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"Rust Is a systems programming language that
runs blazingly fast, prevents segfaults, and
guarantees thread safety.”

-the person who wrote the Rust website



Rust is only about safety

* Ownership and lifetimes are a means to eliminate
certain types of memory errors

* All is done at compile time (minimal runtime library
IS needed, always statically linked)

e Safer concurrency

e Uses LLVM as backend



Rust is not only about safety

Abstractions “stolen” from high-level languages:
* Algebraic data types

e Pattern matching

* Error handling

* Jype inference

* Polymorphism (using traits ~ type classes)

Zero cost abstractions®
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Brief history of Rust

2006 - Started as a personal project of Graydon Hoare
(@graydon_pub) at Mozilla

2009 - Mozilla sponsorship begins

2011 - Rust compiler is self-hosted (previously OCaml)

2012 - First pre-alpha

2015 - Version 1.0 - first stable release, API stability guaranteed
Since 1.0, a new stable minor release every ~6 weeks.

Backed by Mozilla, Open Source
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fn twice(val: i32) -> 132 {
2 x val

fn main() {
let mut some_var: 132 = 3;
println! ("Two times {} makes {}”,
some_var, twice(some_var)):;

let arrrr = [1, 2, 3];
println! ("Arrrr {:72}!", arrrr);
println! ("Segmentation fault!!!!");



Primitive types

Booleans: true, false
Char (Unicode): ¢a’, ¢‘b’, ‘c’

Numeric type: signed and unsigned integers of various widths, single and
double floats

Arrays: [1, 2, 3, 4, 5],[2.0, 3.0, 4.0] etc.
Slices (views into arrays and collections): &[T]

str: string slices (pointer + length)

Tuples: (1, “two”, true)

Functions (pointers):



Functions

fn some_function(x: f64, y: f64) —-> f64 {
let z = x + vy;
Z * Z



Algebraic data types

Sum types: enums (tagged unions, variants)

enum Event {
Quit,
NewPosition(i32, 132, 132),
Clone { x: 132, y: 132 },
Write(String),



Algebraic data types

Product types: structs, tuple-structs, empty structs
struct Point {

X: 132,

y: 132,
}

struct Point(i32, 132, 132);

struct Electron {}
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Pattern matching

Match expressions:

match some_enum_value {

Event::Quit => {
do_something();

I

Event: :NewPosition(x, y, z) => {
do_something_else(x, y, z);

I

Event::Clone { x: 132, y: 132 } => {
maybe_this(x, y);

I

Event: :Write(msg) => {
println! (msg);

I
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Pattern matching

Match expressions:

match some_struct _value {
Point { x, v } => { x + vy },
}

match some_struct _value {
Point { x, .. } => { x + vy },
ks
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Methods

struct Point {
x: 64,
y: T64,

}

impl Point {
fn new(xl: f64, yl: f64) -> Point {
Point { x: x1, y: yl }
}
fn dist(&self) -> f64 {
f64::sqrt(self.x * self.x + self.y * self.y)

}
}
fn main() {
let p = Point::new(1.0, 2.0);
println! ("{}", p.dist());
}
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Ownership

Variables have ownership of data they are bound to:

let a = [1,2,3];

Rust has move semantics by default:

let a = [1,2,3];
let b = aj;
println! (“{:?}", a);
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Borrowing

* |t's possible to borrow values by taking references

* Either multiple read-only references (&T) to the same data can
exist at the same time, or a single mutable reference (&mut T)

fn some_fun(v: &i32) —-> 132 {

Y
}
fn main() {
let mut a = 2;

let bref = &mut a;

some_fun(&a); // compilation error
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Lifetimes

The following usage is ambiguous and causes compilation errors:

fn fn_with_references(rl: &i32, r2: &i32) —-> &1i132 {

rl
}
struct Container {
val: &132,
}
fn main() {
let a = 2;
let b = 3;
fn_with_references(&a, &b);
let ¢ = Container { val: &a };
}
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Lifetimes

We need to introduce explicit lifetime parameters to track validity of references:

fn fn_with_references<'a, 'b>(rl: &'a 132, r2: &'b 132) -> &'a 132 {
rl

}

struct Container<'a> {
val: &'a 132,

}
fn main() {
let a = 2;
let b = 3;
fn_with_references(&a, &b);
let ¢ = Container { val: &a };
}
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One weird trick...

A struct allocated on the stack, passing references to its
data members, references which are guaranteed at
compile time to not outlive the instance of the struct itself:

struct X {
y: Y
}

impl X {
fn y(&self) -> &Y { &self.y }
¥

http://robert.ocallahan.org/2017/02/what-rust-can-do-that-other-languages.htm|
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Polymorphism: Generics

Generic functions:

fn some_function<T>(x: T) {

}

Generic data structures:

enum Option<T> { struct Point<T> {
Some(T), x: T,
None, y: T,

} }
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Polymorphism: Traits

Traits (a.k.a. type classes) describe what
functionality a set of types must provide

Similar to interfaces in OO languages, or
Concepts (Lite?) in C++

The implementation of a trait for a given type is
done outside of the definition of the type

Much functionality is implemented with traits:
Copy, Clone, Drop, From, Display, Debug etc.
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Polymorphism: Traits

struct Circle {
x: f64,
y: 64,
radius: f64,
}

trait HasArea {
fn area(&self) -> f64;

}

impl HasArea for Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)

}
}

fn print_area<T>(shape: T) {
println! ("This shape has an area of {}", shape.area());

}
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Memory management

e Stack allocation is preferred (and made safe and
efficient with move semantics, borrowing, lifetimes etc.)

* Full range of smart pointers for heap allocation, as in
C++:

e Box<T> -similarto std: :unique_ptr<T>

* Rc<T>, Arc<T> -similarto std: :shared_ptr<T>
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Error handling

Preter explicit error handling:

enum Option<T> { enum Result<T, E> {
Some(T), ok(T),
None, Err(E),

¥ ¥

Can be used in pattern matching!
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Error handling

Can use combinator functions for Option and Result:

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
File: :open(file_path)
.map_err(|err| err.to_string())
.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)
.map_err(|err| err.to_string())
.map(|_| contents)
})
.and_then(|contents| {
contents.trim() .parse: :<i32>()
.map_err(|err| err.to_string())

})

.map(|n| 2 * n)
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Error handling

Can use early return macro try! and the early return
operator ?:

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
let mut file = try!(File::open(file_path).map_err(|e| e.to_string()));
let mut contents = String::new();
try! (file.read_to_string(&mut contents).map_err(|e| e.to_string()));
let n = try! (contents.trim().parse::<i32>().map_err(|e| e.to_string()));
Ok(2 * n)

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
let mut file = File::open(file_path).map_err(|e| e.to_string())?;
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_string())?;
let n = contents.trim().parse::<i32>().map_err(|e| e.to_string())?;
Ok(2 * n)
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Concurrency

Native threads

All the synchronisation primitives: atomic types, barriers, mutexes,
rw-locks, condition variables etc.

Channels
Two traits describe the semantics in a multi-threaded context:
* Send - ownership of a value can be transferred between threads
e Sync - can safely be used from multiple threads through shared references

Crossbeam - additional high-performance algorithms and data structures in the
package (https://docs.rs/crossbeam/0.2.10/crossbeam/) - Scoped threads!

Rayon - a parallelism library (https://github.com/nikomatsakis/rayon)
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More concurrency

* Asynchronous programming with (zero-cost futures) Futures:
https://aturon.github.io/blog/2016/08/11/futures/

e Can be composed with similar set of combinators as Option<T> and
Result<T,E>!

* Tokyo - high-performance network programming based on Futures:

hitps://tokio.rs/

e Separate your application-specific parts (tokio-service, tokio-
protocol) from the underlying state-machine: tokio-core.

 Middleware: SSL, timers, logging, etc.

o Support for: TCP, UDP, sockets, signals, processes, databases, inotify
etc.
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Other language features

Important topics that weren't covered here:

iterators

e closures

e Interior mutability

* macros

e trait objects (dynamic dispatch)

e associated types

The Rust Book covers everything!
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Development tools

rustup - install and update Rust, add components, toolchains, targets for cross-
compilation etc.

Cargo - build tool with dependency management; one stop shop for project
configuration

Can use GDB, LLDB, Perf, macOS Instruments etc.

crates.io - online database of packages (“crates”), used by Cargo

docs.rs - online database with documentation of Rust + crates.io

Editor and IDE plugins (Vim, Emacs, Visual Studio Code, Sublime Text, Atom, Intellid etc.)
Rust Language Server, Racer - autocompletion and smart editing

rustfmt - formats all source code files, eliminates bikeshedding

Clippy” - very smart linter
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Testing, benchmarks,
documentation

Cargo has built-in support for:
* Unit tests
* Integration tests

* Doc-tests (examples in documentation are
compiled and tested)!

e Micro-benchmarks™
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Demo



Unsafe Rust

Sometimes it may be necessary to loosen the restriction of the compiler:
interact with native C or C++ code, compiler is unable to verity
correctness
Can use the “unsafe” block in this case
Unsafe Rust can ONLY do three extra things:

e Access and mutate static mutable variables

e Dereference a raw pointer

e Call unsafe functions

Programmer must be sure to manually enforce the invariants of the
compiler!
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The bad parts

Language is young. API stability since 1.0, but things
can still change

Smaller community, for now

There is still much to be iImproved: ergonomics,
resources, adding/stabilising missing features

Fewer libraries. Many crates are wrappers around C or
C++ libs (not necessarily a bad thing)

Fewer posts on StackOverflow (may be a great thing!)
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Resources: Tools

Rustup (https://rustup.rs/) - install and update Rust, Cargo,
rustdoc, rust-gdb, rust-lidb

crates.io (https://crates.io) - database of Rust packages

Racer (https://github.com/phildawes/racer) - Rust
autocompletion for your editor/IDE

rustfmt (hitps://github.com/rust-lang-nursery/rustimt) -
automatic formatting for Rust source code files

Clippy (https://github.com/Manishearth/rust-clippy) - smart
inter for Rust code
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Resources: Documentation

» docs.rs (https://docs.rs) - documentation for Rust std
ibrary and all the packages on crates.io

* The Rust Book (https://doc.rust-lang.org/stable/book/) - In
depth presentation of the language, referenced by this
tutorial!

* [earning with examples (http://rustbyexample.com/)

e Online Rust playground (https://play.rust-lang.org/)

* The Rustonomicon (https://doc.rust-lang.org/nomicon/) -
WIP Guide to Unsafe Rust
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Resources: Community

hitps://www.rust-lang.org/en-US/community.html

https://users.rust-lang.org/

https://www.reddit.com/r/rust/

Industrial users of Rust: https://www.rust-lang.org/
en-US/friends.html
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Thank you!

| hope you enjoy Rust!



