
Rust for C++
Programmers

Radu Popescu
CERN SFT Group, “Software We Love” Meetup, Feb 24th 2017

-the person who wrote the Rust website

“Rust is a systems programming language that
runs blazingly fast, prevents segfaults, and

guarantees thread safety.”

2

Rust is only about safety

• Ownership and lifetimes are a means to eliminate
certain types of memory errors

• All is done at compile time (minimal runtime library
is needed, always statically linked)

• Safer concurrency

• Uses LLVM as backend

3

Rust is not only about safety
Abstractions “stolen” from high-level languages:

• Algebraic data types

• Pattern matching

• Error handling

• Type inference

• Polymorphism (using traits ~ type classes)

Zero cost abstractions*

4

Brief history of Rust
• 2006 - Started as a personal project of Graydon Hoare

(@graydon_pub) at Mozilla

• 2009 - Mozilla sponsorship begins

• 2011 - Rust compiler is self-hosted (previously OCaml)

• 2012 - First pre-alpha

• 2015 - Version 1.0 - first stable release, API stability guaranteed

• Since 1.0, a new stable minor release every ~6 weeks.

• Backed by Mozilla, Open Source

5

fn twice(val: i32) -> i32 {
 2 * val
}

fn main() {
 let mut some_var: i32 = 3;
 println!("Two times {} makes {}”,
 some_var, twice(some_var));

 let arrrr = [1, 2, 3];
 println!("Arrrr {:?}!", arrrr);
 println!("Segmentation fault!!!!");
}

6

Primitive types
• Booleans: true, false

• Char (Unicode): ‘a’, ‘b’, ‘c’

• Numeric type: signed and unsigned integers of various widths, single and
double floats

• Arrays: [1, 2, 3, 4, 5], [2.0, 3.0, 4.0] etc.

• Slices (views into arrays and collections): &[T]

• str: string slices (pointer + length)

• Tuples: (1, “two”, true)

• Functions (pointers):

7

Functions

fn some_function(x: f64, y: f64) -> f64 {
 let z = x + y;
 z * z
}

8

Algebraic data types
Sum types: enums (tagged unions, variants)

enum Event {
 Quit,
 NewPosition(i32, i32, i32),
 Clone { x: i32, y: i32 },
 Write(String),
}

9

Algebraic data types
Product types: structs, tuple-structs, empty structs

struct Point {
 x: i32,
 y: i32,
}

struct Point(i32, i32, i32);

struct Electron {}

10

Pattern matching
Match expressions:

match some_enum_value {
 Event::Quit => {
 do_something();
 },
 Event::NewPosition(x, y, z) => {
 do_something_else(x, y, z);
 },
 Event::Clone { x: i32, y: i32 } => {
 maybe_this(x, y);
 },
 Event::Write(msg) => {
 println!(msg);
 },
}

11

Pattern matching
Match expressions:

match some_struct_value {
 Point { x, y } => { x + y },
}

match some_struct_value {
 Point { x, .. } => { x + y },
}

12

Methods
struct Point {
 x: f64,
 y: f64,
}

impl Point {
 fn new(x1: f64, y1: f64) -> Point {
 Point { x: x1, y: y1 }
 }
 fn dist(&self) -> f64 {
 f64::sqrt(self.x * self.x + self.y * self.y)
 }
}

fn main() {
 let p = Point::new(1.0, 2.0);
 println!("{}", p.dist());
}

13

Ownership
Variables have ownership of data they are bound to:
let a = [1,2,3];

Rust has move semantics by default:
let a = [1,2,3];

let b = a;

println!(“{:?}", a); // compilation error.

14

Borrowing
• It’s possible to borrow values by taking references

• Either multiple read-only references (&T) to the same data can
exist at the same time, or a single mutable reference (&mut T)

fn some_fun(v: &i32) -> i32 {
 2 * v
}

fn main() {
 let mut a = 2;
 let bref = &mut a;

 some_fun(&a); // compilation error
}

15

Lifetimes
The following usage is ambiguous and causes compilation errors:

fn fn_with_references(r1: &i32, r2: &i32) -> &i32 {
 r1
}

struct Container {
 val: &i32,
}

fn main() {
 let a = 2;
 let b = 3;
 fn_with_references(&a, &b);

 let c = Container { val: &a };
}

16

Lifetimes
We need to introduce explicit lifetime parameters to track validity of references:

fn fn_with_references<'a, 'b>(r1: &'a i32, r2: &'b i32) -> &'a i32 {
 r1
}

struct Container<'a> {
 val: &'a i32,
}

fn main() {
 let a = 2;
 let b = 3;
 fn_with_references(&a, &b);

 let c = Container { val: &a };
}

17

One weird trick…
A struct allocated on the stack, passing references to its
data members, references which are guaranteed at
compile time to not outlive the instance of the struct itself:

struct X {
 y: Y
}

impl X {
 fn y(&self) -> &Y { &self.y }
}

http://robert.ocallahan.org/2017/02/what-rust-can-do-that-other-languages.html

18

http://robert.ocallahan.org/2017/02/what-rust-can-do-that-other-languages.html

Polymorphism: Generics

Generic functions:
fn some_function<T>(x: T) {
 // Do something with `x`.
}

Generic data structures:

19

struct Point<T> {
 x: T,
 y: T,
}

enum Option<T> {
 Some(T),
 None,
}

Polymorphism: Traits
• Traits (a.k.a. type classes) describe what

functionality a set of types must provide

• Similar to interfaces in OO languages, or
Concepts (Lite?) in C++

• The implementation of a trait for a given type is
done outside of the definition of the type

• Much functionality is implemented with traits:
Copy, Clone, Drop, From, Display, Debug etc.

20

Polymorphism: Traits
struct Circle {
 x: f64,
 y: f64,
 radius: f64,
}

trait HasArea {
 fn area(&self) -> f64;
}

impl HasArea for Circle {
 fn area(&self) -> f64 {
 std::f64::consts::PI * (self.radius * self.radius)
 }
}

fn print_area<T>(shape: T) {
 println!("This shape has an area of {}", shape.area());
}

21

Memory management

• Stack allocation is preferred (and made safe and
efficient with move semantics, borrowing, lifetimes etc.)

• Full range of smart pointers for heap allocation, as in
C++:

• Box<T> - similar to std::unique_ptr<T>

• Rc<T>, Arc<T> - similar to std::shared_ptr<T>

22

Error handling
Prefer explicit error handling:

Can be used in pattern matching!

23

enum Result<T, E> {
 Ok(T),
 Err(E),
}

enum Option<T> {
 Some(T),
 None,
}

Error handling
Can use combinator functions for Option and Result:
fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
 File::open(file_path)
 .map_err(|err| err.to_string())
 .and_then(|mut file| {
 let mut contents = String::new();
 file.read_to_string(&mut contents)
 .map_err(|err| err.to_string())
 .map(|_| contents)
 })
 .and_then(|contents| {
 contents.trim().parse::<i32>()
 .map_err(|err| err.to_string())
 })
 .map(|n| 2 * n)
}

24

Error handling
Can use early return macro try! and the early return
operator ?:
fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
 let mut file = try!(File::open(file_path).map_err(|e| e.to_string()));
 let mut contents = String::new();
 try!(file.read_to_string(&mut contents).map_err(|e| e.to_string()));
 let n = try!(contents.trim().parse::<i32>().map_err(|e| e.to_string()));
 Ok(2 * n)
}

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32, String> {
 let mut file = File::open(file_path).map_err(|e| e.to_string())?;
 let mut contents = String::new();
 file.read_to_string(&mut contents).map_err(|e| e.to_string())?;
 let n = contents.trim().parse::<i32>().map_err(|e| e.to_string())?;
 Ok(2 * n)
}

25

Concurrency
• Native threads

• All the synchronisation primitives: atomic types, barriers, mutexes, 
rw-locks, condition variables etc.

• Channels

• Two traits describe the semantics in a multi-threaded context:

• Send - ownership of a value can be transferred between threads

• Sync - can safely be used from multiple threads through shared references

• Crossbeam - additional high-performance algorithms and data structures in the
package (https://docs.rs/crossbeam/0.2.10/crossbeam/) - Scoped threads!

• Rayon - a parallelism library (https://github.com/nikomatsakis/rayon)

26

https://docs.rs/crossbeam/0.2.10/crossbeam/
https://github.com/nikomatsakis/rayon

More concurrency
• Asynchronous programming with (zero-cost futures) Futures: 

https://aturon.github.io/blog/2016/08/11/futures/

• Can be composed with similar set of combinators as Option<T> and
Result<T,E>!

• Tokyo - high-performance network programming based on Futures: 
https://tokio.rs/

• Separate your application-specific parts (tokio-service, tokio-
protocol) from the underlying state-machine: tokio-core.

• Middleware: SSL, timers, logging, etc.

• Support for: TCP, UDP, sockets, signals, processes, databases, inotify
etc.

27

https://aturon.github.io/blog/2016/08/11/futures/
https://tokio.rs/

Other language features
Important topics that weren’t covered here:

• iterators

• closures

• interior mutability

• macros

• trait objects (dynamic dispatch)

• associated types

• …

The Rust Book covers everything!

28

Development tools
• rustup - install and update Rust, add components, toolchains, targets for cross-

compilation etc.

• Cargo - build tool with dependency management; one stop shop for project
configuration

• Can use GDB, LLDB, Perf, macOS Instruments etc.

• crates.io - online database of packages (“crates”), used by Cargo

• docs.rs - online database with documentation of Rust + crates.io

• Editor and IDE plugins (Vim, Emacs, Visual Studio Code, Sublime Text, Atom, IntelliJ etc.)

• Rust Language Server, Racer - autocompletion and smart editing

• rustfmt - formats all source code files, eliminates bikeshedding

• Clippy* - very smart linter

29

http://crates.io
http://docs.rs

Testing, benchmarks,
documentation

Cargo has built-in support for:

• Unit tests

• Integration tests

• Doc-tests (examples in documentation are
compiled and tested)!

• Micro-benchmarks*

30

Demo

31

Unsafe Rust
• Sometimes it may be necessary to loosen the restriction of the compiler:

interact with native C or C++ code, compiler is unable to verify
correctness

• Can use the “unsafe” block in this case

• Unsafe Rust can ONLY do three extra things:

• Access and mutate static mutable variables

• Dereference a raw pointer

• Call unsafe functions

• Programmer must be sure to manually enforce the invariants of the
compiler!

32

The bad parts
• Language is young. API stability since 1.0, but things

can still change

• Smaller community, for now

• There is still much to be improved: ergonomics,
resources, adding/stabilising missing features

• Fewer libraries. Many crates are wrappers around C or
C++ libs (not necessarily a bad thing)

• Fewer posts on StackOverflow (may be a great thing!)

33

Resources: Tools
• Rustup (https://rustup.rs/) - install and update Rust, Cargo,

rustdoc, rust-gdb, rust-lldb

• crates.io (https://crates.io) - database of Rust packages

• Racer (https://github.com/phildawes/racer) - Rust
autocompletion for your editor/IDE

• rustfmt (https://github.com/rust-lang-nursery/rustfmt) -
automatic formatting for Rust source code files

• Clippy (https://github.com/Manishearth/rust-clippy) - smart
linter for Rust code

34

https://rustup.rs/
http://crates.io
https://crates.io
https://github.com/phildawes/racer
https://github.com/rust-lang-nursery/rustfmt
https://github.com/Manishearth/rust-clippy

Resources: Documentation
• docs.rs (https://docs.rs) - documentation for Rust std

library and all the packages on crates.io

• The Rust Book (https://doc.rust-lang.org/stable/book/) - In
depth presentation of the language, referenced by this
tutorial!

• Learning with examples (http://rustbyexample.com/)

• Online Rust playground (https://play.rust-lang.org/)

• The Rustonomicon (https://doc.rust-lang.org/nomicon/) -
WIP Guide to Unsafe Rust

35

http://docs.rs
https://docs.rs
http://crates.io
https://doc.rust-lang.org/stable/book/
http://rustbyexample.com/
https://play.rust-lang.org/
https://doc.rust-lang.org/nomicon/

Resources: Community

• https://www.rust-lang.org/en-US/community.html

• https://users.rust-lang.org/

• https://www.reddit.com/r/rust/

• Industrial users of Rust: https://www.rust-lang.org/
en-US/friends.html

36

https://www.rust-lang.org/en-US/community.html
https://users.rust-lang.org/
https://www.reddit.com/r/rust/
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html

Thank you!

I hope you enjoy Rust!

37

