Multi-particle production and thermalization in hadron-hadron collisions

Raju Venugopalan
Brookhaven National Laboratory

QCD: Known-Knowns and Known-Unknowns

from arXiv:1708.01527

QCD: Known-Knowns and Known-Unknowns

Known-knowns in QCD:

- Perturbative QCD: precision physics for large Q^2 rare processes (also weak coupling techniques in finite T and μ_B QFT)
- ◆ Lattice QCD: Quantitative description of (mostly) hadron ground state properties. See Prof. Alexandrou's talk on Thursday
- Chiral perturbation theory: low energy meson and baryon interactions

Prof. Colangelo's talk on Friday)

QCD: Known-Knowns and Known-Unknowns

Known-unknowns in QCD:

- ◆ The bulk of elastic, inelastic and diffractive cross-sections in QCD (sometimes called ``soft" physics – though includes scales of a few GeV).
- **♦** Fragmentation/hadronization is not understood—though useful and successful parametrizations exist.
- ◆ Stringy models (PYTHIA,DPM,AMPT,EPOS) successfully parametrize a lot of data and loosely capture features of the underlying theory.
- ◆ However, they cannot be derived in any limit from QCD, and require further ad hoc assumptions and parameters when applied In extreme environments

What we need

- ➤ An effective theory to describe the varied phenomena of multi-particle production in high energy collisions
- Smoothly matches to QCD in appropriate kinematic limits
- The rest of my talk will briefly outline the elements of such a theory.
- ➤ The theory has much predictive power—however, it is least effective when the physics is sensitive to the infrared scales that govern chiral symmetry breaking and confinement.

The proton at high energies

"x-QCD"- small x evolution

$$\int_0^1 \frac{dx}{x} \; (xq(x) - x\bar{q}(x)) = 3 \longrightarrow \text{ \# of valence quarks}$$

$$\int_0^1 \frac{dx}{x} \; (xq(x) + x\bar{q}(x)) \to \infty \longrightarrow \text{ \# of quarks}$$

Bremsstrahlung-linear QCD evolution

Each rung of the ladder gives

$$\alpha_S \int \frac{dk_t^2}{k_t^2} \int \frac{dx}{x} \equiv \alpha_S \ln\left(\frac{x_0}{x}\right) \ln\left(\frac{Q^2}{Q_0^2}\right)$$

If only transverse momenta are ordered from target to projectile:

$$k_{T1}^2 << k_{T2}^2 << \cdots Q^2$$

Sum leading logs in Q² (DGLAP evolution)

Conversely,
$$x_0 >> x_1 \cdots >> x$$

Sum leading logs in x (BFKL evolution)

Both DGLAP and BFKL give rapid growth of gluon density at small x

More about BFKL in Prof. Bartels' talk

Bremsstrahlung-linear QCD evolution

Proton becomes a dense many body system at high energies

Parton Saturation

Gribov, Levin, Ryskin (1983) Mueller, Qiu (1986)

Competition between attractive bremsstrahlung and repulsive recombination and screening effects

Maximum phase space density (f = $1/\alpha_s$) =>

$$\frac{1}{2(N_c^2 - 1)} \frac{x G(x, Q^2)}{\pi R^2 Q^2} = \frac{1}{\alpha_S(Q^2)}$$

This relation is saturated for

$$Q = Q_s(x) >> \Lambda_{\rm QCD} \approx 0.2 \text{ GeV}$$

Many-body dynamics of universal gluonic matter

Parton Saturation: Golec-Biernat & Wusthoff's dipole model

$$\sigma_{q\bar{q}P}(r_{\perp}, x) = \sigma_0 \left[1 - \exp\left(-r_{\perp}^2 Q_s^2(x)\right) \right] \quad Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

$$Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

Parameters: $Q_0 = 1 \text{ GeV}$; $\lambda = 0.3$; $x_0 = 3* 10^{-4}$; $\sigma_0 = 23 \text{ mb}$

Sophisticated dipole models give excellent fits to all HERA small x data

Evidence from HERA for geometrical scaling

❖ Scaling seen for F₂^D and VM,DVCS for same Q_S as F₂

Gelis et al., hep-ph/0610435

The high energy nuclear wavefunction in QFT

- At high energies, interaction time scales of fluctuations are dilated well beyond typical hadronic time scales
- Lots of short lived (gluon) fluctuations now seen by probe
 proton/nucleus -- dense many body system of (primarily) gluons
- ❖ Fluctuations with lifetimes much longer than interaction time for the probe function as static color sources for more short lived fluctuations

Nuclear wavefunction at high energies is a Color Glass Condensate

The nuclear wavefunction at high energies

Born-Oppenheimer light cone separation natural for EFT

RG eqns describe evolution of wavefunction with energy

What do sources look like in the IMF?

Wee partons "see" a large density of color sources at small transverse resolutions

Effective Field Theory on Light Front

Poincare group on LF

Galilean sub-group of 2D Quantum Mechanics

Eg., LF dispersion relation

Large x (P⁺) modes: static LF (color) sources ρ^a

Small x (k+ << P+) modes: dynamical fields A_{μ}^{a}

Effective Field Theory on Light Front

CGC: Coarse grained many body EFT on LF McLerran, RV

$$< P|\mathcal{O}|P> \longrightarrow \int [d\rho^a][dA^{\mu,a}] \, W_{\Lambda^+}[\rho] \, e^{iS_{\Lambda^+}[\rho,A]} \, \mathcal{O}[\rho,A]$$

Non-pert. gauge invariant "density matrix" defined at initial scale Λ_0^+

RG equations describe evolution of W with x JIMWLK, BK

Classical Weizsäcker-Williams field of a large nucleus

$$\langle AA \rangle_{\rho} = \int [d\rho] A_{\text{cl.}}(\rho) A_{\text{cl.}}(\rho) W_{\Lambda^{+}}[\rho]$$

For a large nucleus, A >>1,

"Pomeron" excitations

"Odderon" excitations

McLerran,RV Kovchegov

Jeon, RV

$$W_{\Lambda^+} = \exp\left(-\int d^2x_\perp \left[\frac{\rho^a\rho^a}{2\,\mu_A^2} - \frac{d_{abc}\,\rho^a\rho^b\rho^c}{\kappa_A}\right]\right)$$

$$\mathbf{A}_{\mathrm{cl}} \, \mathrm{from} \, \longrightarrow \, (D_{\mu} F^{\mu\nu})^a = J^{\nu,a} \equiv \delta^{\nu+} \, \delta(x^-) \, \rho^a(x_\perp)$$

determined from RG

Quantum evolution of classical theory: Wilson RG

Integrate out small fluctuations => Increase color charge of sources

Wilsonian RG equations describe evolution of all N-point correlation functions with energy

Saturation scale grows with energy

Bulk of high energy cross-sections:

- a) obey dynamics of novel non-linear QCD regime
- b) Can be computed systematically in weak coupling

Many-body high energy QCD: The Color Glass Condensate

Gelis, Iancu, Jalilian-Marian, RV: Ann. Rev. Nucl. Part. Sci. (2010), arXiv: 1002.0333

Dynamically generated semi-hard "saturation scale" opens window for weak coupling study of nonperturbative dynamics

JIMWLK RG evolution for a single nucleus

$$=\ln\left(rac{\Lambda^+}{p^+}
ight)\mathcal{H}\mathcal{O}_{\mathrm{LO}}$$
 (keeping leading log divergences)

$$\begin{split} \langle \mathcal{O}_{\mathrm{LO}} + \mathcal{O}_{\mathrm{NLO}} \rangle &= \int [d\tilde{\rho}] W[\tilde{\rho}] \left[\mathcal{O}_{\mathrm{LO}} + \mathcal{O}_{\mathrm{NLO}} \right] \\ &= \int [d\tilde{\rho}] \left\{ \left[1 + \ln \left(\frac{\Lambda^{+}}{p^{+}} \right) \mathcal{H} \right] W_{\Lambda^{+}} \right\} \mathcal{O}_{\mathrm{LO}} \end{split}$$

LHS independent of
$$\Lambda^+=$$

LHS independent of
$$\[\Lambda^+ = > \] \frac{\partial W[\tilde{
ho}]}{\partial Y} = \mathcal{H}\,W[\tilde{
ho}] \]$$

Inclusive DIS: dipole evolution

$$\sigma_{\gamma^*T} = \int_0^1 dz \int d^2r_{\perp} |\psi(z, r_{\perp})|^2 \sigma_{\text{dipole}}(x, r_{\perp})$$

$$\sigma_{\text{dipole}}(x, r_{\perp}) = 2 \int d^2b \int [D\rho] \ W_{\Lambda^+}[\rho] \ T(b + \frac{r_{\perp}}{2}, b - \frac{r_{\perp}}{2})$$

$$1 - \frac{1}{N_c} \operatorname{Tr} \left(V \left(b + \frac{r_{\perp}}{2} \right) V^{\dagger} \left(b - \frac{r_{\perp}}{2} \right) \right)$$

Inclusive DIS: dipole evolution

B-JIMWLK eqn. for dipole correlator

$$\frac{\partial}{\partial Y} \langle \text{Tr}(V_x V_y^{\dagger}) \rangle_Y = -\frac{\alpha_S N_c}{2\pi^2} \int_{z_{\perp}} \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \langle \text{Tr}(V_x V_y^{\dagger}) - \frac{1}{N_c} \text{Tr}(V_x V_z^{\dagger}) \text{Tr}(V_z V_y^{\dagger}) \rangle_Y$$

Dipole factorization:

$$\langle \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \longrightarrow \langle \operatorname{Tr}(V_x V_z^{\dagger}) \rangle_Y \langle \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \qquad \mathbf{N_c} \longrightarrow \mathbf{0}$$

Resulting closed form equation is the Balitsky-Kovchegov equation.

Reduces in the "low density" limit to the BFKL equation I discussed previously

"Photon impact factor" and "kernel" now known to NLO accuracy

CGC Effective Theory: B-JIMWLK hierarchy of correlators

At high energies, the d.o.f that describe the frozen many-body gluon configurations are novel objects: dipoles, quadrupoles, ...

Universal – appear in a number of processes in p+A and e+A; how do these evolve with energy?

Solving the B-JIMWLK hierarchy

- ☐ JIMWLK includes multiple scatterings & leading log evolution in x
- Expectation values of Wilson line correlators at small x
 satisfy a Fokker-Planck eqn. in functional space

 Weigert (2000)
- This translates into a hierarchy of equations for n-point Wilson line correlators
- □ As is generally the case, Fokker-Planck equations can be re-expressed as Langevin equations – in this case for Wilson lines

Blaizot, lancu, Weigert Rummukainen, Weigert

B-JIMWLK hierarchy: Langevin realization

Numerical evaluation of Wilson line correlators on 2+1-D lattices:

$$\left\langle \mathcal{O}[U] \right\rangle_Y = \int D[U] \ W_Y[U] \ \mathcal{O}[U] \longrightarrow \frac{1}{N} \sum_{U \in W} \mathcal{O}[U]$$

Langevin eqn:

Gaussian random variable

$$\partial_Y [V_x]_{ij} = [V_x i t^a]_{ij} \left[\int d^2 y \; [\mathcal{E}^{ab}_{xy}]_k \; [\xi^b_y]_k + \sigma^a_x \right]$$

$$\mathcal{E}^{ab}_{xy} = \left(\frac{\alpha_S}{\pi^2}\right)^{1/2} \; \frac{(x-y)_k}{(x-y)^2} \left[1 - U^\dagger_x U_y \right]^{ab} \qquad \sigma^a_x = -i \left(\frac{\alpha_S}{2\pi^2} \int d^2 z \frac{1}{(x-z)^2} \mathrm{Tr}(T^a \; U^\dagger_x U_z) \right)$$
 "square root" of JIMWLK kernel

- ☐ Initial conditions for V's from the MV model
- Daughter dipole prescription for running coupling

Functional Langevin solutions of JIMWLK hierarchy

Rummukainen, Weigert (2003)

Dumitru, Jalilian-Marian, Lappi, Schenke, RV, PLB706 (2011)219

We are now able to compute all n-point correlations of a theory of strongly correlated gluons and study their evolution with energy!

Semi-inclusive DIS: quadrupole evolution

Dominguez, Marquet, Xiao, Yuan (2011)

$$\frac{d\sigma^{\gamma_{\mathrm{T,L}}^*A \to q\bar{q}X}}{d^3k_1d^3k_2} \propto \int_{x,y,\bar{x}\bar{y}} e^{ik_{1\perp}\cdot(x-\bar{x})} e^{ik_{2\perp}\cdot(y-\bar{y})} \left[1 + Q(x,y;\bar{y},\bar{x}) - D(x,y) - D(\bar{y},\bar{x}) \right]$$

Semi-inclusive DIS: quadrupole evolution

$$D(x,y) = \frac{1}{N_c} \langle \text{Tr}(V_x V_y^{\dagger}) \rangle_Y$$

$$Q(x, y; \bar{y}, \bar{x}) = \frac{1}{N_c} \langle \text{Tr}(V_x V_{\bar{x}}^{\dagger} V_{\bar{y}} V_y^{\dagger}) \rangle_Y$$

RG evolution provides fresh insight into multi-parton correlations

Quadrupoles, like Dipoles, exhibit geometrical Scaling

Rate of energy evolution of dipole and quadrupole saturation scales

Universality: Di-hadrons in p/d-A collisions

Jalilian-Marian, Kovchegov (2004) Marquet (2007), Tuchin (2010) Dominguez, Marquet, Xiao, Yuan (2011) Strikman, Vogelsang (2010)

$$\frac{d\sigma^{qA \to qgX}}{d^{3}k_{1}d^{3}k_{2}} \propto \int_{x,y,\bar{x},\bar{y}} e^{ik_{1\perp}\cdot(x-\bar{x})} e^{ik_{2\perp}\cdot(y-\bar{y})} \left[S_{6}(x,y,\bar{x},\bar{y}) - S_{4}(x,y,v) - \ldots \right] \frac{N_{c}}{2C_{F}} \left\langle Q(x,y\,\bar{y},\bar{x})D(y,\bar{y}) - \frac{D(x,\bar{x})}{N_{c}} \right\rangle \frac{N_{c}}{2C_{F}} \left\langle D(x,y)D(\bar{y},\bar{x}) - \frac{D(x,\bar{x})}{N_{c}} \right\rangle$$

Forward-forward di-hadrons sensitive to both dipole and quadrupole correlators

Recent computations (Stasto, Xiao, Yuan + Lappi, Mäntysaari) include Pedestal, Shadowing (color screening) and Broadening (multiple scattering) effects in CGC

DIS off the proton

W (GeV)

W (GeV)

W (GeV)

10

Itl (GeV2)

Itl (GeV2)

Itl (GeV2)

DIS off nuclei

Kowalski, Lappi, RV: 0705.3047

Consistent, within limited available data, with shadowing obseved in e+A collisions

A sampling of results from p+p & p+A collisions

J/ ψ rapidity and p_T rapidity distributions in p+p and p+A at RHIC & the LHC

Universal dynamics in the Quark-Gluon Plasma

Studying the real time dynamics of a strongly correlated non-Abelian gauge theory

the universe a micro-second after the Big Bang was similar stuff and had the same temperature

"The early universe was "liquid-like"

Perfect fluidity across energy scales

"Bjorken Hydrodynamics"

$$\frac{d\varepsilon}{d\tau} = -\frac{\left(\varepsilon + P - \frac{4}{3}\frac{\eta}{\tau}\right)}{\tau}$$

$$\frac{\eta}{\varepsilon + P}\frac{1}{\tau} = \frac{\eta}{s}\frac{1}{\tau T} << 1$$

Viscous term smaller than ideal term for

From kinetic theory

$$\frac{\eta}{s} \sim \frac{\hbar}{k_B} \, \frac{\tau_{
m relax.}}{\tau_{
m quant.}}$$

Fluid	T [K]	$\eta \ [Pa \cdot s]$	$\eta/n~[\hbar]$	η/s $[\hbar/k_B]$
H ₂ 0	370	2.9×10^{-4}	85	8.2
⁴ He	2	1.2×10^{-6}	0.5	1.9
6 Li $(a_s \simeq \infty)$	23×10^{-6}	$\leq 1.7 \times 10^{-15}$	≤ 1	≤ 0.5
QGP	2×10^{12}	$\leq 5 \times 10^{11}$	-	≤ 0.4

Perfect fluidity across energy scales

"Bjorken Hydrodynamics"

$$\frac{d\varepsilon}{d\tau} = -\frac{\left(\varepsilon + P - \frac{4}{3}\frac{\eta}{\tau}\right)}{\tau}$$

$$\frac{\eta}{\varepsilon + P}\frac{1}{\tau} \equiv \frac{\eta}{s}\frac{1}{\tau T} << 1$$

Viscous term smaller than ideal term for

From kinetic theory

$$rac{\eta}{s} \sim rac{\hbar}{k_B} \, rac{ au_{
m relax.}}{ au_{
m quant.}}$$

QGP is ~ 10⁴ times more viscous than pitch tar...

Perfect fluidity across energy scales

"Bjorken Hydrodynamics"

$$\frac{d\varepsilon}{d\tau} = -\frac{\left(\varepsilon + P - \frac{4}{3}\frac{\eta}{\tau}\right)}{\tau}$$

$$\frac{\eta}{\varepsilon + P}\frac{1}{\tau} \equiv \frac{\eta}{s}\frac{1}{\tau T} << 1$$

Viscous term smaller than ideal term for

From kinetic theory

$$\frac{\eta}{s} \sim \frac{\hbar}{k_B} \, \frac{\tau_{\rm relax.}}{\tau_{\rm quant.}}$$

H₂O

⁴He

⁶Li

sQGP

Viscosity of strongly coupled relativistic fluids

AdS/CFT conjecture:

Duality between strongly coupled N=4 supersymmetric Yang-Mills theory at large coupling and Nc & classical 10 dimensional gravity in the background of D3 branes

J.Maldacena, Nature 2003

KSS bound:

Conjectured lower bound for a "perfect fluid"

Kovtun, Son, Starinets (2006)

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Derived using classical absorption cross-section of a graviton with energy ω on a black brane and Bekenstein's formula relating its Entropy to its area

$$\sigma(\omega) = \frac{8\pi G}{\omega} \int dt d\mathbf{x} \, e^{i\omega t} \langle [T_{xy}(t, \mathbf{x}), T_{xy}(0, 0)] \rangle$$

Deconstructing lumpiness

ANGULAR PARTICLE DISTRIBUTION EXPERIMENTAL DATA: ATLAS COLLABORATION

$$\frac{dN}{d\phi} = \frac{N}{2\pi} (1 + 2(v_1 \cos(\phi)))$$

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2(\mathbf{v_1}\cos(\phi) + \mathbf{v_2}\cos(2\phi)) \right)$$

$$\frac{dN}{d\phi} = \frac{N}{2\pi} (1 + 2(v_1 \cos(\phi) + v_2 \cos(2\phi) + v_3 \cos(3\phi)))$$

EXPERIMENTAL DATA: ATLAS COLLABORATION

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2(v_1 \cos(\phi) + v_2 \cos(2\phi) + v_3 \cos(3\phi) + v_4 \cos(4\phi) + \ldots) \right)$$

Flow moments: analogy with the Early Universe

Mishra et al; Mocsy- Sorensen; Floerchinger, Wiedemann

Anisotropic flow driven by initial geometry: relativistic viscous hydrodynamics

B. Schenke, S. Jeon, C. Gale, Phys.Rev.C85, 024901 (2012)

High harmonics of angular distribution very sensitive to viscosity ... and to details of the initial state

VISCOUS FLOW AT LHC

C.GALE, S.JEON, B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PHYS.REV.LETT.110, 012302 (2013)

GEOMETRY AND FLUCTUATIONS DRIVE FLOW

C.GALE, S.JEON, B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PHYS.REV.LETT.110, 012302 (2013)

The temperature dependence of η/s

VISCOSITY AT RHIC AND LHC

RHIC viscosity $\eta/s = 0.12$ LHC viscosity $\eta/s = 0.2$

Hints at increasing viscosity η /s with increasing temperature

Data Theory comparisons of temperature dependence of transport coefficients provides insight into the microscopic strongly coupled dynamics of the QGP

Christiansen, Haas, Pawlowski, Strodthoff, PRL115 (2015) 112002

From the violence of a nuclear collision ...to the calm of a quark-gluon fluid

Initial state: Far from equilibrium

Non-equilibrium dynamics

Final state: Thermal equilibrium

How is thermal equilibrium achieved?

Standard model of heavy ion collisions

RG evolution for 2 nuclei

Gelis, Lappi, RV (2008)

Log divergent contributions crossing nucleus 1 or 2:

$$\mathcal{O}_{\mathrm{NLO}} = \left[\frac{1}{2} \int_{\vec{u}, \vec{v}} \mathcal{G}(\vec{u}, \vec{v}) \, \mathcal{T}_u \mathcal{T}_v + \int_{\vec{u}} \beta(\vec{u}) \, \mathcal{T}_u \right] \mathcal{O}_{\mathrm{LO}}$$

$$\mathcal{G}(ec{u},ec{v})$$
 and $eta(ec{u})$ can be computed on the initial Cauchy surface $\mathcal{T}_u = rac{\delta}{\delta A(ec{u})}$ linear operator on initial surface

Contributions across both nuclei are finite-no log divergences => factorization

$$\mathcal{O}_{\mathrm{NLO}} = \left[\ln \left(\frac{\Lambda^+}{p^+} \right) \mathcal{H}_1 + \ln \left(\frac{\Lambda^-}{p^-} \right) \mathcal{H}_2 \right] \mathcal{O}_{\mathrm{LO}}$$

Single inclusive gluon production

- **♦ Full JIMWLK+YM evolution feasible** Lappi, PLB 703 (2011)209
- ◆ In practice: approximations of varying rigor

Heavy ion phenomenology in weak coupling

Collisions of lumpy gluon ``shock" waves

Systematic framework: Quantum field theory in presence of strong time dependent color sources.

For inclusive quantities, initial value problem in the Schwinger-Keldysh formalism.

In QCD, important and subtle issues: factorization, renormalization, universality

Gelis, Venugopalan (2006) Gelis, Lappi, Venugopalan (2008,2009) Jeon (2014)

Heavy ion phenomenology in weak coupling

Collisions of lumpy gluon "shock" waves

Leading order solution: Solution of QCD Yang-Mills equations

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_{A}^{a}(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_{B}^{a}(x_{\perp})\delta(x^{+})$$
$$x^{\pm} = t \pm z \qquad F^{\mu\nu,a} = \partial_{\mu}A^{\nu,a} - \partial_{\nu}A^{\nu,a} + gf^{abc}A^{\mu,b}A^{\nu,c}$$

The gauge field solutions are boost invariant; independent of spacetime rapidity $\eta=0.5 \times Ln(x^+/x^-)$

Imaging the force fields of QCD

Solutions of QCD Yang-Mills equations demonstrate that each of these color "flux tubes" stretching out in rapidity is of transverse size $1/Q_s << 1$ fm

T^{μν} from Yang-Mills dynamics

Glasma energy density and pressure

$$T_{\mu\nu}(\tau=0) = \frac{1}{2}(B_z^2 + E_z^2) \times \text{diag}(1,1,1,-1)$$

Initial longitudinal pressure is negative: Goes to $P_1 = 0$ from below with time evolution

The Glasma: colliding gluon shock waves

Glasma color fields

Glasma color fields matched to viscous hydrodynamics

t = 0.0 fm/c

The Glasma at NLO: plasma instabilities

At LO: boost invariant gauge fields $A_{cl}^{\mu,a}(x_{\tau},\tau) \sim 1/g$

Romatschke, Venugopalan (2006) Dusling, Gelis, Venugopalan (2011) Gelis, Epelbaum (2013)

$$a^{\mu,a}(\eta) = O(1)$$

Small fluctuations grow exponentially as ~

$$e^{\sqrt{Q_S \tau}}$$

Same order of classical field at

$$\tau = \frac{1}{Q_S} \ln^2 \frac{1}{\alpha_S}$$

Resum such contributions to all orders

$$(g e^{\sqrt{Q_S \tau}})^n$$

$$da$$
] $F_{\text{init.}}[a]$ $T_{\text{LO}}[A_{\text{cl}} + a]$

Initial conditions in the overpopulated Glasma

Berges, Boguslavski, Schlichting, Venugopalan, PRD89 (2014), 114007

Choose for the initial classical-statistic ensemble of gauge fields

$$A_{\nu}(\tau,\eta,x_{\perp}) = \sum_{\lambda} \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{(2\pi)^{2}} \frac{\mathrm{d}\nu}{2\pi} \sqrt{f_{\mathbf{k}_{\perp}\nu} + \frac{1}{2}} \left[c^{(\lambda)\mathbf{k}_{\perp}\nu} \, \xi_{\mu}^{(\lambda)\mathbf{k}_{\perp}\nu + (\tau)} \, e^{i\mathbf{k}_{\perp}\mathbf{x}_{\perp}} \, e^{i\nu\eta} + c^{*(\lambda)\mathbf{k}_{\perp}\nu} \, \xi_{\mu}^{(\lambda)\mathbf{k}_{\perp}\nu + *}(\tau) \, e^{-i\mathbf{k}_{\perp}\mathbf{x}_{\perp}} \, e^{-i\nu\eta} \right]$$

Stochastic random variables

$$\begin{array}{lcl} \langle c^{(\lambda)\boldsymbol{k}_{\perp}\nu}c^{(\lambda')\boldsymbol{k'}_{\perp}\nu'}\rangle &=& 0\;,\\ \langle c^{(\lambda)\boldsymbol{k}_{\perp}\nu}c^{*(\lambda')\boldsymbol{k'}_{\perp}\nu'}\rangle &=& (2\pi)^3\delta^{\lambda\lambda'}\delta(\boldsymbol{k}-\boldsymbol{k'})\delta(\nu-\nu')\\ \langle c^{*(\lambda)\boldsymbol{k}_{\perp}\nu}c^{*(\lambda')\boldsymbol{k'}_{\perp}\nu'}\rangle &=& 0. \end{array}$$

Polarization vectors ξ expressed in terms of Hankel functions in Fock-Schwinger gauge $A^{\tau} = 0$

$$f(\mathbf{p}_{\perp}, \mathbf{p}_{z}, \tau) = \frac{\tau^{2}}{N_{g}V_{\perp}L_{\eta}} \sum_{a=1}^{N_{c}^{2}-1} \sum_{\lambda=1,2} \left\langle \left| g^{\mu\nu} \left[\left(\xi_{\mu}^{(\lambda)\mathbf{p}_{\perp}\nu+}(\tau) \right)^{*} \stackrel{\longleftrightarrow}{\partial_{\tau}} A_{\nu}^{a}(\tau, \mathbf{p}_{\perp}, \nu) \right] \right|^{2} \right\rangle_{\text{Coul.gauge}}$$

$$f(p_{\perp}, p_{z}, t_{0}) = \frac{n_{0}}{\alpha_{S}} \Theta \left(Q - \sqrt{p_{\perp}^{2} + (\xi_{0}p_{z})^{2}} \right)$$

Controls "prolateness" or "oblateness" of initial momentum distribution

Temporal evolution in the overpopulated QGP

Berges, Boguslavski, Schlichting, Venugopalan arXiv: 1303.5650, 1311.3005

Solve Hamilton's equation for 3+1-D SU(2) gauge theory in Fock-Schwinger gauge

Fix residual gauge freedom imposing Coloumb gauge at each readout time

$$\partial_i A_i + t^{-2} \partial_\eta A_\eta = 0$$

◆ Largest classical-statistical numerical simulations of expanding Yang-Mills to date: 256² × 4096 lattices

From Glasma to Quark Gluon Plasma

Glasma fields produced in the shock wave collision are unstable to quantum fluctuations...

This instability leads to rapid overpopulation of all momentum modes

Classical-statistical QFT numerical lattice simulations of gluon fields

exploding into the vacuum

Berges, Schenke, Schlichting, RV, NPA 931 (2014) 348

From Glasma to Quark Gluon Plasma

From Glasma to Quark Gluon Plasma

 There is a natural competition between interactions and the longitudinal expansion which renders the system anisotropic on large time scales

Longitudinal Expansion:

- Red-shift of longitudinal momenta p₇
 - → increase of anisotropy
- Dilution of the system

Interactions:

Isotropize the system

Overoccupied expanding Glasma: particles or fields?

For $1 < f < 1/\alpha_s$ a dual description is feasible either in terms of kinetic theory or classical-statistical dynamics ...

$$f(p_T, p_z, \tau) = (Q\tau)^{\alpha} f_S(\tau^{\beta} p_T, \tau^{\gamma} p_z)$$

Non-thermal fixed point in overpopulated QGP

Berges, Boguslavski, Schlichting, Venugopalan. PRD89 (2014) 114007

BMSS: Baier, Mueller, Schiff, Son

BD: Bodeker

KM: Kurkela, Moore

BGLMV: Blaizot, Gelis, Liao, McLerran, Venugopalan

Quo vadis, thermal QGP?

Thermalized soft bath of gluons for
$$\ au>rac{1}{lpha_S^{5/2}}rac{1}{Q_S}$$
 Thermalization temperature of $\ T_i=lpha_S^{2/5}Q_S$

Matching the Glasma to viscous hydrodynamics

Good matching of quantitative implementation of kinetic theory to hydrodynamics at times ~ 1 fm

... when extrapolated to realistic couplings (many caveats remain)

Universality: hotness is also cool

Wolfgang Ketterle, Nobel Prize (2001)

For the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates

Non. Equil. dynamics of Overoccupied scalar fields

$$S = \int d\tau d^2x_T d\eta \, \tau \left(\frac{g^{\mu\nu}}{2} (\partial_\mu \varphi_a)(\partial_\nu \varphi_a) - \frac{\lambda}{4!N} (\varphi_a \varphi_a)^2 \right)$$

In a non-relativistic limit, models cold atomic gases

Berges, Sexty PRL 108 (2012) 161601
Berges, Boguslavski, Orioli, PRD 92, 025041 (2015)
Berges, Boguslavskii, Schlichting, Venugopalan, JHEP 1405 (2014) 054

Remarkable universality between world's hottest and coolest fluids

Bonus track:Topological transitions in the Glasma (The Chiral Magnetic Effect)

Topology in heavy-ion collisions: The Chiral Magnetic Effect

Kharzeev, McLerran, Warringa (2007)

External (QED) magnetic field

- As strong as 10¹⁸ Gauss – the field of a Magnetar!

Over the barrier topological (sphaleron) transitions ... analogous to proposed mechanism for Electroweak Baryogenesis

$$\vec{J}_{\text{CME}} = \frac{e^2}{2\pi^2} \; \mu_5 \; \vec{B}$$

Topology in heavy-ion collisions: The Chiral Magnetic Effect

External B field dies rapidly...effect most significant, for transitions at early times

Consistent (caveat emptor!) with heavy-ion results from RHIC & LHC CME seen in condensed matter systems

Q. Li et al., Nature Physics (2015)

Sphaleron transitions in QCD

Sphaleron: spatially localized, unstable finite energy

classical solutions

(σφαλεροs -``ready to fall")

EW theory: Klinkhamer, Manton, PRD30 (1984) 2212 QCD: McLerran, Shaposhnikov, Turok, Voloshin, PLB256 (1991) 451

Chiral Anomaly:

$$\partial_{\mu}J_{5,f}^{\mu} = 2m_f \bar{q}\gamma_5 q - \frac{g^2}{16\pi^2} F_{\mu\nu}^a \tilde{F}^{\mu\nu,a}$$

Chern-Simons current:

$$K^{\mu} = \frac{g^2}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \left(F^a_{\nu\rho} A^a_{\sigma} - \frac{g}{3} f_{abc} A^b_{\nu} A^c_{\rho} A^c_{\sigma} \right)$$

Chern-Simons #:

$$N_{CS}(t) = \int d^3x \, K^0(t, \mathbf{x})$$

Rate of change of CS

$$\frac{dN_{CS}(t)}{dt} = \frac{g^2}{8\pi^2} \int d^3x \, E_i^a(\mathbf{x}) B_i^a(\mathbf{x})$$

♦ Key quantity: Sphaleron transition rate

$$\Gamma^{eq} = \lim_{\delta t \to \infty} \frac{\langle (N_{\rm CS}(t + \delta t) - N_{\rm CS}(t))^2 \rangle_{\rm eq}}{V \delta t}$$

Tremendous prior numerical work: Gregoriev, Potter, Rubakov, Shaposhnikov, Ambjorn, Krasnitz, Turok, Moore, Smit, Tranberg, Bödeker, Rummukainen, Tassler, D'Onofrio,...

Topological transitions in the Glasma

Mace, Schlichting, Venugopalan, PRD93 (2016), 074036

Overoccupied initial conditions in a fixed box:

Temporal evolution of Glasma in a box

Soft electric and magnetic scales develop (as in a hot plasma):

Sphaleron rate controlled by Glasma string tension

Scaling with string tension precisely as if topological transitions are controlled entirely by the color-magnetic screening scale

Topological transitions in the Glasma

"Cooled" soft Glue configurations in the Glasma are topological!

Topological transitions in the Glasma

Sphaleron transitions in the Glasma... couple with fermions & external EM fields to simulate *ab initio* the Chiral Magnetic Effect!

Thank you for your attention!