Rust for C++
Programmers

Radu Popescu

CERN SFT Group, “Software We Love” Meetup, Feb 24th 2017

®

"Rust Is a systems programming language that
runs blazingly fast, prevents segfaults, and
guarantees thread safety.”

-the person who wrote the Rust website

Rust is only about safety

* Ownership and lifetimes are a means to eliminate
certain types of memory errors

* All is done at compile time (minimal runtime library
IS needed, always statically linked)

e Safer concurrency

e Uses LLVM as backend

Rust is not only about safety

Abstractions “stolen” from high-level languages:
* Algebraic data types

e Pattern matching

* Error handling

* Jype inference

* Polymorphism (using traits ~ type classes)

Zero cost abstractions®

4

Brief history of Rust

2006 - Started as a personal project of Graydon Hoare
(@graydon_pub) at Mozilla

2009 - Mozilla sponsorship begins

2011 - Rust compiler is self-hosted (previously OCaml)

2012 - First pre-alpha

2015 - Version 1.0 - first stable release, API stability guaranteed
Since 1.0, a new stable minor release every ~6 weeks.

Backed by Mozilla, Open Source

5

fn twice(val: i32) -> 132 {
2 x val

fn main() {
let mut some_var: 132 = 3;
println! ("Two times {} makes {}”,
some_var, twice(some_var)):;

let arrrr = [1, 2, 3];
println! ("Arrrr {:72}!", arrrr);
println! ("Segmentation fault!!!!");

Primitive types

Booleans: true, false
Char (Unicode): ¢a’, ¢‘b’, ‘c’

Numeric type: signed and unsigned integers of various widths, single and
double floats

Arrays: [1, 2, 3, 4, 5],[2.0, 3.0, 4.0] etc.
Slices (views into arrays and collections): &[T]

str: string slices (pointer + length)

Tuples: (1, “two”, true)

Functions (pointers):

Functions

fn some_function(x: f64, y: f64) —-> f64 {
let z = x + vy;
Z * Z

Algebraic data types

Sum types: enums (tagged unions, variants)

enum Event {
Quit,
NewPosition(i32, 132, 132),
Clone { x: 132, y: 132 },
Write(String),

Algebraic data types

Product types: structs, tuple-structs, empty structs
struct Point {

X: 132,

y: 132,
}

struct Point(i32, 132, 132);

struct Electron {}

10

Pattern matching

Match expressions:

match some_enum_value {

Event::Quit => {
do_something();

I

Event: :NewPosition(x, y, z) => {
do_something_else(x, y, z);

I

Event::Clone { x: 132, y: 132 } => {
maybe_this(x, y);

I

Event: :Write(msg) => {
println! (msg);

I

11

Pattern matching

Match expressions:

match some_struct _value {
Point { x, v } => { x + vy },
}

match some_struct _value {
Point { x, .. } => { x + vy },
ks

12

Methods

struct Point {
x: 64,
y: T64,

}

impl Point {
fn new(xl: f64, yl: f64) -> Point {
Point { x: x1, y: yl }
}
fn dist(&self) -> f64 {
f64::sqrt(self.x * self.x + self.y * self.y)

}
}
fn main() {
let p = Point::new(1.0, 2.0);
println! ("{}", p.dist());
}

13

Ownership

Variables have ownership of data they are bound to:

let a = [1,2,3];

Rust has move semantics by default:

let a = [1,2,3];
let b = aj;
println! (“{:?}", a);

14

Borrowing

* |t's possible to borrow values by taking references

* Either multiple read-only references (&T) to the same data can
exist at the same time, or a single mutable reference (&mut T)

fn some_fun(v: &i32) —-> 132 {

Y
}
fn main() {
let mut a = 2;

let bref = &mut a;

some_fun(&a); // compilation error

15

Lifetimes

The following usage is ambiguous and causes compilation errors:

fn fn_with_references(rl: &i32, r2: &i32) —-> &1i132 {

rl
}
struct Container {
val: &132,
}
fn main() {
let a = 2;
let b = 3;
fn_with_references(&a, &b);
let ¢ = Container { val: &a };
}

16

Lifetimes

We need to introduce explicit lifetime parameters to track validity of references:

fn fn_with_references<'a, 'b>(rl: &'a 132, r2: &'b 132) -> &'a 132 {
rl

}

struct Container<'a> {
val: &'a 132,

}
fn main() {
let a = 2;
let b = 3;
fn_with_references(&a, &b);
let ¢ = Container { val: &a };
}

17

One weird trick...

A struct allocated on the stack, passing references to its
data members, references which are guaranteed at
compile time to not outlive the instance of the struct itself:

struct X {
y: Y
}

impl X {
fn y(&self) -> &Y { &self.y }
¥

http://robert.ocallahan.org/2017/02/what-rust-can-do-that-other-languages.htm|

18

http://robert.ocallahan.org/2017/02/what-rust-can-do-that-other-languages.html

Polymorphism: Generics

Generic functions:

fn some_function<T>(x: T) {

}

Generic data structures:

enum Option<T> { struct Point<T> {
Some(T), x: T,
None, y: T,

} }

19

Polymorphism: Traits

Traits (a.k.a. type classes) describe what
functionality a set of types must provide

Similar to interfaces in OO languages, or
Concepts (Lite?) in C++

The implementation of a trait for a given type is
done outside of the definition of the type

Much functionality is implemented with traits:
Copy, Clone, Drop, From, Display, Debug etc.

20

Polymorphism: Traits

struct Circle {
x: f64,
y: 64,
radius: f64,
}

trait HasArea {
fn area(&self) -> f64;

}

impl HasArea for Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)

}
}

fn print_area<T>(shape: T) {
println! ("This shape has an area of {}", shape.area());

}

21

Memory management

e Stack allocation is preferred (and made safe and
efficient with move semantics, borrowing, lifetimes etc.)

* Full range of smart pointers for heap allocation, as in
C++:

e Box<T> -similarto std: :unique_ptr<T>

* Rc<T>, Arc<T> -similarto std: :shared_ptr<T>

22

Error handling

Preter explicit error handling:

enum Option<T> { enum Result<T, E> {
Some(T), ok(T),
None, Err(E),

¥ ¥

Can be used in pattern matching!

23

Error handling

Can use combinator functions for Option and Result:

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
File: :open(file_path)
.map_err(|err| err.to_string())
.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)
.map_err(|err| err.to_string())
.map(|_| contents)
})
.and_then(|contents| {
contents.trim() .parse: :<i32>()
.map_err(|err| err.to_string())

})

.map(|n| 2 * n)

24

Error handling

Can use early return macro try! and the early return
operator ?:

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
let mut file = try!(File::open(file_path).map_err(|e| e.to_string()));
let mut contents = String::new();
try! (file.read_to_string(&mut contents).map_err(|e| e.to_string()));
let n = try! (contents.trim().parse::<i32>().map_err(|e| e.to_string()));
Ok(2 * n)

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
let mut file = File::open(file_path).map_err(|e| e.to_string())?;
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_string())?;
let n = contents.trim().parse::<i32>().map_err(|e| e.to_string())?;
Ok(2 * n)

25

Concurrency

Native threads

All the synchronisation primitives: atomic types, barriers, mutexes,
rw-locks, condition variables etc.

Channels
Two traits describe the semantics in a multi-threaded context:
* Send - ownership of a value can be transferred between threads
e Sync - can safely be used from multiple threads through shared references

Crossbeam - additional high-performance algorithms and data structures in the
package (https://docs.rs/crossbeam/0.2.10/crossbeam/) - Scoped threads!

Rayon - a parallelism library (https://github.com/nikomatsakis/rayon)

20

https://docs.rs/crossbeam/0.2.10/crossbeam/
https://github.com/nikomatsakis/rayon

More concurrency

* Asynchronous programming with (zero-cost futures) Futures:
https://aturon.github.io/blog/2016/08/11/futures/

e Can be composed with similar set of combinators as Option<T> and
Result<T,E>!

* Tokyo - high-performance network programming based on Futures:

hitps://tokio.rs/

e Separate your application-specific parts (tokio-service, tokio-
protocol) from the underlying state-machine: tokio-core.

 Middleware: SSL, timers, logging, etc.

o Support for: TCP, UDP, sockets, signals, processes, databases, inotify
etc.

27

https://aturon.github.io/blog/2016/08/11/futures/
https://tokio.rs/

Other language features

Important topics that weren't covered here:

iterators

e closures

e Interior mutability

* macros

e trait objects (dynamic dispatch)

e associated types

The Rust Book covers everything!

28

Development tools

rustup - install and update Rust, add components, toolchains, targets for cross-
compilation etc.

Cargo - build tool with dependency management; one stop shop for project
configuration

Can use GDB, LLDB, Perf, macOS Instruments etc.

crates.io - online database of packages (“crates”), used by Cargo

docs.rs - online database with documentation of Rust + crates.io

Editor and IDE plugins (Vim, Emacs, Visual Studio Code, Sublime Text, Atom, Intellid etc.)
Rust Language Server, Racer - autocompletion and smart editing

rustfmt - formats all source code files, eliminates bikeshedding

Clippy” - very smart linter

29

http://crates.io
http://docs.rs

Testing, benchmarks,
documentation

Cargo has built-in support for:
* Unit tests
* Integration tests

* Doc-tests (examples in documentation are
compiled and tested)!

e Micro-benchmarks™

30

Demo

Unsafe Rust

Sometimes it may be necessary to loosen the restriction of the compiler:
interact with native C or C++ code, compiler is unable to verity
correctness
Can use the “unsafe” block in this case
Unsafe Rust can ONLY do three extra things:

e Access and mutate static mutable variables

e Dereference a raw pointer

e Call unsafe functions

Programmer must be sure to manually enforce the invariants of the
compiler!

32

The bad parts

Language is young. API stability since 1.0, but things
can still change

Smaller community, for now

There is still much to be iImproved: ergonomics,
resources, adding/stabilising missing features

Fewer libraries. Many crates are wrappers around C or
C++ libs (not necessarily a bad thing)

Fewer posts on StackOverflow (may be a great thing!)

33

Resources: Tools

Rustup (https://rustup.rs/) - install and update Rust, Cargo,
rustdoc, rust-gdb, rust-lidb

crates.io (https://crates.io) - database of Rust packages

Racer (https://github.com/phildawes/racer) - Rust
autocompletion for your editor/IDE

rustfmt (hitps://github.com/rust-lang-nursery/rustimt) -
automatic formatting for Rust source code files

Clippy (https://github.com/Manishearth/rust-clippy) - smart
inter for Rust code

34

https://rustup.rs/
http://crates.io
https://crates.io
https://github.com/phildawes/racer
https://github.com/rust-lang-nursery/rustfmt
https://github.com/Manishearth/rust-clippy

Resources: Documentation

» docs.rs (https://docs.rs) - documentation for Rust std
ibrary and all the packages on crates.io

* The Rust Book (https://doc.rust-lang.org/stable/book/) - In
depth presentation of the language, referenced by this
tutorial!

* [earning with examples (http://rustbyexample.com/)

e Online Rust playground (https://play.rust-lang.org/)

* The Rustonomicon (https://doc.rust-lang.org/nomicon/) -
WIP Guide to Unsafe Rust

35

http://docs.rs
https://docs.rs
http://crates.io
https://doc.rust-lang.org/stable/book/
http://rustbyexample.com/
https://play.rust-lang.org/
https://doc.rust-lang.org/nomicon/

Resources: Community

hitps://www.rust-lang.org/en-US/community.html

https://users.rust-lang.org/

https://www.reddit.com/r/rust/

Industrial users of Rust: https://www.rust-lang.org/
en-US/friends.html

36

https://www.rust-lang.org/en-US/community.html
https://users.rust-lang.org/
https://www.reddit.com/r/rust/
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html

Thank you!

| hope you enjoy Rust!

