Neutrino Physics Sacha Davidson IN2P3/CNRS, France

1. neutrino interactions $\left\{\begin{array}{c}\text { weak } \\ \text { gravity }\end{array}\right.$
2. neutrino masses in the Lagrangian

- Majorana, Dirac, phases, 2 s and all that

3. neutrinos oscillate \Leftrightarrow have mass

- atmospheric oscillations
- usual 2 flavour oscillations
- why can one use a Schrodinger Eqn?

4. oscillations in matter

- solar (2-flav) oscillations
- no supernovae :(

5. ...but there are (at least) 3 generations ?
6. Leptonic New Physics beyond $3 m_{\nu} \ldots$
(hypothetical /known) history of neutrinos (shy in the lab, relevant in cosmo)

- inflation (gives large scale CMB fluctuations) (?driven by sneutrino?)
- baryogenesis (excess of matter over anti-matter)via leptogenesis?
- relic density of (cold) Dark Matter (?heavy neutrinos?)Shaposhnikov
- Big Bang Nucleosynthesis (H,D, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ at $\left.T \sim \mathrm{MeV}\right)$) $\Leftrightarrow 3$ species of relativistic ν in the thermal soup
- decoupling of photons $-e+p \rightarrow H$ (CMB spectrum today) cares about radiation density $\leftrightarrow N_{\nu}, m_{\nu}$
- for 10^{10} yrs -stars are born, radiate (γ, ν), and die
- supernovae explode (?thanks to ν ?) spreading heavy elements
- 1930 : Pauli hypothesises the "neutrino", to conserve E in $n \rightarrow p+e(+\nu)$
- 1953 Reines and Cowan : neutrino CC interactions in detector near a reactor
- invention of the Standard Model (SM) : massless ν
- neutrinos have mass! There is more in the Lagrangian than the SM...

References...

Giunti website "neutrino unbound" : http ://www.nu.to.infn.it/ fits : http ://www.nu-fit.org/

Raffelt talks (astropart) :http ://wwwth.mpp.mpg.de/members/raffelt/
Plots thanks to Strumia + Vissani : hep-ph/0606054
simple 3-gen probabilities for LBL :Cervera etal 0002108 (+ later versions)
current state of oscillation measurements : Gonzalez-Garcia @ CERN ν plafform kickoff : https ://indico.cern.ch/event/572831/
neutrino cosmology: Lesgourgues at CERN ν plafform kickoff :
https ://indico.cern.ch/event/572831/

Definitions and such...

I use Dirac spinors, with 4 degrees of freedom(dof) labelled by $\{ \pm E, \pm s\}$, in chiral decomposition

$$
\begin{gathered}
\psi=\binom{\psi_{L}}{\psi_{R}},\left\{\gamma^{\alpha}\right\}=\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right]\right\} \\
\left\{\sigma_{i}\right\}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\psi_{L}=P_{L} \psi \quad \text { avec } \quad P_{L}=\frac{\left(1-\gamma_{5}\right)}{2} \quad, \psi_{R}=P_{R} \psi
\end{gathered}
$$

chirality is not an observable $(\rightarrow$ helicity $= \pm \hat{s} \cdot \hat{k}= \pm 1 / 2$ in relativistic limit), but $P_{L, R}$ simple to calculate with :)
notation : $\overline{\left(\psi_{R}\right)}=\left(P_{R} \psi\right)^{\dagger} \gamma_{0}=\psi^{\dagger} P_{R} \gamma_{0}=\psi^{\dagger} \gamma_{0} P_{L}=(\bar{\psi})_{L}$

$$
\left(\psi^{c}\right)_{L}=P_{L}\left(-i \gamma_{0} \gamma_{2} \gamma_{0} \psi^{*}\right)=-i \gamma_{0} \gamma_{2} \gamma_{0} \psi_{R}^{*}
$$

Leptons in the Standard Model

- 3 generations of lepton doublets, and charged singlets :

$$
\ell_{\alpha L} \in\left\{\binom{\nu_{e L}}{e_{L}},\binom{\nu_{\mu L}}{\mu_{L}},\binom{\nu_{\tau L}}{\tau_{L}}\right\} \quad e_{\alpha R} \in\left\{e_{R}, \mu_{R}, \tau_{R}\right\}
$$

in charged lepton mass basis (greek index, eg α).

- No ν_{R} in SM because

1. data did not require m_{ν} when SM was defined (ν are shy in the lab...)
2. ν_{R} an $\operatorname{SU}(2)$ singlet \Leftrightarrow no gauge interactions
\Rightarrow not need ν_{R} for anomaly cancellation
\Rightarrow if its there, its hard to see

Lagrangian that reproduces leptons interactions(but not ν masses)

$$
\begin{aligned}
& \mathcal{L}=i \bar{\ell}_{L_{\alpha}}^{T} \gamma^{\mu} \mathrm{D}_{\mu} \ell_{L \alpha}+i{\overline{e_{R}}}_{\alpha} \gamma^{\mu} D_{\mu} e_{R \alpha} \\
& -\left[\left(\overline{\nu_{\sigma L}}, \overline{e_{\sigma L}}\right) y_{\sigma}\binom{-H^{+}}{H^{0 *}} e_{\sigma R}+\text { h.c. }\right] \\
& \mathrm{D}_{\mu}=\partial_{\mu}+i \frac{g}{2} \sigma^{a} W_{\mu}^{a}+i g^{\prime} Y\left(\ell_{L}\right) B_{\mu}, D_{\mu}=\partial_{\mu}+i g^{\prime} Y\left(e_{R}\right) B_{\mu}
\end{aligned}
$$

B^{μ} hypercharge gauge boson, $Y(f)=T_{3}+Q_{e m}$
$\widetilde{H}=\binom{-H^{+}}{H^{0 *}}, m_{\alpha}=y_{\alpha}\left\langle H^{0}\right\rangle$
greek index $=$ generation in charged lepton mass basis

Neutrino weak interaction in doublet kinetic terms
First term $\bar{\ell}_{L_{\alpha}}^{T} \gamma^{\mu} \mathbf{D}_{\mu} \ell_{L \alpha}$ gives :

$$
\left(\begin{array}{ll}
\overline{\nu_{L}} & \overline{e_{L}}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{cc}
\frac{g}{2 \cos \theta_{W}} Z_{\mu} & \frac{g}{\sqrt{2}} W_{\mu}^{+} \\
\frac{g}{\sqrt{2}} W_{\mu}^{-} & e A_{\mu}-\ldots Z_{\mu}
\end{array}\right)\binom{\nu_{L}}{e_{L}} \quad, \quad s_{W} \equiv \sin \theta_{W}
$$

$$
\tan \theta_{W}=g^{\prime} / g, A_{\mu} \equiv c_{W} B_{\mu}+s_{W} W_{\mu}^{3}, Z_{\mu} \equiv-s_{W} B_{\mu}+c_{W} W_{\mu}^{3} \text { Get: }
$$

CC production of $\nu \mathrm{s}$ (Pauli)
NO flavour change (ν or e) in lepton sector for massless ν !
Universal Z cpling to 3ν ($\Gamma_{\text {inv }}$ says 2.994 ± 0.012)

(parenthese —diagonal/canonical kinetic terms?)

By the way, that was most general renormalisable, $S U(2) \times U(1)$-invariant \mathcal{L} for those particles... What about

$$
\left(\overline{\nu_{e L}}, \overline{e_{L}}\right) \varnothing\binom{\nu_{\mu L}}{\mu_{L}} \quad, \quad\left(\overline{\nu_{e L}}, \overline{e_{L}}\right) \widetilde{H} \tau_{R}
$$

are gauge invariant \Leftrightarrow why not the Lagrangien :

$$
i \bar{\ell}_{L}^{b^{\prime}} Z_{b c} \gamma^{\mu} \mathbf{D}_{\mu} \ell_{L}^{c^{\prime}}+i{\overline{e_{R}}}^{f} \gamma^{\mu} D_{\mu} e_{R}^{f}-\bar{\ell}_{L}^{{ }^{b}}\left[\tilde{Y}_{e}\right]_{b d} \widetilde{H} e_{R}^{d}+\text { h.c. }
$$

Because its equivalent! To recover to canonical \mathcal{L}, diagonalise Z (hermitian $\mathrm{pcq} \mathcal{L} \in \Re)$
$\overline{\ell_{L}^{\prime b}} \mathbf{Z}_{b c} D \ell_{L}^{\prime c}=\overline{\ell_{L}^{\prime b}}\left[V_{Z}^{\dagger} D_{\mathbf{Z}} V_{Z}\right]_{b c} D \ell_{L}^{c}=\overline{\ell_{L}^{b^{\prime \prime}}} \mathbf{D}_{\mathbf{Z}_{b b}} D \ell_{L}^{b^{\prime \prime}}=\overline{\ell_{L}^{b}} D \ell_{L}^{b}$ where absorb the eigenvalues of Z in field defns: $\ell_{L}^{b}=\sqrt{z^{b}} \ell_{L}^{b^{\prime \prime}}$.
Then redefine Yukawas: $\mathrm{Y}_{\mathrm{e}}=\mathrm{D}_{\mathrm{Z}}^{-1 / 2} \mathrm{~V}_{\mathrm{Z}} \widetilde{\mathrm{Y}}_{\mathrm{e}}$, to get canonical kinetic terms:

$$
\mathcal{L}=i{\overline{\ell_{L}^{b}}}^{T} D \ell_{L}^{b}+i \overline{e_{R}^{\bar{b}}} \mathbb{D} e_{R}^{a}-\left\{\left(\overline{\ell_{L}^{b}}\left[\mathrm{Y}_{\mathrm{e}}\right]_{b c} \widetilde{H}\right) e_{R}^{c}+\text { h.c. }\right\}
$$

Now diagonalise charged lepton mass matrix...

$$
\left.i \bar{\ell}_{L}^{\beta T} \gamma^{\mu} \mathbf{D}_{\mu} \ell_{L}^{\beta}+i{\overline{e_{R}}}^{\alpha} \gamma^{\mu} \mathbf{D}_{\mu} e_{R}^{\alpha}+\bar{\ell}_{L}^{\beta}\left[Y_{e}\right]_{\beta \alpha} \widetilde{H} e_{\alpha R}+\text { h.c. }\right)
$$

$\left[Y_{e}\right]_{\beta \alpha}$ arbitrary 3×3 matrix To obtain diagonal charged-lepton mass matrix, use different unitary transformations on left and right of Yukawa (makes sense : different fields on either side) :

$$
V_{L}\left[\mathrm{Y}_{\mathrm{e}}\right] V_{R}^{\dagger}=D_{e}
$$

- order of my indices is LR
- obtain V_{L}, V_{R} by diagonalising hermitian matrices
$\left[\mathrm{Y}_{\mathrm{e}}\right]\left[\mathrm{Y}_{\mathrm{e}}\right]^{\dagger}=V_{L}^{\dagger} D_{e}^{2} V_{L}\left[\mathrm{Y}_{\mathrm{e}}\right]^{\dagger}\left[\mathrm{Y}_{\mathrm{e}}\right]=V_{R}^{\dagger} D_{e}^{2} V_{R}$
- only basis choice in flavour space from Yukawas; there is no such thing as an "interaction basis"

Neutrinos have gravitational interactions

1. expected from equivalence principle : carry 4-momentum
2. Big Bang Nucleosynthesis ($\tau_{U} \sim$ few minutes) :

- $n_{n} / n_{p} \propto \exp \left\{-\left(m_{n}-m_{p}\right) / T\right\}$ in thermal equil
- frozen when $\Gamma(n+\nu \rightarrow p+e) \lesssim H$
- $H^{2} \simeq 3 \rho_{\text {rad }} / m_{p l}^{2} ; \rho_{\text {rad }} \supset\{\gamma, 3 \nu\}$
- n_{n} / n_{p} controls ${ }^{4} \mathrm{He}$ ratio to H ...

3. Cosmic Microwave Background: (is a fit to a multi-parameter model), and U is mat-dim at recombination. But sensitivity for similar reasons to \# of relativistic species present...

Lesgourgues

Historical problems...

BUT...historical "problems" : neutrinos disappear...
2. the sun produces energy by a network of nuclear reactions, should produce ν_{e} (lines and continuum) which escape. The photons diffuse to the surface. Observed ν_{e} flux $\sim .3 \rightarrow .5$ expected from solar energy output. Flux in \sum flavours \sim expected (SNO). \Rightarrow new ν physics (BSM!), that changes ν flavour on way out of sun :

- magnetic moments?
- wierd new interactions?
- masses (and mixing angles) in matter
- ...

1. deficit of ν_{μ} arriving from earth's atmosphere, produced in cosmic ray interactions: expect $N\left(\nu_{\mu}+\bar{\nu}_{\mu}\right) \simeq 2 N\left(\nu_{e}+\bar{\nu}_{e}\right)$ see deficit of $\nu_{\mu}, \bar{\nu}_{\mu}$ from below.

SK-98 : $\nu_{\mu}+H_{2} 0 \rightarrow \mu+.$. , deficit in ν_{μ} from below

upwards $\leftrightarrow \cos =-1$; down $\leftrightarrow \cos =+1$.
$L: 20 \mathrm{~km} \leftrightarrow 10000 \mathrm{~km}$.

SNO : solar ν_{e} deficit, but expected $\sum \nu_{\alpha}$ flux

FIG. 3: Flux of ${ }^{8} \mathrm{~B}$ solar neutrinos which are μ or τ flavor vs flux of electron neutrinos deduced from the three neutrino reactions in SNO. The diagonal bands show the total ${ }^{8} \mathrm{~B}$ flux as predicted by the SSM [11] (dashed lines) and that measured

To write a neutrino mass

To write a mass for ν_{L}... Lorentz Invariance

Before discussing oscillations and the kinematics of m_{ν}, think about how to write a mass term for neutrinos in \mathcal{L}... Cosmology says: $\sum m_{i} \lesssim \mathrm{eV}$. Oscillations say :
(global fits of www.nu-fit.org)

$$
\begin{aligned}
\left|\Delta_{31 j}^{2}\right|= & \left|m_{3}^{2}-m_{j}^{2}\right|=2.52 \pm 0.04 \times 10^{-3} \mathrm{eV}^{2} \\
& \gg m_{21}^{2}=7.50 \pm 0.2 \times 10^{-5} \mathrm{eV}^{2} \\
& \sqrt{\Delta m_{31}^{2}} \simeq 0.05 \mathrm{eV} \quad \sqrt{\Delta m_{21}^{2}} \simeq 0.008 \mathrm{eV}
\end{aligned}
$$

Low scale so work in effective theory of SM below m_{W} (neglect SU(2) invariance). Mass must be Lorentz invariant. Only possibility for a four-component fermion ψ :

$$
m \bar{\psi} \psi=m \overline{\psi_{L}} \psi_{R}+m \overline{\psi_{R}} \psi_{L}
$$

To write a Dirac mass for ν_{L}

Work in effective theory below m_{W}. Neutrino mass must be Lorentz invariant. For four-component fermion ψ :

$$
m \bar{\psi} \psi=m \overline{\psi_{L}} \psi_{R}+m \overline{\psi_{R}} \psi_{L}
$$

1. Dirac masss term : SM has only $\nu_{L}, 2$-component chiral fermion \Rightarrow introduce chiral gauge singlet fermion ν_{R} Construct fermion number conserving mass term like for other SM fermions :

$$
m \overline{\nu_{L}} \nu_{R}+m \overline{\nu_{R}} \nu_{L}
$$

In full SM : $\lambda\left(\overline{\nu_{L}}, \overline{e_{L}}\right)\binom{H_{0}}{H_{-}} \nu_{R} \equiv \lambda(\bar{\ell} H) e_{R} \rightarrow m=\lambda\left\langle H_{0}\right\rangle$

Diagonalising Dirac mass matrix in flavour space

Like for charged leptons and quarks : $[\lambda]_{\sigma}$ arbitrary 3×3 matrix in flavour space

Diagonalise with different unitary transformations on left and right of Yukawa :

$$
U[\lambda] U_{R \nu}^{\dagger}=D_{\nu}
$$

- $U=3 \times 3$ leptonic version of CKM called PMNS matrix
(Pontecorvo, Maki, Nakagawa and Sakata) : UPMNS.

To write a Majorana mass for ν_{L}
Lorentz-invar mass term for a four-component fermion ψ :

$$
m \bar{\psi} \psi=m \overline{\psi_{L}} \psi_{R}+m \overline{\psi_{R}} \psi_{L}
$$

2. Majorana mass term : the charge conjugate of ν_{L} is right-handed!check!
\Rightarrow write a mass term with ν_{L}; no new fields, but lepton number violating mass :

$$
\begin{aligned}
\frac{m}{2}\left[\overline{\nu_{L}}\left(\nu_{L}\right)^{c}+\overline{\left(\nu_{L}\right)^{c}} \nu_{L}\right] & =\frac{m}{2}\left[\left(\nu_{L}\right)^{\dagger} \gamma_{0}\left(\nu_{L}\right)^{c}+\left(\left(\nu_{L}\right)^{c}\right)^{\dagger} \gamma_{0} \nu_{L}\right] \\
& =-i \frac{m}{2}\left[\nu_{L}^{\dagger} \sigma_{2} \nu_{L}^{*}+\nu_{L}^{T} \sigma_{2} \nu_{L}\right] \equiv \frac{m}{2} \nu_{L} \nu_{L}+\text { h.c. }
\end{aligned}
$$

(2nd line $=2$ comp notn) Non-renormalisable in full SM:
$\mathcal{L}=\ldots+\frac{K}{4 M}(\ell H)(\ell H)+$ h.c. $\rightarrow \frac{m}{2} \nu_{L} \nu_{L}+$ h.c.,$\quad m=\frac{K}{2 M}\left\langle H_{0}\right\rangle^{2}$
\Rightarrow requires New Particles

Majorana mass term : $\left(\nu_{L}\right)^{c}$ is right-handed

Recall that :

$$
\begin{gathered}
\psi=\binom{\psi_{L}}{\psi_{R}},\left\{\gamma^{\alpha}\right\}=\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right]\right\} \\
\left\{\sigma_{i}\right\}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

Majorana mass term : the charge conjugate of ν_{L} is right-handed

$$
\left.\left.\begin{array}{rl}
\psi^{c} & =-i \gamma_{0} \gamma_{2} \bar{\psi}^{T}=-i \gamma_{0} \gamma_{2} \gamma_{0} \psi^{*}=i \gamma_{2}^{*} \psi^{*} \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left(\binom{\psi_{L}^{*}}{\psi_{R}^{*}}\right) \\
\left(\nu_{L}\right)^{c}= & \binom{0}{0} \\
{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left(\nu_{L}^{*}\right)}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-i \sigma_{2} \nu_{L}^{*} \\
)
\end{array}\right)\right) .
$$

Diagonalising Majorana mass matrix
With multiple generations, Majorana

$$
\frac{1}{2}{\overline{\nu_{L}}}^{\alpha}[m]_{\alpha \beta}\left(\nu_{L}\right)_{\beta}^{c}
$$

is symmetric, diagonalise as :

$$
U^{T} m U=D_{m}
$$

- $m^{\dagger} m$ hermitian, for non-degen eigenvalues can obtain U from $U^{\dagger} m^{\dagger} m U=D_{m}^{2}$.
(in 2-comp notn :

$$
\frac{1}{2} \nu_{L \alpha}[m]_{\alpha \beta} \nu_{L \beta}+\text { h.c. }=\frac{1}{2} \nu_{L \alpha}\left[U^{*} U^{\top} m U U^{\dagger}\right]_{\alpha \beta} \nu_{L \beta}+\text { h.c. }=\frac{1}{2} \nu_{L i} m_{i} \nu_{L i}+\text { h.c. }
$$

fermion fields anti-commute. But for ρ, σ 2-comp spinor indices,
$\left.\nu_{L i}^{\rho} \varepsilon_{\rho \sigma} \nu_{L j}^{\sigma}=-\nu_{L j}^{\sigma} \varepsilon_{\rho \sigma} \nu_{L i}^{\rho}=\nu_{L j}^{\sigma} \varepsilon_{\sigma \rho} \nu_{L i}^{\rho}\right)$

Muddle for theorists : Majorana 2s in the Lagrangian

Recall : usual to distribute $\frac{1}{2} \mathrm{~s}$ for identical fields in \mathcal{L}, in order that F -rules and physical parameters not contain 2 s :
$\frac{m}{2} \nu_{L} \nu_{L}+$ h.c., $\left.\frac{K}{4 M}(\ell H) \ell H\right)+$ h.c. (like for real scalar masses) because get F-rules as $\delta^{n} \mathcal{L} / \delta \nu^{n} \ldots$ A majorana mass m appears in \mathcal{L} as (4-comp notn on left, 2-comp notn on right)

$$
\frac{m}{2}\left[\overline{\nu_{L}}\left(\nu_{L}\right)^{c}+\overline{\left(\nu_{L}\right)^{c}} \nu_{L}\right] \equiv \frac{m}{2} \nu_{L} \nu_{L}+\text { h.c. }
$$

A dirac mass m appears in \mathcal{L} as

$$
m \bar{\psi} \psi+\text { h.c. }
$$

2.8 eigenvectors of a Majorana mass matrix

eigenvectors \vec{v}_{i} of a hermitian matrix A, with eigenvalues $\left\{a_{i}\right\}$ from

$$
\overrightarrow{\vec{v}_{i}}=a_{i} \vec{v}_{i}
$$

because hermitian: $V^{\dagger} A V=D_{A}=\operatorname{diag}\left\{a_{1}, \ldots a_{n}\right\}$ (V unitary)

$$
\left[\begin{array}{ll}
A & \\
&
\end{array}\right]\left[\left(\begin{array}{c}
\overrightarrow{v_{1}}
\end{array}\right)\left(\overrightarrow{\vec{v}_{2}}\right)\left(\overrightarrow{\vec{v}_{3}}\right)\right]=\left[\left(\overrightarrow{\vec{v}_{1}}\right)\left(\vec{v}_{2}\right)\left(\overrightarrow{\vec{v}_{3}}\right)\right]\left[\begin{array}{lll}
a_{1} & & \\
& \ldots & \\
& & a_{n}
\end{array}\right]
$$

Whereas for majorana : $U^{T} A U=D_{A} \Rightarrow A U=U^{*} D_{A}(U$ unitary $U U^{\dagger}=1$)
$\left[\begin{array}{l}A\end{array}\right]\left[\left(\overrightarrow{u_{1}}\right)\left(\overrightarrow{u_{2}}\right)\left(\overrightarrow{u_{3}}\right)\right]=\left[\left(\overrightarrow{u_{1}^{*}}\right)\left(\overrightarrow{u_{2}^{*}}\right)\left(\overrightarrow{u_{3}^{*}}\right)\right]\left[\begin{array}{lll}a_{1} & & \\ & \cdots & \\ & & a_{n}\end{array}\right]$
For Majorana matrix :

$$
A \vec{u}_{i}=a_{i} \vec{u}_{i}^{*}
$$

2.9 But... how to get majorana eigenvalues?

For hermitian matrices (like $M M^{\dagger}$), have "characteristic equation" :

$$
\mathrm{MM}^{\dagger} \vec{v}_{i}-\left|m_{i}\right|^{2} \mid \vec{v}_{i}=0
$$

allows to obtain eigenvals from $\operatorname{det}\left[\mathrm{MM}^{\dagger}-\left|m_{i}\right|^{2} \mathbf{I}\right]=0$. Naively, this reasoning does not work when you start from

$$
\mathrm{M} \vec{v}_{i}-m_{i} \vec{l} \vec{v}_{i}^{*}=0
$$

so ... get absolute values of eigenvals from MM^{\dagger}.
For degen eigenvals of MM^{\dagger} : get eigenvectors using M rather than MM^{\dagger}; extra phases can matter.
Ex : its not the same to diagonalise $M^{\dagger} M=V^{\dagger} D_{M}^{2} V$, or $M=U^{T} D_{M} U$

$$
M=\left[\begin{array}{cc}
0 & M_{1} e^{i \phi} \\
M_{1} e^{i \phi} & 0
\end{array}\right], \quad M^{\dagger} M=\left[\begin{array}{cc}
M_{1}^{2} & 0 \\
0 & M_{1}^{2}
\end{array}\right] \quad M_{1} \in \Re
$$

For $m_{1}, m_{D}, m_{2} \in \operatorname{Re}$, and $\neq 0$, show that the phases α and β can be removed from the Majorana mass matrix

$$
M=\left[\begin{array}{ll}
m_{1} e^{i \alpha} & m_{D} e^{i \phi} \\
m_{D} e^{i \phi} & m_{2} e^{i \beta}
\end{array}\right]
$$

by a phase redefn on the fields. Show that the combination $2 \phi-\alpha-\beta$ is not removeable.

Exercise2

Obtain the eigenvalues and eigenvectors of

$$
M=\left[\begin{array}{cc}
m_{1} & m_{D} e^{i \phi} \\
m_{D} e^{i \phi} & m_{1}
\end{array}\right]
$$

1. for $m_{1}=m_{D}, \phi \neq \pi / 2$
(Hint : obtain eigenvals and eigenvectors of $M M^{\dagger}$, then check whether the eigenvectors work for M. What eigenvaluess are they associated to ?)
2. for $m_{1}=0, \phi=0$

This is a "dirac" fermion mass matrix. Conclude that a Dirac fermion is two mass-degen Majorana fermions.
3. for $m_{1}=m_{D}, \phi=\pi / 2$
(degenerate eigenvals... recall that the familiar eqn for the eigenvector \vec{v}_{i} of a hermitian matrix: $H \vec{v}_{i}=h_{i} \vec{v}_{i}$, can be obtained from the diagonalisation of H using unitary matrices:
$V H V^{\dagger}=\operatorname{diag}\left\{h_{i}\right\}$. Obtain the corresponding eigenvector eqn for a symmetric matrix from $U M U^{T}=\operatorname{diag}\left\{m_{i}\right\}$, then use it to get the eigenvectors of M.)
leptonic mixing matrix (lives in generation space ; rotates from charged lepton α to neutrino i) with three angles:

$$
\begin{aligned}
& U_{\alpha i}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] P \\
& \theta_{23} \simeq \pi / 4 \quad \theta_{12} \simeq \pi / 6 \quad \theta_{13} \simeq 0.15,8^{\circ} \quad \delta \sim 1.4 \pi \\
& P=\operatorname{diag}\left\{e^{-i \phi_{1} / 2}, e^{-i \phi_{2} / 2}, 1\right\} \text { for Majorana, diag }\{1,1,1\} \text { for Dirac } \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & c_{13} s_{12} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{23} s_{12}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-c_{23} s_{12} s_{13} e^{i \delta} & c_{13} c_{23}
\end{array}\right] P
\end{aligned}
$$

for comparaison, in CKM :

$$
\theta_{23} \simeq V_{c b} \simeq 0.04 \quad \theta_{12} \simeq V_{u s} \simeq 0.225 \quad \theta_{13} \simeq V_{u b} \simeq 0.004
$$

more CPV in U, m_{ν} if Majorana

- suppose that all parameters in \mathcal{L} that can be complex (U and $m_{\nu i}$), are complex
- 3 angles and 6 phases in generic unitary matrix U (18 real parameters in arbitrary 3×3 complex matrix. Unitarity $U U^{\dagger}=1$ reduces this to 9 .)
- five relative phases between the fields $e_{L}, \mu_{L}, \tau_{L}, \nu_{1}, \nu_{2}, \nu_{3}$...so can choose the 5 relative phases among LH fermions, to remove all but one phase in the mixing matrix.
- now check if can make the masses real : if dirac masses, absorb phase of mass with $\nu_{R I}$. If $\nu_{L 3}$ has Majorana mass, between self and anti-self, choose absolute phase of $\nu_{L 3}$ to make the mass real. Now all LH fermion phases are fixed, and cannot remove phases from $m_{\nu 1}, m_{\nu 2}$.
\Rightarrow extra CPV in processes where Majorana mass appears linearly (not as $m m^{*}$, not in kinematics $=$ not in oscillations)

1. discrete difference: number of light degrees of freedom massive $\left\{\begin{array}{c}\text { majorana } \\ \text { dirac }\end{array}\right\}$ fermion $\leftrightarrow\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$ chiral fermions ?? but how to count degrees of freedom?
2. continuous difference: majorana mass is Lepton Number Violating \Rightarrow look for $\Delta L=2$ processes e.g. $0 \nu 2 \beta$.
3. more CPV (but in LNV processes?) : all but one of majorana ν masses are complex

Dinner topic (?) : is Majorana vs Dirac a boolean question?

- Can ask a boolean "model discrimination" question : are there three light majorana ν with LNV masses, or three light dirac ν with LN conserving masses.
But maybe its neither of those models?
- I think the phenomenological question is the LNV rate, because can't measure number of light chiral fermions
? ... if add an undetectably small LNV mass to a Dirac mass matrix ; does that make the neutrinos Majorana?
(have 6 chiral fermions as for Dirac, and no observed LNV...)

Where do mixing matrices appear?

Only one mass eigenstate basis for $\left\{e_{R}^{\alpha}\right\},\left\{\nu_{R}^{\prime}\right\}=\left(\nu_{R}^{2}, \nu_{R}^{1}\right) \ldots$.so sit there (means $U_{R \nu}$ unphysical). What to do for ℓ^{a} ? ? Take mass basis of charged leptons:

$$
\ell_{L}^{e} \equiv\binom{U_{e i} \nu_{L}^{i}}{e_{L}} \quad, \ell_{L}^{\mu} \equiv\binom{U_{\mu j} \nu_{L}^{j}}{\mu_{L}} \quad, \ell_{L}^{\tau} \equiv\binom{U_{\tau k} \nu_{L}^{k}}{\tau_{L}}
$$

and Lagrangian becomes
$i\left(U_{e j}^{*} \overline{j_{L}^{j}} \overline{e_{L}}\right) \gamma^{\mu} \mathbf{D}_{\mu}\binom{U_{e k} \nu_{L}^{k}}{e_{L}}+i\left(U_{\mu j}^{*} \overline{\nu_{L}^{j}} \overline{\mu_{L}}\right) \gamma^{\mu} \mathbf{D}_{\mu}\binom{U_{\mu k} \nu_{L}^{k}}{\mu_{L}}+$.
3×3 mixing matrix $U_{\alpha, i}$ appears at $W^{ \pm}$vertices (like CKM)

$$
\rightarrow \quad-i \frac{g U_{e j}^{*}}{\sqrt{2}} \bar{\nu}_{L}^{j} \gamma^{\mu} W_{\mu}^{+} e_{L}+\ldots
$$

but flavour-diagonal Z vertex :

$$
\propto \sum_{\alpha}-i \frac{g}{2} U_{\alpha j}^{*} \overline{\nu_{L}^{j}} \gamma^{\mu} Z_{\mu}^{+} U_{\alpha k} \nu_{L}^{k}=\delta_{j k} \frac{g}{2} \overline{\nu_{L}^{j}} \gamma^{\mu} Z_{\mu}^{+} \nu_{L}^{k}
$$

Oscillations

neutrinos "oscillate"(QM version : easy to rederive)

A relativistic neutrino, with momentum \vec{k}, is produced in muon decay at $t=0$ (at Tokai/edge atmosphere). Describe as a quantum mechanical state :

$$
|\nu(t=0)\rangle=\left|\nu_{\mu}\right\rangle
$$

It travels a distance L in time t to the detector (SuperK)

$$
|\nu(t)\rangle
$$

where it produces an μ in CC scattering. With what probability?

$$
\mathcal{P}_{\mu \rightarrow \mu}(t)=\left|\left\langle\nu_{\mu} \mid \nu(t)\right\rangle\right|^{2}=?
$$

1. Suppose massive neutrinos (two generations for simplicity). Flavour and mass eigenstates related by : $\nu_{\alpha}=U_{\alpha i} \nu_{i}$

$$
\binom{\nu_{\mu}}{\nu_{\tau}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \cdot\binom{\nu_{2}}{\nu_{3}}
$$

2. Suppose time evolution in the mass basis described by

$$
i \frac{d}{d t}\binom{\nu_{2}}{\nu_{3}}=\left[\begin{array}{cc}
E_{2} & 0 \\
0 & E_{3}
\end{array}\right]\binom{\nu_{2}}{\nu_{3}} \quad, \quad E_{i}^{2}=k^{2}+m_{i}^{2}
$$

3. If produce relativistic ν_{μ} at $t=0$, then at t later :

$$
|\nu(t)\rangle=\sum_{j} U_{\mu j}\left|\nu_{j}(t)\right\rangle=\sum_{j} U_{\mu j} e^{-i E_{j} t}\left|\nu_{j}\right\rangle
$$

Amplitude for neutrino to produce charged lepton α in CC scattering in detector after t :

$$
\left|\left\langle\nu_{\alpha} \mid \nu(t)\right\rangle\right|=\left|\sum_{j} U_{\mu j} e^{-i E_{j} t} U_{\alpha j}^{*}\right|
$$

So in 2 generation case, using $t=L, E_{3}-E_{2} \simeq \frac{m_{3}^{2}-m_{2}^{2}}{2 E} \equiv \frac{\Delta_{32}^{2}}{2 E}$:

$$
\begin{aligned}
\mathcal{P}_{\mu \rightarrow \tau}(t) & =\left|\sin \theta \cos \theta\left(e^{i \Delta_{32}^{2} L / 4 E}-e^{-i \Delta_{32}^{2} L / 4 E}\right)\right|^{2} \\
& =\sin ^{2}(2 \theta) \sin ^{2}\left(L \frac{\Delta_{32}^{2}}{4 E}\right) \\
\mathcal{P}_{\mu \rightarrow \mu}(t) & =1-\sin ^{2}(2 \theta) \sin ^{2}\left(L \frac{\Delta^{2}}{4 E}\right)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(1.27 \frac{L \Delta^{2}}{k m e V^{2}} \frac{\mathrm{GeV}}{4 E}\right)
\end{aligned}
$$

$E=\nu$ energy, L source-detector distance, $\Delta_{32}^{2} \sim 10^{-3} \mathrm{eV}^{2}$
$E \sim 10 \mathrm{GeV}$ for atmospheric $\nu \mathrm{s} ; \mathrm{L}: 20 \mathrm{~km} \rightarrow 10000 \mathrm{~km}$

2nd try at oscillations in vaccuum (Relativistic QM)

Umm : can one use non-rel QM to describe ν propagation?
Does ν_{μ} propagate with fixed \vec{k} and variable E_{i} ?
Suppose relativistic neutrinos, produced in muon decay at $t=0$. Amplitude to produce mass eigenstate i

$$
\propto U_{\mu i}
$$

Neutrinos travel distance $L=$ time τ to a detector. Propagator in position space for(scalar) mass eigenstate :

$$
G[(0,0) ;(L, \tau)] \propto \int \frac{d^{3} p}{(2 \pi)^{3}} e^{i(E \tau-p L)} \theta(\tau)
$$

Bjorken+Drell, vol1, 6.26
Describe ν_{i} by a wave packet peaked at $\sim(E, \vec{k}) \Leftrightarrow \delta^{3}(\vec{p}-\vec{k})$

Amplitude for initial ν_{μ} to produce e_{α} at detector :

$$
\begin{gathered}
\mathcal{A}_{\mu \alpha} \propto \sum_{j} U_{\mu j} \times e^{-i\left(E_{j} \tau-k_{j} L\right)} \times U_{\alpha j}^{*} \\
m_{j} \ll E, p \Rightarrow L \simeq t, \text { so } \\
-i\left(E_{j} t-p_{j} L\right) \simeq-i\left(E_{j}-p_{j}\right) L=-i \frac{E_{j}^{2}-p_{j}^{2}}{E_{j}+p_{j}} L \simeq-i \frac{m_{j}^{2}}{2 E} L \\
\mathcal{P}_{\mu \alpha}=\left|\mathcal{A}_{\mu \alpha}\right|^{2}=\left|\sum_{j} U_{\mu j} e^{-i m_{j}^{2} L /(2 E)} U_{\alpha j}^{*}\right|^{2}
\end{gathered}
$$

$$
\mathcal{P}_{\mu \alpha}=\left|\mathcal{A}_{\mu \alpha}\right|^{2}=\left|\sum_{j} U_{\mu j} e^{-i m_{j}^{2} L /(2 E)} U_{\alpha j}^{*}\right|^{2}
$$

In 2 generation case:

$$
\binom{\nu_{\mu}}{\nu_{\tau}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \cdot\binom{\nu_{1}}{\nu_{2}}
$$

$$
\begin{aligned}
\mathcal{P}_{\mu \rightarrow \tau}(t) & =\left|\sin \theta \cos \theta\left(e^{-i m_{2}^{2} L / 2 E}-e^{-i m_{3}^{2} L / 2 E}\right)\right|^{2} \\
& =\sin ^{2}(2 \theta) \sin ^{2}\left(L \frac{\Delta_{32}^{2}}{4 E}\right) \quad \Delta_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}
\end{aligned}
$$

$\mathcal{P}_{\mu \rightarrow \mu}(\tau)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(L \frac{\Delta^{2}}{4 E}\right)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(1.27 \frac{L \Delta^{2}}{k m \mathrm{eV}^{2}} \frac{\mathrm{GeV}}{4 E}\right)$
E is ν energy, $L=$ source-detector distance.
$E \sim 10 \mathrm{GeV}$ for atmospheric $\nu \mathrm{s}$; $L: 20 \mathrm{~km} \rightarrow 10000 \mathrm{~km}$

$$
\begin{aligned}
& \text { 2 generation survival probability } \mathrm{P}(\mu->\mu), \theta=45, \Delta \mathrm{~m}_{\mathrm{atm}}^{2}, \mathrm{E}=\mathrm{GeV} \\
& \\
& 0.0
\end{aligned}
$$

why don't d quarks oscillate?

1. (in my opinion) always propagate mass eigenstates(because construct free QFT with E, \vec{p} eigenstates)
2. Produce at source a superposition of mass E, and p eigenstates (uncertainty principle : wave packet distributed within $\Delta E, \Delta p$)
\Leftrightarrow if measure/reconstruct E, p such that can measure $E^{2}-p^{2}=m^{2}$, then no oscillations
3. Oscillation distance $L \sim(E / G e V)\left(e V^{2} / \Delta m^{2}\right) \mathrm{km}$. If mean free path $\lambda \ll L$, reconstruct mass from track so no oscillations?
4. also...neutrino beam has energy spectrum Φ; although oscillation occurs, observe

$$
\propto \int d E \frac{d \Phi}{d E} \sigma_{\text {prod }}(E) P_{\alpha \rightarrow \beta}(E) \sigma_{d e t}(E)
$$

...average over many oscillations of $\sin ^{2} \rightarrow 1 / 2$ (so see disappearance, but not oscillation, in SK atm spectra)

decoherence of neutrinos for large $L / E \gg 1 / \Delta^{2}$

- at production, 2 superposed wavepackets of masses m_{2}, m_{3}.
- group velocity of packets

$$
v_{i}=\frac{\partial E}{\partial p}=\frac{p}{E} \simeq 1-\frac{m_{i}^{2}}{2 E^{2}}
$$

- after distance L, packets have separated by

$$
\left(v_{2}-v_{3}\right) L \simeq \frac{\Delta_{23}^{2}}{E^{2}} L \simeq \frac{L}{\ell_{o s c}} \frac{1}{E}
$$

- no interference if larger than size of packets $\sim 1 /(\delta E)$ where packet energy uncertain by δE. so no oscillations once

$$
\frac{L}{\ell_{\text {osc }}} \gtrsim \frac{E}{\delta E}
$$

can make similar estimate doing sum over paths, phases should sum coherently

Question $=$ neutrinos are relativistic ; should we not do oscillations in QFT?

Here show that QFT is equivalent to "the Schrodinger eqn" (which I will want to use for oscillations in matter later...) In second quantised field theory, the eqns of motion for the number operator \hat{n} are (Heisenberg rep, t-dep ops)

$$
\frac{d}{d t} \hat{n}=+i[\hat{H}, \hat{n}]
$$

where the Hamiltonian \hat{H} can be taken as free
$=\hat{H}_{0} \sim \sum \omega \hat{n}_{\omega}$. (recall free hamiltonian is sum over all states of number of particles * energy. Integral of hamiltonian density.)

Oscillations in QFT

1: Work in second quantised formalism for neutrino field :
$\hat{\psi}^{\prime}(x)=\sum_{s=+,-} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E}}\left(e^{-i p \cdot x} \hat{a}_{s}^{\prime}(\vec{p}) u_{s}(p)+e^{i p \cdot x} \hat{b}_{s}^{\prime \dagger}(\vec{p}) v_{s}(p)\right)$
where s is heilicity, I is generation, \hat{a}^{\dagger} creates particles, et \hat{b}^{\dagger} creates anti-particules. Define â for energy= mass eigenstates. But formalism is covariant...
2 : We want to know time/space evolution of a beam neutrinos (no anti), of + helicity and momentum \vec{p}. Define number operator :

$$
\hat{n}_{s r}^{\prime J}(\vec{p})=\hat{a}_{+}^{\prime \dagger}(\vec{p}) \hat{a}_{+}^{\prime}(\vec{p})
$$

covariant in flavour space (indices I, J).

3 : The eqns of motion for the number operator \hat{n} are

$$
\frac{d}{d t} \hat{n}=+i[\hat{H}, \hat{n}]
$$

$\hat{H}=\hat{H}_{0}$ is the Hamiltonian (free with 0), in energy (= mass) eigenstate basis (sum on I, not matrix in generation space) :
$H_{0}=\sum_{l} \int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{I I}(|\vec{p}|)\left(\hat{n}_{++}^{\prime \prime}(\vec{p})+\hat{n}_{--}^{\prime \prime}(\vec{p})\right), \omega_{I I}=\sqrt{\vec{p}^{2}+m_{l}^{2}}$
4 : Calculate $\frac{d}{d t} \hat{n}_{++}^{\prime J}(\vec{p})=+i\left[\hat{H}_{0}, \hat{n}_{++}^{\prime J}(\vec{p})\right]$

$$
\begin{aligned}
= & i \int \frac{d^{3} k}{(2 \pi)^{3}}\left(\omega_{2}(\vec{k}) \hat{a}_{+}^{2 \dagger}(\vec{k}) \hat{a}_{+}^{2}(\vec{k})+\omega_{1}(\vec{k}) \hat{a}_{+}^{1 \dagger}(\vec{k}) \hat{a}_{+}^{1}(\vec{k})\right) \hat{a}_{+}^{\prime \dagger}(\vec{p}) \hat{a}_{+}^{J}(\vec{p}) \\
& -\hat{a}_{+}^{\dagger \dagger}(\vec{p}) \hat{a}_{+}^{J}(\vec{p})\left(\omega_{2}(\vec{k}) \hat{a}_{+}^{2 \dagger}(\vec{k}) \hat{a}_{+}^{2}(\vec{k})+\omega_{1}(\vec{k}) \hat{a}_{+}^{1 \dagger}(\vec{k}) \hat{a}_{+}^{1}(\vec{k})\right) \\
= & i\left\langle\left[\begin{array}{cc}
0 & \left(\omega_{1}-\omega_{2}\right) \hat{a}_{+}^{\dagger \dagger}(\vec{p}) \hat{a}_{+}^{2}(\vec{p}) \\
\left(\omega_{2}-\omega_{1}\right) \hat{a}_{+}^{2 \dagger}(\vec{p}) \hat{a}_{+}^{1}(\vec{p}) & 0
\end{array}\right]\right\rangle
\end{aligned}
$$

...is eqn for neutrino density matrix from Schrodinger Eqn

5 : Take the vacuum-expectation value:
$\left\langle\hat{n}_{++}^{\prime \prime}(\vec{p})\right\rangle \equiv\left[f_{++}\right]^{I J}(\vec{p})$ is the density matrix for the 2-state neutrino system. To check that QFT and QM gives same dynamics, construct QM density matrix for $|\nu(t)\rangle=s\left|\nu_{1}(t)\right\rangle+c\left|\nu_{2}(t)\right\rangle:$

$$
\left[\begin{array}{cc}
s^{2}\left|\nu_{1}(t)\right\rangle\left\langle\nu_{1}(t)\right| & s c\left|\nu_{1}(t)\right\rangle\left\langle\nu_{2}(t)\right| \\
s c\left|\nu_{2}(t)\right\rangle\left\langle\nu_{1}(t)\right| & c^{2}\left|\nu_{2}(t)\right\rangle\left\langle\nu_{2}(t)\right|
\end{array}\right]
$$

The QM Hamiltonian

$$
\left[\begin{array}{cc}
-\frac{m_{2}^{2}-m_{1}^{2}}{4 \omega} & 0 \\
0 & \frac{m_{2}^{2}-m_{1}^{2}}{4 \omega}
\end{array}\right]
$$

get EoM $\partial_{t}[f]=i[[H],[f]]$, is same as QFT. NB, now H is matrix in flavour space
\Rightarrow so the simple quantum mechanical formulae are ok!

Flavour transition in matter

 oscillations and adiabatic
Flavour transitions in matter

Coherent forward scattering of ν in matter give extra contribution to the Hamiltonian :

To see : use $H_{\text {mat }}=H_{0}+H_{\text {int }}$ in QFT oscillation derivation,

$$
H_{\text {int }} \simeq \pm 2 \sqrt{2} G_{F} \int d^{4} x\left(\overline{\nu_{e}}(x) \gamma^{\alpha} P_{L} \nu_{e}\right)\left(\bar{e} \gamma_{\alpha} P_{L} e(x)\right.
$$

evaluated in a medium with electrons (NC irrelevant; same for all ν generations $=$ add unit matrix to H. And no μ or τ in the matter. \pm for $\nu, \bar{\nu})$

$$
\left.\langle\text { medium }| \bar{e} \gamma_{\alpha} P_{L} e(x) \mid \text { medium }\right\rangle \rightarrow \delta_{\alpha 0} \frac{n_{e}}{2}
$$

$H_{\text {mat }}$ in flavour basis $\left(\nu_{e},\left(\nu_{\mu}+\nu_{\tau}\right) / \sqrt{2}\right), V_{e}=\sqrt{2} G_{F} n_{e}$:

$$
H_{\text {mat }}=\ldots+\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & \Delta^{2} /(2 E)
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta \cos \theta
\end{array}\right]+\left[\begin{array}{cc}
V_{e} & 0 \\
0 & 0
\end{array}\right]
$$

Oscillations in matter — ctd

$H_{\text {mat }}$ in flavour basis $\left(\nu_{e},\left(\nu_{\mu}+\nu_{\tau}\right) / \sqrt{2}\right)$:

$$
H_{\text {mat }}=\ldots+\left[\begin{array}{cc}
-\frac{\Delta^{2}}{4 E} \cos 2 \theta+V_{e} & \frac{\Delta^{2}}{4 E} \sin 2 \theta \\
\frac{\Delta^{2}}{4 E} \sin 2 \theta & \frac{\Delta^{2}}{4 E} \cos 2 \theta
\end{array}\right]
$$

With $U_{\text {mat }}^{\top} H_{\text {mat }} U_{\text {mat }}^{*}=$ diagonal :

$$
\begin{aligned}
\tan \left(2 \theta_{\mathrm{mat}}\right) & =\frac{\Delta^{2} \sin \left(2 \theta_{\mathrm{vac}}\right)}{2 E V_{e}-\Delta^{2} \cos \left(2 \theta_{\mathrm{vac}}\right)}{ }^{2 E V_{e} \rightarrow \Delta^{2} c 2 \theta} \text { large } \\
\Delta_{\text {mat }}^{2} & =\sqrt{\left(\Delta^{2} c 2 \theta-2 E V\right)^{2}+\left(\Delta^{2} s 2 \theta\right)^{2}}
\end{aligned}
$$

- for $V_{e} \ll \frac{\Delta^{2}}{2 E} \cos \left(2 \theta_{\text {vac }}\right)$, matter effects negligeable
- $\theta_{\text {mat }} \rightarrow \pi / 4$ ("resonance") at $V_{e}=\frac{\Delta^{2}}{2 E} \cos \left(2 \theta_{\text {vac }}\right)$
- $V \gg \frac{\Delta^{2}}{2 E} \cos \left(2 \theta_{\mathrm{vac}}\right): \nu_{e} \sim$ mass eigenstate

What is V_{e} ?

$$
\begin{gathered}
H_{\text {mat }}=\ldots+\left[\begin{array}{cc}
-\frac{\Delta^{2}}{4 E} \cos 2 \theta+V_{e} & \frac{\Delta^{2}}{4 E} \sin 2 \theta \\
\frac{\Delta^{2}}{4 E} \sin 2 \theta & \frac{\Delta^{2}}{4 E} \cos 2 \theta
\end{array}\right] \\
\tan \left(2 \theta_{\text {mat }}\right)=\frac{\Delta^{2} \sin \left(2 \theta_{\text {vac }}\right)}{2 E V_{e}-\Delta^{2} \cos \left(2 \theta_{\text {vac }}\right)} \\
V_{e}=\sqrt{2} G_{F} n_{e} \simeq 8 \mathrm{eV} \frac{\rho Y_{e}}{10^{14} \mathrm{~g} / \mathrm{cm}^{3}} \\
Y_{e}=\frac{n_{e}}{n_{n}+n_{p}}, \rho=\left\{\begin{array}{cc}
10 \mathrm{~g} / \mathrm{cm}^{3} & \text { earth } \\
100 \mathrm{~g} / \mathrm{cm}^{3} & \text { sun } \\
10^{14} \mathrm{~g} / \mathrm{cm}^{3} & \mathrm{SN}
\end{array}\right.
\end{gathered}
$$

Flavour transitions in matter of varying density
Recall $V_{e} \simeq 8 Y_{e} \frac{\rho}{10^{14} g / \mathrm{cm}^{3}} \mathrm{eV}$. For varying $\rho(r)$, have t-dep Hamiltonian :

$$
\left[\begin{array}{cc}
-\frac{\Delta^{2}}{4 E} \cos 2 \theta+V_{e}(t) & \frac{\Delta^{2}}{4 E} \sin 2 \theta \\
\frac{\Delta^{2}}{4 E} \sin 2 \theta & \frac{\Delta^{2}}{4 E} \cos 2 \theta
\end{array}\right]
$$

$\theta_{\text {mat }}$ time dependent...two limits :

1. adiabatic case : neglect $\dot{\theta}_{\text {mat }}$, instantaneous mass eigenstates ν_{i} not mix. NB : $\mathcal{P}_{e e} \rightarrow 0$ possible if produce ν_{e}, no oscillations !
2. non-adiabatic \Leftrightarrow level hopping

- produce ν_{e} at the core of the sun : . $4 \mathrm{MeV} \lesssim E \lesssim 10 \mathrm{MeV}$.
- matter oscillation length < vacuum oscillation length $\sim 10 \frac{E}{M e V} \frac{10^{-4} e^{2}}{\Delta^{2}} \ll R_{\text {sun }}$. So oscillations decohere \Leftrightarrow propagate mass eigenstates.
- Matter effects negligeable for $E \lesssim$ few MeV :

$$
P_{e e}=1-\frac{1}{2} \sin ^{2} 2 \theta_{v a c}>\frac{1}{2}
$$

- adiabatic matter effects for $E \gtrsim$ few MeV , allows $P_{e e}<.5$.

