturbance of acoplanarity distribution

NOT out of cone semi-hard rare emissions as previously thought paradigm change triggering experimental analyses and theoretical developments

peeling-off of soft gluons is driving mechanism of jet energy loss

[MANY] LESSONS FROM THE FIRST JET MEASUREMENT

- cartoon implicitly suggests
 importance of path-length difference
 in di-jet asymmetry
- follows naive intuition and introduces cognitive bias that can compromise your conclusions
 - it should not have in this case as peeling-off of soft jet components is the key mechanism for jet energy loss [in whatever language you choose to address it]

however there is much more to it

KEY LESSON :: ALWAYS CHECK

Milhano and Zapp :: Eur.Phys.J. C76 (2016))

 $L_n = 2 \frac{\int d\tau \, \tau n(\mathbf{r}(\tau), \tau)}{\int d\tau \, n(\mathbf{r}(\tau), \tau)}$

✓ small bias towards smaller path-length for leading jets

[accounts for medium expansion, rapidity independent for boost invariant medium]

- ✓ however, significant fraction [34%] of events have longer path-length for leading jet
- ✓ consequence of fast medium expansion

density weighted path-length

AJ CAN BE GENERATED FOR EQUAL PATH LENGTHS

Milhano and Zapp :: Eur.Phys.J. C76 (2016))

 difference in path-length DOES NOT play a significant role in the observed modification of A_J distribution

JET ENERGY LOSS DOMINATED BY FLUCTUATIONS

- not all same-energy jets are equal
 - number of constituents driven by initial mass-to-pt ratio
 - more populated jets have
 larger number of energy loss
 candidates

JET ENERGY LOSS DOMINATED BY FLUCTUATIONS Milhano and Zapp :: Eur.Phys.J. C76 (2016)

- transverse momentum loss largely determined by mass-to-p_t ratio of initial configuration in both pp and AA
 - strong dependence for bulk of distribution
 - saturation at high ratio result from reconstruction cone radius
 [large angle structure beyond R]
 :: will shift to higher values for
 higher R
 - effect of medium induced
 fluctuations seen in flattening
 for low pt jets

understanding of sensitivity of an observable paves the way for physical understanding of QGP properties

experimental measurement of di-jet imbalance allows for identification of leading mechanism of jet energy loss and isolates the importance of all same energy jets not all losing the same energy

DIGGING DEEPER :: A NEW GENERATION OF JET OBSERVABLES

- instead of looking at back-to-back jets, focus on what happens inside each jet
 - ► look at the widest angular separated hard prongs in a jet

SoftDrop procedure:: Larkoski, Marzani, Soyez, Thaler :: JHEP 1405 (2014)

in vacuum this measures the fundamental [Altarelli-Parisi]
 QCD splitting probabilities

zg : **GROOMED SHARED MOMENTUM FRACTION**

modified Mass Drop Tagger / Soft Drop [β =0]

- 1. cluster jets with anti-k_t
- 2. re-cluster with Cambridge/Aachen [from closest to furthest in angle]
- 3. undo last clustering [jet as 2-prong object] step and compute z_g —
- 4. if $z_g > z_{cut}$ stop, else discard softer prong and go back to 3

at LO

$$p(z_g) = \frac{P(z_g) + P(1 - z_g)}{\int_{z_{cut}}^{0.5} dz \left(P(z) + P(1 - z) \right)} \Theta(z_g - z_{cut})$$

in vacuum, the procedure measures the LO Altarelli-Parisi splitting function

proceed as with di-jets to isolate physical origin

DIGGING DEEPER :: A NEW GENERATION OF JET OBSERVABLES

Milhano, Wiedemann, Zapp :: 1702.xxxx

 $g=\sum_i rac{p_{\perp,i}\,\Delta R_{ij}}{p_{\perp}^J}$ ": first radial moment of the intra-jet p_ distribution

modification of girth distribution of sub-leading prong should be unique to jet-correlated medium mechanism

increasingly engineered jet observables can provide direct access to QGP response to jets

or better, how the energy lost by jets couples QGP with the jet

trade-off between observable complexity and improved potential for insight worth it

what is hot nuclear matter?

what do jets interact with?

what is hot nuclear matter?

what do jets interact with?

can jet-QGP interaction be consistently described for a strongly coupled QGP?

HYBRID STRONG/WEAK COUPLING MODEL

Can Gulan, Casalderrey, Milhano, Pablos, Rajagopal :: JHEP 1410 (2014) 019 JHEP 1603 (2016) 053 1609.05842

- physics at different scales merit different treatments
 - vacuum jets where each parton loses energy non-perturbatively [as given by a holographic AdS-CFT calculation]
- Iost energy becomes a wake [QGP response], part of which will belong to the jet

HYBRID STRONG/WEAK COUPLING MODEL :: POSTDICTIONS

HYBRID STRONG/WEAK COUPLING MODEL :: PREDICTIONS

- In general, models appear to describe $x_{J\gamma}$
 - LBT has normalization issue relative to other curves
 - To be fixed in conjunction with analyzers
 - JEWEL and HYBRID comparable through all bins

Theory Comparison: $x_{J\gamma}$ in PbPb

Theory Comparison: Distribution of $x_{J\gamma}$ vs. γp_T^{IT}

Overlaid PYTHIA, JEWEL, LBT and Hybrid Model

Theory Comparison: $R_{J\gamma}$ in PbPb

Theory Comparison: $x_{J\gamma}$ in PbPb

Theory Comparison: $x_{J\gamma}$ in PbPb

64

Theory Comparison: $\Delta \phi_{J\gamma}$ in PbPb

Overlaid PYTHIA+HYDJET, JEWEL, LBT and Hybrid Model

Christopher McGinn

HYBRID STRONG/WEAK COUPLING MODEL :: PREDICTIONS

jet-QGP interaction can be described in strong coupling

however, effective models are most informative when and where they fail

THE FAILURES OF THE HYBRID STRONG/WEAK COUPLING MODEL

- ► an example of generic failure to describe edge structure of jets
- ► what Physics is missing?
 - ► possibly not all lost energy hydrodynamizes...
 - ► need improved treatment for conclusive check
 - fate of lost energy best handle on thermalization [how QGP came into being]

a look into the future

PROBING QGP TIME EVOLUTION

Apolinário, Milhano, Salam, Salgado :: FCC Yellow Report 1605.01389

- all current observables are sensitive to the integrated effect of the entire QGP lifetime
- use boosted objects to switch off jet-QGP interaction for some time

but that is not all ! oh no. that is not all . . .

MANY THINGS I DID NOT TALK ABOUT [AND MAYBE SHOULD HAVE]

- ✓ all I had to skip [hopefully not too much]
- ✓ physics of initial condition: small Bjorken-x/saturation/nonlinear parton evolution/CGC
- ✓ physics of initial stages: Glasma, ...
- ✓ heavy flavour [beyond quarkonia]
- \checkmark hadrochemistry: statistical hadronization models, ...
- ✓ strangeness
- ✓ femtoscopy
- ✓ all I forgot
WRAP-UP [IN LINES OF LESS THAN 140 CHAR EACH]

- ✓ #HI physics is broad spectrum in #theory and #experiment@RHIC @LHC
- ✓ #HI is #NewPhysics
- ✓ #QGP is collective, an almost perfect liquid of #SM fundamental particles
- ✓ #HI physics at play in #pp and #pA
- ✓ #jets can image #QGP and help to understand #BirthOfQGP