

Research supported by the High Luminosity LHC project

HiLumi LHC: Correction of D2

F.F. Van der Veken in collaboration with M. Giovannozzi and R. De Maria

Outline

(1) Introduction

(2) Correction of b_{3}
(3) Correction of b_{5}

4 Other Orders and Conclusions

Aim

- We want to use the non-linear correctors to correct the field quality of D2 (MBRD)
- This is an extension of the current correction algorithm
- Not trivial: D2 has two apertures, correctors have one
\Rightarrow Correction of both beams simultaneously !

Setup

- DA is calculated over:
- $\quad 5$ angles $\left(15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}\right.$, and $\left.75^{\circ}\right)$
- 60 random realisations ('seeds')
- Unless otherwise noted, all errors assigned at nominal value
- HLLHC 1.0 optics

Example DA plot

absolute maximum (maximum angle over all seeds)
 individual seed lines (average over angles per seed)

average DA

(average over angles and over seeds)
absolute minimum
(minimum angle over all seeds)

Approach

- Best we can do, is to correct the average of the errors of both apertures in D2
- Systematic errors in D2 are antisymmetric for even and symmetric for odd orders, and skew error components have no systematic part
\Rightarrow Systematic errors: only b_{3} and b_{5} can be corrected
\Rightarrow Random error parts can be corrected at all orders (up to b_{6}), but physical reproductivity should be taken with a grain of salt
- Closest single-aperture magnet is D1
\Rightarrow use it to compare efficiency of correction algorithm

Outline

(1) Introduction
(2) Correction of b_{3}
(3) Correction of b_{5}

4 Other Orders and Conclusions

DA in function of $\boldsymbol{b}_{\mathbf{3}}$ of D1

Beam 1
(no errors in D2)

DA in function of b_{3} of D2

Beam 1

Correction of b_{3} of D2

- Correction algorithm for b_{3} of D2 works efficiently
- Especially for higher values of b_{3}

Summary of b_{3} correction for D1 and D2

DA (σ)

[^0]D1: $b_{3}=-0.9$ (full correction)
D2: No errors

D1: $\boldsymbol{b}_{3}=-0.9$ (full correction)
D2: $b_{3}=9.9$ (full correction)

Strength of $\boldsymbol{b}_{\mathbf{3}}$ correctors for D1 (beam 1)

Strength of $\boldsymbol{b}_{\mathbf{3}}$ correctors for D1 (beam 4)

Strength of \boldsymbol{b}_{3} correctors for D2 (beam 1)

Strength of \boldsymbol{b}_{3} correctors for D2 (beam 4)

Outline

(2) Correction of b_{3}
(3) Correction of b_{5}

4 Other Orders and Conclusions

DA in function of $\boldsymbol{b}_{\mathbf{5}}$ of D1

Beam 1
(no errors in D2)
Beam 4

LARGE HADRON COLLIDER

Systematic b_{5} of D1

$$
Q_{y}=60.32
$$

$$
Q^{\prime}=3
$$

$$
I_{\mathrm{MO}}=0 \mathrm{~A}
$$

$$
\mu_{x}^{1 \rightarrow 5}=31.210
$$

$$
\mu_{y}^{1 \rightarrow 5}=30.373
$$

$$
\phi_{1}=90^{\circ}
$$

$$
\phi_{5}=0^{\circ}
$$

- no correction
- full correction

DA in function of $\boldsymbol{b}_{\mathbf{5}}$ of $\mathbf{D} \mathbf{2}$

Beam 1

Beam 4

- no correction
- full correction

Correction of b_{5}

- Correction algorithm for b_{5} works efficiently in the case of D1 (dependence on b_{5} becomes horizontal line)
- But not really for D2 !
- Let's expand the region in b_{5} to investigate the trend

DA in function of $\boldsymbol{b}_{\mathbf{5}}$ of D1

Beam 1
(no errors in D2)

- no correction
- full correction

DA in function of $\boldsymbol{b}_{\mathbf{5}}$ of $\mathbf{D} 2$

Beam 1

Beam 4

- no correction
- full correction

Correction of b_{5}

- Correction algorithm for b_{5} still works in the case of D1, but less efficient (errors are not fully corrected, but there is still a gain)
- Correction has a minimal effect for the nominal value of b_{5} in D2, but lowers dynamic aperture for higher values
\Rightarrow Correction seems faulty !
- Let's have a look at the resonance driving terms to see if the correction algorithm minimises these
\Rightarrow Compare b_{3} with b_{5}

Resonance driving terms: b_{3} (beam 1)

Resonance $\{2,1\}$

Resonance \{1, 2\}

\square No D2, no correctors
\square No D2, with correctors
\square With D2, no correctors

- With D2, with correctors

Resonance driving terms: b_{3} (beam 1)

Resonance $\{3,0\}$

Resonance $\{0,3\}$

- No D2, no correctors

No D2, with correctors
\square With D2, no correctors
With D2, with correctors

Resonance driving terms: b_{5} (beam 1)

Resonance \{5, 0\}

Resonance \{0,5\}

- No D2, no correctors
- No D2, with correctors
\square With D2, no correctors
- With D2, with correctors

Resonance driving terms: b_{5} (beam 1)

Resonance \{3, 2\}

Resonance \{2, 3\}

- No D2, no correctors
- No D2, with correctors
\square With D2, no correctors
- With D2, with correctors

Resonance driving terms: b_{5} (beam 1)

Resonance \{4, 1\}

Resonance \{1, 4\}

\square No D2, no correctors

- No D2, with correctors
\square With D2, no correctors
- With D2, with correctors

Correlation of Driving Terms and DA

Resonance: $\{5,0\} \quad b_{5}$ of D2: $-35 \quad$ IP: 1
Average DA

Correlation of Driving Terms and DA

Resonance: $\{3,0\} \quad b_{3}$ of D2: -4
IP: 1
Minimum DA

Conclusion

- There is no difference in the minimisation between b_{3} and b_{5}
- Correlation between driving terms and dynamic aperture is unclear (but should be present)
\Rightarrow Also not visible for b_{3}
\Rightarrow Variation is not big enough
- Need to study the correlation deeper by increasing the random part until the correlation becomes apparent
\Rightarrow Other resonance might correlate better with DA!

Outline

(2) Correction of b_{3}
(3) Correction of b_{5}

4 Other Orders and Conclusions

Other orders of D2

- Concerning the systematic part of the errors, only b_{3} and b_{5} can be corrected
- But for the random parts, all orders can be corrected (still by taking the average over both beams)
- This might be overly optimistic and no reproducable in reality
\Rightarrow However, effect is expected to be neglicible
\Rightarrow Investigate the impact on DA of correcting other orders

$\mathrm{DA}_{y}(\sigma)$

$D A_{x}(\sigma)$

Final Conclusions

- Correction of b_{3} works very well
- Correction of b_{5} is a bit less reliable; maybe other choice of resonance minimisation improves the situation
- Correction of other orders has no effect (as expected)

www.cern.ch

[^0]: 2

