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The 1-D nucleon picture, successes and some failures 

Beyond the 1-D picture, quark intrinsic motion 

New concepts, TMDs and GPDs, 3-D momentum and spatial 
distributions of quarks and gluons 

How and what do we learn from data about the 3-D nucleon 
structure? (mainly in momentum space) 

Open problems and future experiments

special issue of EPJA dedicated to the 3D nucleon structure,  
EPJ A52, 2016, n.6 - 15 contributions, (Edts. M.A., P. Rossi, M. Guidal)



despite 50 years of studies the nucleon is still a very 
mysterious object, yet the most abundant piece of 

matter in the visible Universe
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parton intrinsic motion     
spin-k⊥ correlations? 

orbiting quarks? 
spatial distribution? 

nucleon mass? 
...............                    . 10�19 m
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usual (successful) way of exploring the proton 
structure (collinear parton model) 
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QCD interactions induce a well known Q2 dependence

factorization:

universality: same q(x,Q2) measured in DIS can be used 
in other processes 

. . . .
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DIS� pQCD : q(x) ⇥ q(x, Q2)
PDFs

DGLAP evolution equations
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Figure 30: The combined high-Q2 HERA inclusive NC e+p reduced cross sections as partially
shown already in Fig. 5 with overlaid predictions of HERAPDF2.0 NLO and NNLO. The two
differently shaded bands represent the total uncertainties on the two predictions.
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collaborations are used to determine sets of quark and gluon momentum distributions in the
proton. The set of PDFs denoted as HERAPDF1.0 [2] was based on the combination of all
inclusive DIS scattering cross sections obtained from HERA I data. A preliminary set of PDFs,
HERAPDF1.5 [34], was obtained using HERA I and selected HERA II data, some of which
were still preliminary. In this paper, a new set of PDFs, HERAPDF2.0, is presented, based on
combined inclusive DIS cross sections from all of HERA I and HERA II.

Several groups, JR [35], MSTW/MMHT [36,37], CTEQ/CT [38,39], ABM [40–42] and
NNPDF [43,44], provide PDF sets using HERA, fixed-target and hadron-collider data. The
strength of the HERAPDF approach is that a single coherent high-precision data set containing
NC and CC cross sections is used as input. The new combined data used for the HERAPDF2.0
analysis span four orders of magnitude in Q2 and xBj. The availability of precision NC and
CC cross sections over this large phase space allows HERAPDF to use only ep scattering data
and thus makes HERAPDF independent of any heavy nuclear (or deuterium) corrections. The
difference between the NC e+p and e−p cross sections at high Q2, together with the high-Q2
CC data, constrain the valence-quark distributions. The CC e+p data especially constrain the
valence down-quark distribution in the proton without assuming strong isospin symmetry as
done in the analysis of deuterium data. The lower-Q2 NC data constrain the low-x sea-quark
distributions and through their precisely measured Q2 variations they also constrain the gluon
distribution. A further constraint on the gluon distribution comes from the inclusion of NC data
at different beam energies such that the longitudinal structure function is probed through the y
dependence of the cross sections [45].

The consistency of the input data allowed the determination of the experimental uncertain-
ties of the HERAPDF2.0 parton distributions using rigorous statistical methods. The uncertain-
ties resulting from model assumptions and from the choice of the parameterisation of the PDFs
were considered separately.

Both H1 and ZEUS also published charm production cross sections, some of which were
combined and analysed previously [46], and jet production cross sections [47–51]. These data
were included to obtain the variant HERAPDF2.0Jets. The inclusion of jet cross sections al-
lowed for a simultaneous determination of the PDFs and the strong coupling constant.

The paper is structured as follows. Section 2 gives an introduction to the connection between
cross sections and the partonic structure of the proton. Section 3 introduces the data used in the
analyses presented here. Section 4 describes the combination of data while Section 5 presents
the results of the combination. Section 6 describes the pQCD analysis to extract PDFs from the
combined inclusive cross sections. The PDF set HERAPDF2.0 and its variants are presented in
Section 7. In Section 8, results on electroweak unification as well as scaling violations and the
extraction of xFγZ3 are presented. The paper closes with a summary.

2 Cross sections and parton distributions

The reduced NC deep inelastic e±p scattering cross sections are given by a linear combination
of generalised structure functions. For unpolarised e±p scattering, reduced cross sections after
correction for QED radiative effects may be expressed in terms of structure functions as

σ±r,NC =
d2σe

±p
NC

dxBjdQ2
·
Q4xBj
2πα2Y+

= F̃2 ∓
Y−
Y+
xF̃3 −

y2

Y+
F̃L , (1)

6
where the fine-structure constant, α, which is defined at zero momentum transfer, the photon
propagator and a helicity factor are absorbed in the definitions of σ±r,NC and Y± = 1±(1−y)

2. The
overall structure functions, F̃2, F̃L and xF̃3, are sums of structure functions, FX, FγZX and FZ

X,
relating to photon exchange, photon–Z interference and Z exchange, respectively, and depend
on the electroweak parameters as [52]

F̃2 = F2 − κZve · FγZ2 + κ
2
Z(v

2
e + a

2
e) · F

Z
2 ,

F̃L = FL − κZve · FγZL + κ
2
Z(v2e + a2e) · FZ

L ,

xF̃3 = −κZae · xFγZ3 + κ
2
Z · 2veae · xFZ

3 , (2)

where ve and ae are the vector and axial-vector weak couplings of the electron to the Z boson,
and κZ(Q2) = Q2/[(Q2 + M2

Z)(4 sin
2 θW cos2 θW)]. In the analysis presented here, electroweak

effects were treated at leading order. The values of sin2 θW = 0.23127 and MZ = 91.1876GeV
were used for the electroweak mixing angle and the Z-boson mass [52].

At low Q2, i.e. Q2 ≪ M2
Z , the contribution of Z exchange is negligible and

σ±r,NC = F2 −
y2

Y+
FL . (3)

The contribution of the term containing the longitudinal structure function F̃L is only significant
for values of y larger than approximately 0.5.

In the analysis presented in this paper, the full formulae of pQCD at the relevant order in
the strong coupling, αs, are used. However, to demonstrate the sensitivity of the data, it is
useful to discuss the simplified equations of the Quark Parton Model (QPM), where gluons are
not present and F̃L = 0 [53]. In the QPM, the kinematic variable xBj is equal to the fractional
momentum of the struck quark, x. The structure functions in Eq. 2 become

(F2, FγZ2 , F
Z
2 ) ≈ [(e2u, 2euvu, v2u + a2u)(xU + xŪ) + (e2d, 2edvd, v

2
d + a

2
d)(xD + xD̄)] ,

(xFγZ3 , xF
Z
3 ) ≈ 2[(euau, vuau)(xU − xŪ) + (edad, vdad)(xD − xD̄)] , (4)

where eu and ed denote the electric charge of up- and down-type quarks, while vu,d and au,d are
the vector and axial-vector weak couplings of the up- and down-type quarks to the Z boson. The
terms xU, xD, xŪ and xD̄ denote the sums of parton distributions for up-type and down-type
quarks and anti-quarks, respectively. Below the b-quark mass threshold, these sums are related
to the quark distributions as follows

xU = xu + xc , xŪ = xū + xc̄ , xD = xd + xs , xD̄ = xd̄ + xs̄ , (5)

where xs and xc are the strange- and charm-quark distributions. Assuming symmetry between
the quarks and anti-quarks in the sea, the valence-quark distributions can be expressed as

xuv = xU − xŪ , xdv = xD − xD̄ . (6)

It follows from Eq. 1 that the structure function xF̃3 can be determined from the difference
between the e+p and e−p reduced cross sections:

xF̃3 =
Y+
2Y−

(σ−r,NC − σ
+
r,NC). (7)
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Figure 8. The structure function F2(x,Q2) of the proton, plotted as a function of Q2 and
multiplied by a factors of 2N where N labels the lines in the main plot. To enable the data to be
displayed on one plot, a di↵erent N is used for each x-value) N = 0 x = 0.85, 1) 0.74, 2) 0.65, 3)
0.55, 4) 0.45, 5) 0.34, 6) 0.28, 7) 0.23, 8) 0.18, 9) 0.14. 10) 0.11, 11) 0.10, 12) 0.09, 13) 0.07, 14)
0.05, 15) 0.04, 16) 0,026, 17) 0.018, 18) 0.013, 19) 0.008, 20) 0.005. The insert with JLab data
show the Q2 evolution over the range accessible at JLab at 6 GeV. The data and curves are at
fixed scattering angle ✓ with A) 38o, N = 0, B) 41o, N = 1, C) 45o, N = 2, D) 55o, N = 3,
E) 60o, N = 4, F) 70o, N = 5. The lines are from the CJ15 fit [34] with DGLAP evolution at
next-to-leading order. In that same paper can be found the references to the experimental data
shown.
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Figure 21: The parton distribution functions xuv, xdv, xS = 2x(Ū+ D̄) and xg of HERAPDF2.0
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unpolarized 
distribution 
xfa(x,Q

2)

PDFs are very 
useful, they 

can be used to 
predict cross 
sections for 

several  
processes ….
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FIG. 5. (color online) Invariant cross sections for (a) ⇡+ and (b) ⇡� with pQCD predictions using the DSS [37] and AKK08 [39]
FFs. Top panel: PHENIX [52] and STAR [53] results are also compared. Bottom: systematic (boxes) and statistical (bars)
uncertainties are shown with relative di↵erence between data and prediction. (c) Comparison of averaged charged pion cross
section and ⇡

0 cross section by PHENIX [54]. Bottom panel: data-theory comparisons.

TABLE II. Invariant cross section for ⇡+ and ⇡

� hadrons, as well as the statistical and systematic uncertainties. In addition,
there is an absolute scale uncertainty of 9.6%.

⇡

+
⇡

�

pT bin hpT i E ⇤ d3�
dp3

STAT SYST E ⇤ d3�
dp3

STAT SYST

(GeV/c) (GeV/c) (mb/GeV

2) (mb/GeV

2)
5–6 5.39 1.75⇥10�5 0.05⇥10�5 0.24⇥10�5 1.49⇥10�5 0.04⇥10�5 0.20⇥10�5

6–7 6.39 5.01⇥10�6 0.15⇥10�6 0.33⇥10�6 4.30⇥10�6 0.13⇥10�6 0.29⇥10�6

7–8 7.41 1.56⇥10�6 0.07⇥10�6 0.10⇥10�6 1.283⇥10�6 0.060⇥10�6 0.080⇥10�6

8–9 8.44 6.19⇥10�7 0.39⇥10�7 0.40⇥10�7 4.94⇥10�7 0.35⇥10�7 0.32⇥10�7

9–11 9.71 2.14⇥10�7 0.16⇥10�7 0.14⇥10�7 1.57⇥10�7 0.13⇥10�7 0.10⇥10�7

11–13 11.70 4.83⇥10�8 0.71⇥10�8 0.38⇥10�8 3.57⇥10�8 0.60⇥10�8 0.28⇥10�8

A more quantitative interpretation requires the inclu-
sion of such data into a global fit using the next-to-
leading order (NLO) pQCD framework. The midrapidity
production of charged pions with 5 < pT < 12 GeV/c atp
s = 200 GeV covers the kinematic range of 0.03 <⇠ x

<⇠
0.16. The relevant ingredients for a global analysis are
available: unpolarized quark and gluon PDFs, polarized
quark PDFs, charge-separated unpolarized FFs [37] and
hard scattering cross sections at NLO. The invariant dif-
ferential cross sections for ⇡

+ and ⇡

� as a function of
pT can be used to check the validity of the NLO pQCD
calculation as well as the PDFs and FFs adopted for the
global analysis on �G.

The double-spin asymmetry ALL for inclusive charged
pion production is measured as

ALL =
1

hPB · PY i
N

++ �R ·N+�

N

++ +R ·N+� , R =
L

++

L

+� (2)

where N is the number of charged pions and L is the lu-
minosity for a given helicity combination. The notation
++ (+�) follows the same convention as in Eq. 1. The

polarizations of the two counter-circulating RHIC beams
are denoted as PB and PY and for 2009 were 0.56 and
0.55, respectively. The luminosity-weighted beam polar-
ization product hPBPY i, important for ALL, was 0.31
with a global relative scale uncertainty of 6.5% on the
product. An additional uncertainty based on the preci-
sion with which we can determine the degree of longitu-
dinal polarization in the collision [56] must be included,
leading to a total relative scale uncertainty of +7.0%

�7.7%.

The relative luminosity, R, between the sampled lu-
minosities for the di↵erent helicities is determined from
the yield of BBC triggered events on a fill-by-fill basis.
The systematic uncertainty on relative luminosity is de-
termined by comparing to the yield of ZDC triggers [56],
and was found in 2009 to be 1.4⇥ 10�3.

Beyond the systematic uncertainties from polarization
and relative luminosity, the dominant systematic uncer-
tainty on the asymmetries are from tracks misidentified
as charged pions. The size of the possible asymmetry
from this background was determined to be ⇠ 10�4.
The determination was performed by calculating the spin

mid-rapidity RHIC data, unpolarised cross sections  
(arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)

good agreement between RHIC data 
and collinear pQCD calculations

large PT single pion production p p ! ⇡X
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AN = simple left-right asymmetry

AN =
d��(P T )� d�⇥(P T )
d��(P T ) + d�⇥(P T )

=
d��(P T )� d��(�P T )

2 d�unp(PT )

AN ⌅ d⇥� � d⇥⇥

d⇥� + d⇥⇥ ⇧ S · (p⇤ P T ) ⇧ sin �

transverse Single Spin Asymmetry (SSA)

but there are problems with spin dependent data …

θ
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
p

s = 62.4 GeV/c2, PHENIX 3.2 < ⌘ < 3.7
p

s = 200 GeV/c2, STAR h⌘i = 3.3
p

s = 200 GeV/c2, STAR h⌘i = 3.7
p

s = 500 GeV/c2, STAR 2.7 < ⌘ < 4.0

AN  large and persistent at high energies ….          
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AN � mq

Eq
�s at quark level 

but large SSA observed at hadron level!

O
�

mq

Eq

⇥QED and QCD interactions conserve helicity, up to 
corrections 

q q� � q q�Single spin asymmetries at partonic level. Example:
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the (longstanding) proton spin puzzle 
1

2
=

1

2
⌃q + ⌃g + Lq + Lg

total spin carried by quarks 

total spin carried by gluons 

orbital angular momentum of quarks and gluons 

the total spin carried by quarks and gluons does not amount 
to 1/2, one needs orbital angular momentum,  

then a 3-D description 

many other (spin) effects in high energy interactions 
cannot be understood in the collinear configuration
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parton intrinsic motion     
spin-k⊥ correlations? 

orbiting quarks? 
spatial distribution? 

nucleon mass? 
...............                    

new concepts: Transverse Momentum Dependent 
distribution and fragmentation functions - TMDs 

Generalized Partonic Distributions - GPDs 

…. we cannot state 
that we know the full 

partonic nucleon 
structure ….



new probes and concepts to explore 
the nucleon structure 

TMDs - Transverse Momentum Dependent 
(distribution and fragmentation functions) 

(polarized) SIDIS and Drell-Yan,                  
spin asymmetries in inclusive                      

(large pT) NN processes

fa/p(x, k?; sa,S)

P, S P, S

k, sak, sa



q(x, bT ) =
Z

d2�T

(2⇡)2
Hq(x, 0,��2

T )e�ibT ·�T

GPDs - Generalized Partonic Distributions 
exclusive processes in leptonic and 

hadronic interactions

P, S

k

x� ⇠

x + ⇠

H(x, ⇠,�T )

P 0 � P = �

P 0, S0

k0
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 TMDs = Transverse Momentum Dependent 
Parton Distribution Functions (TMD-PDF) or  

Transverse Momentum Dependent 
Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with 
their intrinsic motion and spin, inside a fast moving 

proton, with its spin.

S · (p⇥ k�) sq · (p⇥ k�) S · sq · · ·
“Sivers effect” “Boer-Mulders effect”

TMDs in simple parton model 



gq
1L(x,k2

�)

fq
1 (x,k2

�)

hq
1T (x,k2

�)

correlate sL of quark with SL of proton 
unintegrated helicity distribution 

correlate sT of quark with ST of proton 
unintegrated transversity  distribution 

unpolarized quarks in unpolarized protons 
unintegrated unpolarized distribution 

only these survive in the collinear limit 

there are 8 independent TMD-PDFs

f�q
1T (x,k2

�) correlate k⊥ of quark with ST of proton (Sivers)

h�q
1 (x,k2

�) correlate k⊥ and sT of quark (Boer-Mulders) 

worm-gears               

g

?q
1T (x,k

2
?) h

?q
1L (x,k

2
?) h

?q
1T (x,k

2
?)

 pretzelosity



The nucleon at twist-2,    

fq
1 (x,k2

�)

gq
1L(x,k2

�)

N -Twist 2

hq
1T (x,k2

�)

h�q
1T (x,k2

�)

g�q
1T (x,k2

�)

h�q
1L (x,k2

�)

h�q
1 (x,k2

�)

f�q
1T (x,k2

�)

courtesy of A. Kotzinian
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TMD-FFs give the number density of hadrons, with 
their momentum, originated in the fragmentation of a 

fast moving parton, with its spin.

“Collins effect”sq · (pq ⇥ p�)

there are 2 independent TMD-FFs for spinless hadrons

Dq
1(z,p2

?) unpolarized hadrons in unpolarized quarks 
unintegrated fragmentation function 

H?q
1 (z,p2

?) correlate p⊥ of hadron with sT of quark (Collins)



TMD formalism - The nucleon correlator, in 
collinear configuration: 3 distribution functions 

�ij(k;P, S) =
�

X

⇥
d3P X

(2⇤)3 2EX
(2⇤)4 �4(P � k � PX)⇥PS|⇥j(0)|X⇤⇥X|⇥i(0)|PS⇤

=
⇥

d4 ⇥ eik·�⇥PS|⇥j(0)⇥i(⇥)|PS⇤

�(x, S) =
1
2

�
f1(x) /n+ + SL g1L(x) �5 /n+ + h1T i⇥µ⇥�5nµ

+S⇥
T

⇥

q Δq ΔTq

P, S P, S

k k



TMD-PDFs: the leading-twist correlator, with intrinsic k┴, 
contains 8 independent functions 

 with partonic interpretation 

�(x,k�) =
1
2

⇤
f1/n+ + f�1T

⇥µ⇥⇤⌅�µn⇥
+k⇤
�S⌅

T

M
+

�
SL g1L +

k� · ST

M
g�1T

⇥
�5/n+

+ h1T i⇤µ⇥�5nµ
+S⇥

T +
�

SL h�1L +
k� · ST

M
h�1T

⇥
i⇤µ⇥�5nµ

+k⇥
�

M

+ h�1
⇤µ⇥kµ

�n⇥
+

M

⌅

P, S P, S

k k



how to “measure” TMDs? 
need processes which relate physical observables 

to parton intrinsic motion 

SIDIS 
`N ! `hX

Drell-Yan processes 
pN ! `+`�X

e+e� ! h1 h2 X



TMDs in SIDIS 

�q �0
q

p, Sp, S

Q2Q2

h h
d6� � d6�⌅p��⌅hX

dxB dQ2 dzh d2P T d⇥S

TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

PT � Q2Two scales:

d�⇥p�⇥hX =
�

q

fq(x,k⇥;Q2)� d�̂⇥q�⇥q(y, k⇥;Q2)�Dh
q (z,p⇥;Q2)

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

TMD-PDFs hard scattering TMD-FFs

P T ' p? + z k?
xB ' x zh ' z
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1
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Q
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⇧
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UL
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UT
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UT

+
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UT
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UT

⌅
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1
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�
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LT
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Sivers Collins

the             contain 
the TMDs; plenty 

of Spin 
Asymmetries

F (··· )
SB ST

2 Will be inserted by the editor

where we have j(x) =
∫

d2pT j(x,p2
T ) for j = fa

1 , ea, gT , hL while ga
1(x) =

∫

d2pT ga
1L(x,p2

T )
and ha

1(x) =
∫

d2pT {ha
1T (x,p2

T ) + p2
T /(2M2

N)h⊥a
1T (x,p2

T )}.
The fragmentation of unpolarized hadrons is described in terms of two fragmentation func-

tions, Da
1 and H⊥a

1 , at leading-twist. In SIDIS (with polarized beams and/or targets, where
necessary) it is possible to access information on the leading twist TMDs by measuring the
angular distributions of produced hadrons. Some data on such processes are available [27–45].

The fragmentation functions and TMDs in SIDIS and other processes were subject to nu-
merous studies in the literature [46–73]. This is true especially for the prominent transversity
distribution ha

1 or the ’naively time-reversal-odd’ functions like the Sivers function f⊥a
1T , the

Boer-Mulders function h⊥a
1 and the Collins fragmentation function H⊥a

1 . Among the so far less
considered functions are h⊥a

1L and the ’pretzelosity’ distribution h⊥a
1T .

The purpose of this lecture (based on the works [67,68]) is fourfold. First, we discuss whether
some of the unknown TMDs could be approximated in terms of (possibly better) known ones.
Second, we review what is known about h⊥a

1T . Third, we mention the models these TMDs were
calculated. Fourth, we present estimates for SSAs in which these functions enter, and discuss
the prospects to measure these SSAs in experiments at Jefferson Lab and COMPASS.

Θ

z−axis

h
φS

φ

P
h

l’

l

q

HADRON PRODUCTION PLANE

LEPTON SCATTERING PLANE

N

S

S

Fig. 1. Kinematics of SIDIS, lN → l′hX, and the
definitions of azimuthal angles in the lab frame.

The process of SIDIS is sketched in Fig. 1.
We denote the momenta of the target, in-
coming and outgoing lepton by P , l and l′

and introduce s = (P + l)2, q = l − l′ with

Q2 = −q2. Then y = Pq
Pl , x = Q2

2Pq , z = PPh

Pq ,

and cos θγ = 1− 2M2

N
x(1−y)
sy where θγ denotes

the angle between target polarization vector
and momentum q of the virtual photon γ∗,
see Fig. 1, and MN is the nucleon mass. The
component of the momentum of the produced
hadron transverse with respect to γ∗ is de-
noted by Ph⊥ and Ph⊥ = |Ph⊥|.

The cross section differential in the azimuthal angle φ of the produced hadron has schemat-
ically the following general decomposition [7,74] (the dots indicate power suppressed terms):

dσ

dφ
= FUU + cos(2φ)F cos(2φ)

UU + SL sin(2φ)F sin(2φ)
UL +λ

[

SLFLL+ ST cos(φ − φS)F cos(φ−φS)
LT

]

+ST

[

sin(φ−φS)F sin(φ−φS)
UT + sin(φ+φS)F sin(φ+φS)

UT + sin(3φ−φS)F sin(3φ−φS)
UT

]

+ . . . (3)

In Fweight
XY the index X = U(L) denotes the unpolarized (longitudinally polarized, helicity λ)

beam. Y = U(L, T ) denotes the unpolarized target (longitudinally, transversely with respect to
the virtual photon polarized target). The superscript reminds on the kind of angular distribution
of the produced hadrons with no index indicating an isotropic φ-distribution.

Each structure function arises from a different TMD. The chirally even f ’s and g’s enter the
observables in connection with the unpolarized fragmentation function Da

1 , the chirally odd h’s
in connection with the chirally odd Collins fragmentation function H⊥a

1

FUU ∝
∑

a

e2
a fa

1 ⊗ Da
1 , F cos(φ−φS)

LT ∝
∑

a

e2
a g⊥a

1T ⊗ Da
1 , (4)

FLL ∝
∑

a

e2
a ga

1 ⊗ Da
1 , F sin(φ−φS)

UT ∝
∑

a

e2
a f⊥a

1T ⊗ Da
1 , (5)

F cos(2φ)
UU ∝

∑

a

e2
a h⊥a

1 ⊗ H⊥a
1 , F sin(φ+φS)

UT ∝
∑

a

e2
a ha

1 ⊗ H⊥a
1 , (6)

F sin(2φ)
UL ∝

∑

a

e2
a h⊥a

1L ⊗ H⊥a
1 , F sin(3φ−φS)

UT ∝
∑

a

e2
a h⊥a

1T ⊗ H⊥a
1 . (7)

PT



chiral-even 
TMDs

chiral-odd 
TMDs
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1 (x) gq

1L(x)and can be measured in usual DISintegrated

at leading twist there are 8 independent azimuthal 
modulations, with different combinations of TMDs.



TMDs in Drell-Yan processes              
COMPASS, RHIC, Fermilab, NICA, AFTER...              

p p

Q2 = M2

qT

qL

l+

l–

factorization holds, two scales, M2, and qT << M

d�D�Y =
�

a

fq(x1,k⇤1;Q2)� fq̄(x2,k⇤2;Q2) d�̂qq̄⇥⇤+⇤�

direct product of TMDs,  no fragmentation process



Case of one polarized nucleon only
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Unpolarized cross section already very interesting
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Collins function from e+e– processes  (Belle, BaBar, BES-III)
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Do we have experimental evidence of TMD effects? 
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FIG. 1: The multiplicities M⇡+

p obtained from Eqs. (12) and (8), with the parameters of Eq. (15), are compared
with HERMES measurements for ⇡+ SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.
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FIG. 2: The multiplicities M⇡�
p obtained from Eqs. (12) and (8), with the parameters of Eq. (15), are compared

with HERMES measurements for ⇡� SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.

 PT dependence of unpolarised SIDIS multiplicities

3

for di↵erent distributions: here, we first assume them to be constant and flavour independent and then
perform further tests to check their sensitivity to flavour, x, z and Q2 dependence. The constant Gaussian
parameterisation, supported by a number of experimental evidences [11] as well as by dedicated lattice
simulations [34], has the advantage that the intrinsic transverse momentum dependence of the cross
section can be integrated out analytically. In fact, inserting Eqs. (5) and (6) into Eq. (1), one obtains

FUU =
X

q

e2q fq/p(xB )Dh/q(zh)
e�P 2

T /hP 2
T i

⇡hP 2

T i
(7)

where

hP 2

T i = hp2?i+ z2h hk2?i . (8)

Notice that hk2?i and hp2?i will be taken as the free parameters of our fit.
According to COMPASS [16] notation the di↵erential hadron multiplicity is defined as:

d2nh(xB , Q
2, zh, P

2

T )

dzh dP 2

T

⌘ 1

d2�DIS(xB , Q
2)

dxB dQ2

d4�(xB , Q
2, zh, P

2

T )

dxB dQ2 dzh dP 2

T

, (9)

while HERMES [15] definition is

Mh
n (xB , Q

2, zh, PT ) ⌘
1

d2�DIS(xB , Q
2)

dxB dQ2

d4�(xB , Q
2, zh, PT )

dxB dQ2 dzh dPT
· (10)

where the index n denotes the kind of target.
The Deep Inelastic Scattering (DIS) cross section has the usual leading order collinear expression,

d2�DIS(xB , Q
2)

dxB dQ2

=
2⇡ ↵2

(xBs)
2

⇥
1 + (1� y)2

⇤

y2

X

q

e2q fq/p(xB ) · (11)

Inserting Eq. (1), (7) and (11) into Eq. (9) we have a simple explicit expression for the COMPASS and
HERMES multiplicities:

d2nh(xB , Q
2, zh, PT )

dzh dP 2

T

=
1

2PT
Mh

n (xB , Q
2, zh, PT ) =

⇡
P

q e2q fq/p(xB )Dh/q(zh)P
q e

2

q fq/p(xB )

e�P 2
T /hP 2

T i

⇡hP 2

T i
, (12)

with hP 2

T i given in Eq. (8). Notice that, by integrating the above equation over P T , with its magnitude
ranging from zero to infinity, one recovers the ratio of the usual leading order cross sections in terms
of collinear PDFs and FFs. Its agreement with experimental data has been discussed, for instance, in
Refs. [15] and [28].

III. RESULTS

As mentioned in the introduction, the most recent analyses of HERMES and COMPASS Collaborations
provide (unintegrated) multivariate experimental data, presented in bins of xB = x, Q2, zh = z and PT .
The HERMES multiplicities refer to identified hadron productions (⇡+, ⇡�, K+, K�) o↵ proton and
deuteron targets, and are presented in 6 bins of definite Q2 and xB values, each for several di↵erent values
of zh and PT , for a total of 2 660 data points. The selected events cover the kinematical region of Q2

values between 1 and 10 GeV2 and 0.023  xB  0.6, with a hadronic transverse momentum PT < 2
GeV and a fractional energy zh in the range 0.1  zh  0.9.

Instead, the COMPASS multiplicities refer to unidentified charged hadron production (h+ and h�)
o↵ a deuteron target (6LiD), and are presented in 23 bins of definite Q2 and xB values, each for several
values of zh and PT , for a total of 18 624 data points. The Q2 and zh regions covered by COMPASS
are comparable to those explored by the HERMES experiment, while they span a region of smaller xB

values, 0.0045  xB  0.12, and cover a wider PT region (reaching lower PT values). Moreover, the
binning choices are very di↵erent and COMPASS statistics is much higher than that of HERMES.

For all these reasons, we consider the two data sets separately and perform individual fits.

  A. Airapetian et 
al. (HERMES 

Collaboration), 
Phys. Rev. D87, 
074029 (2013) 
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Clear evidence for Sivers and Collins effects from 
SIDIS data (HERMES, COMPASS, JLab)
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Fig. 5: Left: comparison between the Collins asymmetries for pions as a function of x, extracted from 2007 and
2010 data taking. Right: the same comparison for the Sivers asymmetries.
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of the transversity and Sivers PDFs. This information is crucial for the predictions for future Drell-Yan
measurements and for measurements at future high-energy electron-ion colliders.
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independent evidence for Collins effect 
from e+e- data at Belle, BaBar and BES-III

6 I. GARZIA
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Figure 3. – Preliminary BABAR measurement of Collins asymmetries (full circle in red). By
comparison the superseded Belle off-peak results (open circle in blue), and Belle results on the
full data sample (full green circles) are shown. Systematic and statistical errors are added in
quadrature.
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Figure 4. – Collins asymmetry A12 (a), and A0 (b), as a function of (sin2 θ)/(1 + cos2 θ), where
θ = θT and θ = θ2 have been used in plot (a) and (b), respectively.

The asymmetries are studied in function of symmetric bins (z1, z2) of the pion fractional
energies and in function of sin2 θ/(1 + cos2 θ), and are compared with the Belle analysis.
The results are in overall good agreement each other. However, the off-peak data sample
is statistically limited, and the update of the measurement with the full BABAR data
sample is ongoing.
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tio RU/RL(C) follows the expression
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where A and B are free parameters. B should be consis-
tent with unity, and A mainly contains the Collins effect.
The AUL, AUC are used to denote the asymmetries for
UL and UC ratios, respectively.
The analysis is performed in (z1, z2) bins with bound-

aries at zi= 0.2, 0.3, 0.5 and 0.9 (i = 1, 2), where comple-
mentary off-diagonal bins (z1, z2) and (z2, z1) are com-
bined. In each (z1, z2) bin, normalized rates RU,L,C and
double ratios RU/RL,C are evaluated in 15 bins of con-
stant width in the 2φ0 angles. In Fig. 2, the distributions
of the double ratio RU/RL are shown for two highest (z1,
z2) bins with the fit results using Eq. 3. In Fig. 3, the
asymmetry values (A) obtained from the fit are shown as
a function of six symmetric (z1, z2) bins. Studying the
dependence on pt is valuable for investigating the trans-
verse momentum dependent evolution of the Collins func-
tion. The expected behavior of the Collins asymmetries
as a function of sin2θ2/(1 + cos2θ2) is linear (see Eq. 2).
Therefore, the Collins asymmetries are investigated also
in bins of pt and sin2θ2/(1 + cos2θ2), as shown in Fig. 4
and Fig. 5. The numerical results in each (z1,z2) and pt
bins are listed in Table I. Since one pion is allowed to be
assigned to different pion pairs, the statistical uncertain-
ties are expected to be underestimated. This is checked
by repeating the whole procedure but allowing each pi-
on to be only involved in one pion pair. We find that
the statistical uncertainty in each bin becomes slightly
larger, and we therefore scale the statistical errors by a
factor of 1.1 for all bins.
Several potential sources of systematic uncertainties

are investigated. An important test of the analysis
method is the extraction of double ratios from MC sam-
ples, in which the Collins asymmetries are not included
but radiative gluon and detector acceptance effects are
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a similar asymmetry just measured by BES-III 
(arXiv 1507:06824)

Collins effect clearly observed both in SIDIS and e+e- 
processes, by several Collaborations 

In general clear evidence for quark intrinsic motion; 
how do we extract information on TMDs from data?

Q2 = 13 GeV2
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What do we learn from data? 



TMD extraction from data - first phase 
(simple parameterisation, no TMD evolution,  

limited number of parameters, …) 
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FIG. 1: The multiplicities M⇡+

p obtained from Eqs. (12) and (8), with the parameters of Eq. (15), are compared
with HERMES measurements for ⇡+ SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.
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unpolarised TMDs - fit of SIDIS multiplicities    
(M.A, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005)



3

for di↵erent distributions: here, we first assume them to be constant and flavour independent and then
perform further tests to check their sensitivity to flavour, x, z and Q2 dependence. The constant Gaussian
parameterisation, supported by a number of experimental evidences [11] as well as by dedicated lattice
simulations [34], has the advantage that the intrinsic transverse momentum dependence of the cross
section can be integrated out analytically. In fact, inserting Eqs. (5) and (6) into Eq. (1), one obtains

FUU =
X

q

e2q fq/p(xB )Dh/q(zh)
e�P 2

T /hP 2
T i

⇡hP 2

T i
(7)

where

hP 2

T i = hp2?i+ z2h hk2?i . (8)

Notice that hk2?i and hp2?i will be taken as the free parameters of our fit.
According to COMPASS [16] notation the di↵erential hadron multiplicity is defined as:
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2
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T i given in Eq. (8). Notice that, by integrating the above equation over P T , with its magnitude
ranging from zero to infinity, one recovers the ratio of the usual leading order cross sections in terms
of collinear PDFs and FFs. Its agreement with experimental data has been discussed, for instance, in
Refs. [15] and [28].
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The HERMES multiplicities refer to identified hadron productions (⇡+, ⇡�, K+, K�) o↵ proton and
deuteron targets, and are presented in 6 bins of definite Q2 and xB values, each for several di↵erent values
of zh and PT , for a total of 2 660 data points. The selected events cover the kinematical region of Q2

values between 1 and 10 GeV2 and 0.023  xB  0.6, with a hadronic transverse momentum PT < 2
GeV and a fractional energy zh in the range 0.1  zh  0.9.

Instead, the COMPASS multiplicities refer to unidentified charged hadron production (h+ and h�)
o↵ a deuteron target (6LiD), and are presented in 23 bins of definite Q2 and xB values, each for several
values of zh and PT , for a total of 18 624 data points. The Q2 and zh regions covered by COMPASS
are comparable to those explored by the HERMES experiment, while they span a region of smaller xB

values, 0.0045  xB  0.12, and cover a wider PT region (reaching lower PT values). Moreover, the
binning choices are very di↵erent and COMPASS statistics is much higher than that of HERMES.

For all these reasons, we consider the two data sets separately and perform individual fits.
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Although the HERMES and COMPASS data cover similar Q2 regions (1  Q2  10 GeV2), they
di↵er in the experimental set-up, in the statistics, in the binning choices and in the explored xB range; in
addition, there seems to be some discrepancy between the two measurements. We then fit the HERMES
and the COMPASS multiplicities separately. A simultaneous fit of both sets of data would lead to poor
results and is not presented here.

Recently, another study of the unpolarised TMDs has appeared [28], which follows a procedure somehow
similar to that of this work, but which considers only the HERMES set of experimental data and does
not include any attempt to check for signs of scale evolution.

After a short Section II devoted to the formalism, we present our main results in Section III. In Section
IV we briefly discuss the possible role, and look for possible signs, of TMD evolution. In Section V we
compare our present results with those of previous analyses [9, 11] and check their consistency with other
measurements of SIDIS cross sections and PT -distributions [10, 12, 13, 29] which were not included in
our fits. Further comments and concluding discussions are presented in Section VI.

II. FORMALISM

The unpolarised ` + p ! `0 hX, SIDIS cross section in the TMD factorisation scheme, at order (k?/Q)
and ↵0

s, in the kinematical region where PT ' k? ⌧ Q , reads [30, 31]:
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In the �⇤ � p c.m. frame the measured transverse momentum, P T , of the final hadron is generated by
the transverse momentum of the quark in the target proton, k?, and of the final hadron with respect to
the fragmenting quark, p?. At order k?/Q it is simply given by

P T = z k? + p? . (2)

As usual:

s = (`+ p)2 Q2 = �q2 = �(`� `0)2 xB =
Q2

2p · q y =
Q2

xBs
zh =

p · Ph

p · q (3)

and the variables x, z and p? are related to the final observed variables xB , zh and P T and to the
integration variable k?. The exact relations can be found in Ref. [9]; at O(k?/Q) one simply has

x = xB z = zh . (4)

The unpolarised TMD distribution and fragmentation functions, fq/p(x, k?) and Dh/q(z, p?), depend
on the light-cone momentum fractions x and z and on the magnitudes of the transverse momenta k? =
|k?| and p? = |p?|. We assume these dependences to be factorized and we assume for the k? and p?
dependences a Gaussian form, with one free parameter which fixes the Gaussian width,

fq/p(x, k?) = fq/p(x)
e�k2

?/hk2
?i

⇡hk2?i
(5)

Dh/q(z, p?) = Dh/q(z)
e�p2

?/hp2
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⇡hp2?i
· (6)

The integrated PDFs, fq/p(x) and Dh/q(z), can be taken from the available fits of the world data: in
this analysis we will use the CTEQ6L set for the PDFs [32] and the DSS set for the fragmentation
functions [33]. In general, the widths of the Gaussians could depend on x or z and might be di↵erent
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for di↵erent distributions: here, we first assume them to be constant and flavour independent and then
perform further tests to check their sensitivity to flavour, x, z and Q2 dependence. The constant Gaussian
parameterisation, supported by a number of experimental evidences [11] as well as by dedicated lattice
simulations [34], has the advantage that the intrinsic transverse momentum dependence of the cross
section can be integrated out analytically. In fact, inserting Eqs. (5) and (6) into Eq. (1), one obtains
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Notice that hk2?i and hp2?i will be taken as the free parameters of our fit.
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where the index n denotes the kind of target.
The Deep Inelastic Scattering (DIS) cross section has the usual leading order collinear expression,
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Inserting Eq. (1), (7) and (11) into Eq. (9) we have a simple explicit expression for the COMPASS and
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with hP 2

T i given in Eq. (8). Notice that, by integrating the above equation over P T , with its magnitude
ranging from zero to infinity, one recovers the ratio of the usual leading order cross sections in terms
of collinear PDFs and FFs. Its agreement with experimental data has been discussed, for instance, in
Refs. [15] and [28].

III. RESULTS

As mentioned in the introduction, the most recent analyses of HERMES and COMPASS Collaborations
provide (unintegrated) multivariate experimental data, presented in bins of xB = x, Q2, zh = z and PT .
The HERMES multiplicities refer to identified hadron productions (⇡+, ⇡�, K+, K�) o↵ proton and
deuteron targets, and are presented in 6 bins of definite Q2 and xB values, each for several di↵erent values
of zh and PT , for a total of 2 660 data points. The selected events cover the kinematical region of Q2

values between 1 and 10 GeV2 and 0.023  xB  0.6, with a hadronic transverse momentum PT < 2
GeV and a fractional energy zh in the range 0.1  zh  0.9.

Instead, the COMPASS multiplicities refer to unidentified charged hadron production (h+ and h�)
o↵ a deuteron target (6LiD), and are presented in 23 bins of definite Q2 and xB values, each for several
values of zh and PT , for a total of 18 624 data points. The Q2 and zh regions covered by COMPASS
are comparable to those explored by the HERMES experiment, while they span a region of smaller xB

values, 0.0045  xB  0.12, and cover a wider PT region (reaching lower PT values). Moreover, the
binning choices are very di↵erent and COMPASS statistics is much higher than that of HERMES.

For all these reasons, we consider the two data sets separately and perform individual fits.
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The details of the fits are presented in Table I, where we show the �2 per degree of freedom (�2

dof

),
the �2 per number of points (�2

point

) for ⇡+ and ⇡� production and the resulting values of the two free
parameters of the fit, hk2?i and hp2?i, with some statistical errors, as explained below. It is worth noticing
again that we do not have to use any overall normalisation constant as an extra free parameter; our
computations agree well in magnitude with the experimental multiplicities, which are normalised to the
collinear DIS cross section.

Before drawing hasty conclusions on the numerical values of the parameters, some comments might be
helpful.

• Our lowest value of �2

dof

is obtained by using the kinematical cuts of Eq. (14) with z < 0.6,
�2

dof

= 1.69 for a total of 497 fitted pion data points. The corresponding widths of the Gaussians
representing the k? and p? dependences of the distribution and fragmentation functions, are:

hk2?i = 0.57± 0.08 GeV2 , hp2?i = 0.12± 0.01 GeV2 . (15)

However, if we relax the cut in z to z < 0.7, Eq. (13), then the total �2 of the fit becomes larger,
�2

dof

= 2.62, and the value of the extracted hk2?i Gaussian width significantly decreases while that
of hp2?i increases, as shown in the second row of Table I. This large value of �2 reflects the fact that,
at large values of z, hP 2

T i deviates from the assigned linear behaviour in z2. Morever, as we already
pointed out, the large z region su↵ers from our lack of knowledge on the collinear fragmentation
functions.

• The errors quoted for the free parameters of our fit are obtained from a ��2 corresponding to a
5% variation over the total minimum �2: following Ref. [37], we relax the usual choice of ��2 = 1,
corresponding to a purely statistical error, in order to include in the quoted errors other, major
sources of uncertainty in our fit, which mainly originate from the inaccuracy in the determination
of the fragmentation functions. We have checked that, indeed, other choices of collinear PDFs and
FFs lead to such uncertainties. Moreover, in reading the errors, one should keep in mind that the
parameters are strongly correlated.

The multiplicities obtained from our best fit parameters, with the kinematical cuts of Eq. (14), are
compared with the HERMES measurements o↵ a proton target in Figs. 1 and 2 and o↵ a deuteron target
in Figs. 3 and 4, separately for positive and negative pions. The shaded uncertainty bands are computed
according to Ref. [38].

We have also performed a series of tests to study the e↵ect of kaon data on the extraction. While the
optimal parameters do not significantly change when including these data in the fit, the value of �2

dof

reduces from 1.69 to 1.25, which could naively be interpreted as an improvement in the quality of the
fit. However, this is just the result of the large error bands in the kaon subset. In fact, a fit of the kaon
data alone would yield �2

dof

= 0.64, which signals that the errors on these measurements are too large to
allow a reliable extraction of the free parameters. This is shown very clearly in Figs. 5–8 where the kaon
multiplicities, computed according to Eqs. (12) and (8) with the parameters of Eq. (15) – extracted from
the HERMES measurements of pion production only – are compared with the HERMES data.

A careful look at the plots in Figs. 1–4 shows that the description of the HERMES measurements
is indeed satisfactory: the Gaussian parameterisation embeds the crucial features of the data, both in
shape and size, over a broad kinematical range. The resulting value of �2

dof

, still a bit sizeable, is
somehow expected, given the uncertainties on the collinear fragmentation functions: as stated before, the
HERMES analysis [15] showed that the agreement, for the integrated multiplicities, between SIDIS data
and collinear LO theoretical computations is not perfect, and that the currently available fragmentation
function sets still need further refinements, especially at large z, and for ⇡� production. In fact, including
larger values of z in the fit sizeably increases the total �2, as shown in the second line of Table I.

As the HERMES Montecarlo event generator, as well as many phenomenological models, propose a
possible dependence of hp2?i on z, we have also attempted a fit with a z-dependent hp2?i = N za (1� z)b.
However, it turns out that this parameterisation cannot be seriously tested by the data selection we
have used for our reference fit; in fact, with the cuts of Eqs. (13) and (14), and in particular for the
z < 0.6 range, it is quite hard for the best fitting procedure to find a proper convergence. Consequently,
one obtains a and b parameters a↵ected by huge statistical errors; this large uncertainties include the
zero value and make the resulting parameters hardly significant. Moreover, the total �2
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again that we do not have to use any overall normalisation constant as an extra free parameter; our
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As the HERMES Montecarlo event generator, as well as many phenomenological models, propose a
possible dependence of hp2?i on z, we have also attempted a fit with a z-dependent hp2?i = N za (1� z)b.
However, it turns out that this parameterisation cannot be seriously tested by the data selection we
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z < 0.6 range, it is quite hard for the best fitting procedure to find a proper convergence. Consequently,
one obtains a and b parameters a↵ected by huge statistical errors; this large uncertainties include the
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will provide vital information on the large x behaviour of the Sivers distribution functions, yet undetermined from
present SIDIS experiments, as explained in Section IV.

II. FORMALISM AND PARAMETERIZATION

The SIDIS transverse single spin asymmetry (SSA) Asin(φh−φS)
UT measured by HERMES and COMPASS is defined

as (see Fig. 1 for the definition of the azimuthal angles)

Asin(φh−φS)
UT = 2

∫

dφS dφh [dσ↑ − dσ↓] sin(φh − φS)
∫

dφS dφh [dσ↑ + dσ↓]
, (1)

and shows the azimuthal modulation triggered by the correlation between the nucleon spin and the quark intrinsic
transverse momentum. This effect is embodied in the Sivers distribution function ∆Nfq/p↑(x, k⊥), which appears in
the number density of unpolarized quarks q with intrinsic transverse momentum k⊥ inside a transversely polarized
proton p↑, with three-momentum P and spin polarization vector S,

f̂q/p↑(x, k⊥) = fq/p(x, k⊥) +
1

2
∆Nfq/p↑(x, k⊥) S · (P̂ × k̂⊥) , (2)

where fq/p(x, k⊥) is the unpolarized x and k⊥ dependent parton distribution, and the mixed product S · (P̂ × k̂⊥)
explicitly gives the azimuthal dependence mentioned above. Notice that the Sivers function is also often denoted as
f⊥q
1T (x, k⊥) [14]; this notation is related to ours by [15]

∆Nfq/p↑(x, k⊥) = −2 k⊥
mp

f⊥q
1T (x, k⊥) . (3)

The “weighting” factor sin(φh − φS) in Eq. (1) is appropriately chosen to single out, among the various azimuthal
dependent terms appearing in [dσ↑−dσ↓] [16, 17], only the contribution of the Sivers mechanism. By properly taking
into account all intrinsic motions this transverse single spin asymmetry can be written, at order (k⊥/Q), as [2]

Asin(φh−φS)
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q
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dQ2
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q (z, p⊥)

· (4)

φS and φh are the azimuthal angles identifying the directions of the proton spin S and of the outgoing hadron
h respectively, while ϕ defines the direction of the incoming (and outgoing) quark transverse momentum, k⊥ =

k⊥(cos ϕ, sin ϕ, 0), as shown in Fig. 1; dσ̂ℓq→ℓq

dQ2 is the unpolarized cross section for the elementary scattering ℓq → ℓq,

dσ̂ℓq→ℓq

dQ2
= e2

q
2πα2

ŝ2

ŝ2 + û2

Q4
, (5)

where ŝ, t̂ = −Q2 and û are the partonic Mandelstam invariants.
Finally, Dh

q (z, p⊥) is the fragmentation function describing the hadronization of the final quark q into the detected
hadron h with momentum P h (see Fig. 1); h carries, with respect to the fragmenting quark, a light-cone momentum
fraction z and a transverse momentum p⊥.

In our analysis we shall consider u, d and s flavours for quarks and antiquarks. The Sivers function is parameterized
in terms of the unpolarized distribution function, as in Ref. [2], in the following factorized form:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) , (6)

with

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

, (7)

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1 , (8)
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Finally, Dh

q (z, p⊥) is the fragmentation function describing the hadronization of the final quark q into the detected
hadron h with momentum P h (see Fig. 1); h carries, with respect to the fragmenting quark, a light-cone momentum
fraction z and a transverse momentum p⊥.
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It is instructive, and often quite accurate, to consider the above equations in the much simpler limit in which only
terms of O(k⊥/Q) are retained. In such a case x ≃ xB, z ≃ zh and one obtains:

d5σℓp→ℓhX

dxB dQ2 dzh d2P T
≃
∑

q

e2
q

∫
d2k⊥ fq(xB, k⊥)

2πα2

x2
B
s2

ŝ2 + û2

Q4
Dh

q (zh, p⊥) , (32)

where p⊥ ≃ P T − zh k⊥, Eq. (29), and

ŝ2 + û2 ≃ x2
B
s2 + (xBs + Q2)2 − 4ℓ · k⊥(2xBs − Q2) =

Q4

y2

(
1 + (1 − y)2 − 4

k⊥
Q

(2 − y)
√

1 − y cosϕ

)
. (33)

In what follows we assume, both for the parton densities and the fragmentation functions, the usual factorization
between the intrinsic transverse momentum and the light-cone fraction dependences, with a Gaussian k⊥ dependence,
that is:

fq(x, k⊥) = fq(x)
1

π⟨k2
⊥⟩

e−k2

⊥/⟨k2

⊥⟩ (34)

and

Dh
q (z, p⊥) = Dh

q (z)
1

π⟨p2
⊥⟩

e−p2

⊥/⟨p2

⊥⟩ (35)

so that
∫

d2k⊥ fq(x, k⊥) = fq(x) (36)

and
∫

d2p⊥ Dh
q (z, p⊥) = Dh

q (z) . (37)

With the above expressions of fq(x, k⊥) and Dh
q (z, p⊥) the d2k⊥ integration in Eq. (32) can be performed analyti-

cally, with the result, valid up to O(k⊥/Q):

d5σℓp→ℓhX

dxB dQ2 dzh d2P T
≃
∑

q

2πα2e2
q

Q4
fq(xB) Dh

q (zh)

[
1 + (1 − y)2

−4
(2 − y)

√
1 − y ⟨k2

⊥⟩ zh PT

⟨P 2
T ⟩Q

cosφh

]
1

π⟨P 2
T ⟩

e−P 2

T /⟨P 2

T ⟩ , (38)

where

⟨P 2
T ⟩ = ⟨p2

⊥⟩ + z2
h⟨k2

⊥⟩ . (39)

This approximate result illustrates very clearly the origin of the dependence of the unpolarized SIDIS cross section
on the azimuthal angle φh. As observed first by Cahn [3, 23], such a dependence is related to the parton intrinsic
motion and it vanishes when k⊥ = 0. Having also taken into account the intrinsic motion in the fragmentation process,
Eq. (38) also depends on ⟨p2

⊥⟩, via the quantity ⟨P 2
T ⟩ defined in Eq. (39).

As we said, the above results hold in the small PT ≃ ΛQCD ≃ k⊥ region, where corrections O(k2
⊥/Q2) are expected

to be small. As we shall see in the next Section the numerical results obtained from Eq. (31) or from Eq. (38) are
indeed very close.

III. CAHN EFFECT IN UNPOLARIZED SIDIS

We wish to obtain experimental information on the average intrinsic motions. Our strategy is that of trying to
describe several sets of experimental data, which explicitly measure the dependence of the SIDIS unpolarized cross
section on the azimuthal angle φh between the lepton plane and the hadron production plane, and on the transverse

TMD factorization at

d�
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dxB dQ

2
dzh d
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=

X

q

e

2
q

Z
d
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2
s
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Q

4
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The “weighting” factor sin(φh − φS) in Eq. (1) is appropriately chosen to single out, among the various azimuthal
dependent terms appearing in [dσ↑−dσ↓] [16, 17], only the contribution of the Sivers mechanism. By properly taking
into account all intrinsic motions this transverse single spin asymmetry can be written, at order (k⊥/Q), as [2]
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φS and φh are the azimuthal angles identifying the directions of the proton spin S and of the outgoing hadron
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where ŝ, t̂ = −Q2 and û are the partonic Mandelstam invariants.
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hadron h with momentum P h (see Fig. 1); h carries, with respect to the fragmenting quark, a light-cone momentum
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Q4
, (5)
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Figure 1. Extracted Sivers distributions for u = uv + ū, d = dv +

¯

d, ū and ¯

d at Q

2
= 2.4 GeV2.

Left panel: the first moment of the Sivers functions, Eqs. (2.16) and (2.17) of the text, versus x.
Right panel: plots of the Sivers functions, Eq. (2.14) of the text, at x = 0.1 versus k?. The solid
lines correspond to the best fit. The dashed lines correspond to the positivity bound of the Sivers
functions. The shaded bands correspond to our estimate of 95% C.L. error.

It means that we assume the anti-quark Sivers functions to be proportional to the cor-
responding unpolarised PDFs; we have checked that a fit allowing for more complicated
structures of Eq. (2.14) for the anti-quarks, results in undefined values of the parameters ↵
and �.

The Sivers asymmetry measured in SIDIS can be expressed using our parameterisations
of TMD functions from Eqs. (2.12-2.15, 3.4) as

A

sin(�h��S)

UT (x, y, z, PT ) =

[z

2hk2?i+ hp2?i]hk2Si2
[z

2hk2Si+ hp2?i]2hk2?i
exp

"
� P

2

T z

2

(hk2Si � hk2?i)
(z

2hk2Si+ hp2?i)(z2hk2?i+ hp2?i)

#

⇥
p
2 e z PT

M

1

P
q e

2

q Nq(x)fq(x)Dh/q(z)P
q e

2

q fq(x)Dh/q(z)
· (3.6)

Thus, we introduce a total of 9 free parameters for valence and sea-quark Sivers functions:
Nuv , Ndv , Nū, N ¯d, ↵u, �u, ↵d, �d, and M

2

1

(GeV2). In order to estimate the errors on the
parameters and on the calculation of the asymmetries we follow the Monte Carlo sampling
method explained in Ref. [8]. That is, we generate samples of parameters ↵i, where each
↵i is an array of random values of {Nuv , Ndv , Nū, N ¯d,↵u,↵d,�u,�d,M

2

1

}, in the vicinity of
the minimum found by MINUIT, ↵

0

, that defines the minimal total �2 value, �2

min

. We
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FIG. 6: In the left panel we plot (solid red lines) the transversity distribution functions xh

1q(x) = x�T q(x) for q = u, d,

with their uncertainty bands (shaded areas), obtained from our best fit of SIDIS data on A

sin(�h+�S)

UT and e

+

e

� data
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, adopting the standard parameterisation (Table II). Similarly, in the right panel we plot the corresponding first
moment of the favoured and disfavoured Collins functions, Eq. (33). All results are given at Q

2 = 2.41 GeV2. The

dashed blue lines show the same quantities as obtained in Ref. [7] using the data then available on A

sin(�h+�S)

UT and A

UL
12

.

transversely polarised quark. In addition, the SIDIS asymmetry can only be observed if coupled to a non negligi-
ble quark transversity distribution. The first original extraction of the transversity distribution and the Collins
fragmentation functions [6, 7], has been confirmed here, with new data and a possible new functional shape of
the Collins functions. The results on the transversity distribution have also been confirmed independently in
Ref. [8].

A further improvement in the QCD analysis of the experimental data, towards a more complete understanding
of the Collins and transversity distributions, and their possible role in other processes, would require taking into
account the TMD-evolution of �T q(x, k?) and �NDh/q"(z, p?). Great progress has been recently achieved in the
study of the TMD-evolution of the unpolarized and Sivers transverse momentum dependent distributions [33–37]
and a similar progress is expected soon for the Collins function and the transversity TMD distribution [38].
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where we have j(x) =
∫

d2pT j(x,p2
T ) for j = fa

1 , ea, gT , hL while ga
1(x) =

∫

d2pT ga
1L(x,p2

T )
and ha

1(x) =
∫

d2pT {ha
1T (x,p2

T ) + p2
T /(2M2

N)h⊥a
1T (x,p2

T )}.
The fragmentation of unpolarized hadrons is described in terms of two fragmentation func-

tions, Da
1 and H⊥a

1 , at leading-twist. In SIDIS (with polarized beams and/or targets, where
necessary) it is possible to access information on the leading twist TMDs by measuring the
angular distributions of produced hadrons. Some data on such processes are available [27–45].

The fragmentation functions and TMDs in SIDIS and other processes were subject to nu-
merous studies in the literature [46–73]. This is true especially for the prominent transversity
distribution ha

1 or the ’naively time-reversal-odd’ functions like the Sivers function f⊥a
1T , the

Boer-Mulders function h⊥a
1 and the Collins fragmentation function H⊥a

1 . Among the so far less
considered functions are h⊥a

1L and the ’pretzelosity’ distribution h⊥a
1T .

The purpose of this lecture (based on the works [67,68]) is fourfold. First, we discuss whether
some of the unknown TMDs could be approximated in terms of (possibly better) known ones.
Second, we review what is known about h⊥a

1T . Third, we mention the models these TMDs were
calculated. Fourth, we present estimates for SSAs in which these functions enter, and discuss
the prospects to measure these SSAs in experiments at Jefferson Lab and COMPASS.

Θ

z−axis

h
φS

φ
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h
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q

HADRON PRODUCTION PLANE

LEPTON SCATTERING PLANE

N

S

S

Fig. 1. Kinematics of SIDIS, lN → l′hX, and the
definitions of azimuthal angles in the lab frame.

The process of SIDIS is sketched in Fig. 1.
We denote the momenta of the target, in-
coming and outgoing lepton by P , l and l′

and introduce s = (P + l)2, q = l − l′ with

Q2 = −q2. Then y = Pq
Pl , x = Q2

2Pq , z = PPh

Pq ,

and cos θγ = 1− 2M2

N
x(1−y)
sy where θγ denotes

the angle between target polarization vector
and momentum q of the virtual photon γ∗,
see Fig. 1, and MN is the nucleon mass. The
component of the momentum of the produced
hadron transverse with respect to γ∗ is de-
noted by Ph⊥ and Ph⊥ = |Ph⊥|.

The cross section differential in the azimuthal angle φ of the produced hadron has schemat-
ically the following general decomposition [7,74] (the dots indicate power suppressed terms):

dσ

dφ
= FUU + cos(2φ)F cos(2φ)

UU + SL sin(2φ)F sin(2φ)
UL +λ

[

SLFLL+ ST cos(φ − φS)F cos(φ−φS)
LT

]

+ST

[

sin(φ−φS)F sin(φ−φS)
UT + sin(φ+φS)F sin(φ+φS)

UT + sin(3φ−φS)F sin(3φ−φS)
UT

]

+ . . . (3)

In Fweight
XY the index X = U(L) denotes the unpolarized (longitudinally polarized, helicity λ)

beam. Y = U(L, T ) denotes the unpolarized target (longitudinally, transversely with respect to
the virtual photon polarized target). The superscript reminds on the kind of angular distribution
of the produced hadrons with no index indicating an isotropic φ-distribution.

Each structure function arises from a different TMD. The chirally even f ’s and g’s enter the
observables in connection with the unpolarized fragmentation function Da

1 , the chirally odd h’s
in connection with the chirally odd Collins fragmentation function H⊥a

1

FUU ∝
∑

a

e2
a fa

1 ⊗ Da
1 , F cos(φ−φS)

LT ∝
∑

a

e2
a g⊥a

1T ⊗ Da
1 , (4)

FLL ∝
∑

a

e2
a ga

1 ⊗ Da
1 , F sin(φ−φS)

UT ∝
∑

a

e2
a f⊥a

1T ⊗ Da
1 , (5)

F cos(2φ)
UU ∝

∑

a

e2
a h⊥a

1 ⊗ H⊥a
1 , F sin(φ+φS)

UT ∝
∑

a

e2
a ha

1 ⊗ H⊥a
1 , (6)

F sin(2φ)
UL ∝

∑

a

e2
a h⊥a

1L ⊗ H⊥a
1 , F sin(3φ−φS)

UT ∝
∑

a

e2
a h⊥a

1T ⊗ H⊥a
1 . (7)
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ỹ
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FIG. 1: Three dimensional kinematics of the SIDIS process,
according to Trento conventions [14]. The photon and the pro-
ton collide along the ẑ-axis, while the leptonic plane defines
the x̂z plane. The fragmenting quark and the final hadron
h are emitted at azimuthal angles ϕ and φh, and the proton
transverse spin direction is identified by φS .

the observed hadron h with respect to the direction of
the fragmenting quark is related to k⊥ and P T by the
simple expression p⊥ = P T −zk⊥; in addition, the light-
cone momentum fractions x and z coincide with the usual
measurable SIDIS variables, z = zh = (P ·Ph)/(P ·q) and
x = x

B
= Q2/(2P · q). In this region factorization holds

[12, 13], leading order ℓ q → ℓ q elementary processes are
dominating and the soft PT of the detected hadron is
mainly originating from intrinsic motions.

The transverse single spin asymmetry (SSA) for this
process is defined as

A
UT

=
d6σℓp↑→ℓ′hX − d6σℓp↓→ℓ′hX

d6σℓp↑→ℓ′hX + d6σℓp↓→ℓ′hX
≡ dσ↑ − dσ↓

dσ↑ + dσ↓
,

(1)

where d6σℓp↑,↓→ℓhX ≡ dσ↑,↓ is a short hand notation for
(d6σℓp↑,↓→ℓhX)/(dx

B
dy dzh d2P T dφS). It will often hap-

pen, in comparing with data or giving measurable pre-
dictions, that the numerator and denominator of Eq. (1)
will be integrated over some of the variables, according
to the kinematical coverage of the experiments. ↑ and
↓ refer, respectively, to polarization vectors S and −S,
see Fig. 1. A full study of Eq. (1), with all contributions
at all orders in k⊥/Q, will be presented in a forthcoming
paper [15].

We consider here, at O(k⊥/Q), the sin(φS + φh)
weighted asymmetry,

Asin(φS+φh)
UT

= 2

∫

dφS dφh [dσ↑ − dσ↓] sin(φS + φh)
∫

dφS dφh [dσ↑ + dσ↓]
,

(2)
measured by the HERMES [8, 9] and COMPASS [10]
Collaborations. This asymmetry singles out the spin de-
pendent part of the fragmentation function of a trans-
versely polarized quark with spin polarization ŝ and
three-momentum pq:

Dh/q,s(z, p⊥) = Dh/q(z, p⊥)

+
1

2
∆NDh/q↑(z, p⊥) ŝ · (p̂q × p̂⊥) , (3)

resulting in

Asin(φS+φh)
UT

=

∑

q

e2
q

∫

dφS dφh d2k⊥ ∆T q(x, k⊥)
d(∆σ̂)

dy
∆NDh/q↑(z, p⊥) sin(φS + ϕ + φh

q ) sin(φS + φh)

∑

q

e2
q

∫

dφS dφh d2k⊥ fq/p(x, k⊥)
dσ̂

dy
Dh/q(z, p⊥)

· (4)

In the above equation ∆T q(x, k⊥) is the unintegrated
transversity distribution,

∆T q(x) ≡ h1q(x) =

∫

d2k⊥ ∆T q(x, k⊥) , (5)

while ∆NDh/q↑(z, p⊥) is the Collins function, often de-
noted as [14]:

∆NDh/q↑(z, p⊥) =
2p⊥
zmh

H⊥q
1 (z, p⊥) . (6)

dσ̂/dy is the planar unpolarized elementary cross section

dσ̂

dy
=

2πα2

sxy2
[1 + (1 − y)2] , (7)

and

d(∆σ̂)

dy
=

dσ̂ℓq↑→ℓq↑

dy
− dσ̂ℓq↑→ℓq↓

dy
=

4πα2

sxy2
(1 − y) · (8)

The sin(φS + ϕ + φh
q ) azimuthal dependence in Eq. (4)

arises from the combination of the phase factors in
the transversity distribution function, in the non-planar

d6� � d6�⌅p��⌅hX

dxB dQ2 dzh d2P T d⇥S

Collins function from e+e– processes  (Belle, BaBar, BES-III)

q̄

q
e+e�

Sq

Sq̄

�

e+ 

ϕ1

ϕ2−π e- 

e+ 

��������	��

d⌅e+e��q⇥q̄⇥

d cos ⇥
=

3⇤�2

4s
e2
q cos2 ⇥

d⌅e+e��q⇤q̄⇥

d cos ⇥
=

3⇤�2

4s
e2
q

A12(z1, z2, �, ⇤1 + ⇤2) ⇥
1

⇤d⇥⌅
d⇥e+e��h1h2X

dz1 dz2 d cos � d(⇤1 + ⇤2)

= 1 +
1
4

sin2 �

1 + cos2 �
cos(⇤1 + ⇤2)�

�
q e2

q �NDh1/q⇥(z1) �NDh2/q̄⇥(z2)�
q e2

qDh1/q(z1)Dh2/q̄(z2)

(another similar asymmetry can be measured, A0)

�NDh/q" =
2 p?
zMh

H?q
1

5

of quarks and antiquarks into the physical hadrons h1

and h2 respectively (see Section II.C of Ref. [16] for de-
tailed explanations). In particular, the diagonal elements

Dh/q
++ (z, p⊥) and Dh/q

−−(z, p⊥) correspond to the trans-
verse momentum dependent unpolarized fragmentation
function Dh/q(z, p⊥),

Dh/q
++ (z, p⊥) = Dh/q

−−(z, p⊥) = Dh/q(z, p⊥) , (31)

whereas the non-diagonal elements

Dh/q
+−(z, p⊥) = Dh/q

+−(z, p⊥) eiϕ , (32)

Dh/q
−+(z, p⊥) = Dh/q

−+(z, p⊥) e−iϕ = −Dh/q
+−(z, p⊥) e−iϕ ,

are related to the Collins fragmentation function
∆NDh/q↑(z, p⊥) [11] by

∆NDh/q↑(z, p⊥) = −2i Dh/q
+−(z, p⊥) = 2i Dh/q

−+(z, p⊥) .
(33)

The angle ϕ in Eq. (33) is the azimuthal angle identifying
the direction of the observed hadron h in the helicity
frame of the fragmenting quark q. Similar relations hold
for the antiquark fragmentation functions, where one has
to take into account a sign difference in ϕ originating
from the fact that the antiquark is chosen to move along
the −ẑ direction. Finally, inserting Eqs. (30)–(33) into
Eq. (29) and performing the sum over the quark helicities
one obtains

dσe+e−→h1h2X

dz1 dz2 d2p⊥1 d2p⊥2 d cos θ
=

3πα2

2s

∑

q

e2
q

{

(1 + cos2 θ)Dh1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
1

4
sin2 θ ∆NDh1/q↑(z1, p⊥1)∆NDh2/q̄↑(z2, p⊥2) cos(ϕ1 + ϕ2)

}

. (34)

Eq. (34) shows that the study of the correlated produc-
tion of two hadrons (one for each jet) in unpolarized e+e−

collisions offers a direct access to the Collins functions,
both regarding their z and p⊥ dependences. So far, only
data on the z dependence are available. Notice that by in-
tegrating over the intrinsic transverse momenta p⊥1 and
p⊥2 one recovers the usual unpolarized cross section,

dσe+e−→h1h2X

dz1 dz2 d cos θ
= (35)

3πα2

2s
(1 + cos2 θ)

∑

q

e2
q Dh1/q(z1)Dh2/q̄(z2) ,

having used

∫

d2p⊥Dh/q(z, p⊥) = Dh/q(z) . (36)

To construct the physical observable measured by the
Belle Collaboration, we now perform a change of angular
variables from (ϕ1, ϕ2) to (ϕ1, ϕ1+ϕ2) and then integrate
over the moduli of the intrinsic transverse momenta, p⊥1

and p⊥2, and over the azimuthal angle ϕ1. This leads to

dσe+e−→h1h2X

dz1 dz2 d cos θ d(ϕ1 + ϕ2)
=

3α2

4s

∑

q

e2
q

{

(1 + cos2 θ)Dh1/q(z1)Dh2/q̄(z2)

+
1

4
sin2 θ cos(ϕ1 + ϕ2)∆NDh1/q↑(z1)∆NDh2/q̄↑(z2)

}

, (37)

where we have defined

∫

d2p⊥∆NDh/q↑(z, p⊥) ≡ ∆NDh/q↑(z) . (38)

By normalizing Eq. (37) to the azimuthal averaged cross
section,

⟨dσ⟩ ≡ 1

2π

dσe+e−→h1h2X

dz1 dz2 d cos θ

actual measurement is a 
ratio of such cross sections

Dh/q,sq
(z,p�) = Dh/p(z, p�) +

1
2
�NDh/q�(z, p�) sq · (p̂q ⇥ p̂�)



with simple parameterization, TMD factorisation gives 

�T q = hq
1T

�NDh/q" =
2 p?
zMh

H?q
1

3

ℓ q → ℓ q elementary scattering amplitudes, and in the
Collins fragmentation function; φS and ϕ identify the di-
rections of the proton spin S and of the quark intrinsic
transverse momentum k⊥, see Fig. 1; φh

q is the azimuthal
angle of the final hadron h, as defined in the fragmenting
quark helicity frame. Neglecting O(k2

⊥/Q2) terms, one
finds

cosφh
q =

PT

p⊥
cos(φh − ϕ) − z

k⊥
p⊥

,

sin φh
q =

PT

p⊥
sin(φh − ϕ) . (9)

A full study of Eq. (2), taking into account intrinsic mo-
tions with all contributions at all orders, following the
general approach of Ref. [16], will be presented in a forth-
coming paper [15]. Here, in agreement with all papers on
the Collins effect in SIDIS so far appeared in the litera-
ture, we work at O(k⊥/Q) and use Eqs. (4) and (9).

fq/p(x, k⊥) is the unpolarized transverse momentum
dependent (TMD) distribution function of a quark q in-
side the parent proton p, while Dh/q(z, p⊥) is the unpo-
larized TMD fragmentation function of quark q into the
final hadron h. We assume the k⊥ and p⊥ dependences
of these functions to be factorized in a Gaussian form,
suitable to describe non-perturbative effects at small PT

values and simple enough to allow analytical integration
over the intrinsic transverse momenta:

fq/p(x, k⊥) = fq/p(x)
e−k2

⊥/⟨k2
⊥⟩

π⟨k2
⊥⟩

, (10)

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/⟨p2
⊥⟩

π⟨p2
⊥⟩

, (11)

where fq/p(x) and Dh/q(z) are the usual integrated par-
ton distribution and fragmentation functions, available in
the literature; in particular we refer to Refs. [17, 18] and
[19]. The QCD induced Q2 dependence of these functions
is also taken into account, although we do not indicate
it explicitly. Finally, the average values of k2

⊥ and p2
⊥

are taken from Ref. [11], where they were obtained by
fitting the azimuthal dependence of SIDIS unpolarized
cross section:

⟨k2
⊥⟩ = 0.25 GeV2 , ⟨p2

⊥⟩ = 0.20 GeV2 . (12)

Notice that such values are assumed to be constant and
flavor independent.

The transversity distributions and the Collins func-
tions are unknown. We choose the following simple pa-
rameterization

∆T q(x, k⊥) =
1

2
N T

q (x)
[

fq/p(x) + ∆q(x)
] e−k2

⊥/⟨k2
⊥⟩

T

π⟨k2
⊥⟩T

,

(13)

∆NDh/q↑(z, p⊥) = 2NC
q (z) Dh/q(z) h(p⊥)

e−p2
⊥/⟨p2

⊥⟩

π⟨p2
⊥⟩

,

(14)
with

N T
q (x) = NT

q xα(1 − x)β (α + β)(α+β)

ααββ
, (15)

NC
q (z) = NC

q zγ(1 − z)δ (γ + δ)(γ+δ)

γγδδ
, (16)

h(p⊥) =
√

2e
p⊥
M

e−p2
⊥/M2

, (17)

and |NT
q |, |NC

q | ≤ 1. In general ⟨k2
⊥⟩T

̸= ⟨k2
⊥⟩, but from

our fits we learn that present experimental data are in-
sensitive to such a difference, therefore we simply assume
⟨k2

⊥⟩T
= ⟨k2

⊥⟩. Also, in this first simultaneous extraction
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FIG. 1: Three dimensional kinematics of the SIDIS process,
according to Trento conventions [14]. The photon and the pro-
ton collide along the ẑ-axis, while the leptonic plane defines
the x̂z plane. The fragmenting quark and the final hadron
h are emitted at azimuthal angles ϕ and φh, and the proton
transverse spin direction is identified by φS .

the observed hadron h with respect to the direction of
the fragmenting quark is related to k⊥ and P T by the
simple expression p⊥ = P T −zk⊥; in addition, the light-
cone momentum fractions x and z coincide with the usual
measurable SIDIS variables, z = zh = (P ·Ph)/(P ·q) and
x = x

B
= Q2/(2P · q). In this region factorization holds

[12, 13], leading order ℓ q → ℓ q elementary processes are
dominating and the soft PT of the detected hadron is
mainly originating from intrinsic motions.

The transverse single spin asymmetry (SSA) for this
process is defined as

A
UT

=
d6σℓp↑→ℓ′hX − d6σℓp↓→ℓ′hX

d6σℓp↑→ℓ′hX + d6σℓp↓→ℓ′hX
≡ dσ↑ − dσ↓

dσ↑ + dσ↓
,

(1)

where d6σℓp↑,↓→ℓhX ≡ dσ↑,↓ is a short hand notation for
(d6σℓp↑,↓→ℓhX)/(dx

B
dy dzh d2P T dφS). It will often hap-

pen, in comparing with data or giving measurable pre-
dictions, that the numerator and denominator of Eq. (1)
will be integrated over some of the variables, according
to the kinematical coverage of the experiments. ↑ and
↓ refer, respectively, to polarization vectors S and −S,
see Fig. 1. A full study of Eq. (1), with all contributions
at all orders in k⊥/Q, will be presented in a forthcoming
paper [15].

We consider here, at O(k⊥/Q), the sin(φS + φh)
weighted asymmetry,

Asin(φS+φh)
UT

= 2

∫

dφS dφh [dσ↑ − dσ↓] sin(φS + φh)
∫

dφS dφh [dσ↑ + dσ↓]
,

(2)
measured by the HERMES [8, 9] and COMPASS [10]
Collaborations. This asymmetry singles out the spin de-
pendent part of the fragmentation function of a trans-
versely polarized quark with spin polarization ŝ and
three-momentum pq:

Dh/q,s(z, p⊥) = Dh/q(z, p⊥)

+
1

2
∆NDh/q↑(z, p⊥) ŝ · (p̂q × p̂⊥) , (3)

resulting in
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UT
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Dh/q(z, p⊥)

· (4)

In the above equation ∆T q(x, k⊥) is the unintegrated
transversity distribution,

∆T q(x) ≡ h1q(x) =

∫

d2k⊥ ∆T q(x, k⊥) , (5)

while ∆NDh/q↑(z, p⊥) is the Collins function, often de-
noted as [14]:

∆NDh/q↑(z, p⊥) =
2p⊥
zmh

H⊥q
1 (z, p⊥) . (6)

dσ̂/dy is the planar unpolarized elementary cross section

dσ̂

dy
=

2πα2

sxy2
[1 + (1 − y)2] , (7)

and

d(∆σ̂)

dy
=

dσ̂ℓq↑→ℓq↑

dy
− dσ̂ℓq↑→ℓq↓

dy
=

4πα2

sxy2
(1 − y) · (8)

The sin(φS + ϕ + φh
q ) azimuthal dependence in Eq. (4)

arises from the combination of the phase factors in
the transversity distribution function, in the non-planar
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noted as [14]:

∆NDh/q↑(z, p⊥) =
2p⊥
zmh

H⊥q
1 (z, p⊥) . (6)

dσ̂/dy is the planar unpolarized elementary cross section

dσ̂

dy
=

2πα2

sxy2
[1 + (1 − y)2] , (7)

and

d(∆σ̂)

dy
=

dσ̂ℓq↑→ℓq↑

dy
− dσ̂ℓq↑→ℓq↓

dy
=

4πα2

sxy2
(1 − y) · (8)

The sin(φS + ϕ + φh
q ) azimuthal dependence in Eq. (4)

arises from the combination of the phase factors in
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where

5

of quarks and antiquarks into the physical hadrons h1

and h2 respectively (see Section II.C of Ref. [16] for de-
tailed explanations). In particular, the diagonal elements

Dh/q
++ (z, p⊥) and Dh/q

−−(z, p⊥) correspond to the trans-
verse momentum dependent unpolarized fragmentation
function Dh/q(z, p⊥),

Dh/q
++ (z, p⊥) = Dh/q

−−(z, p⊥) = Dh/q(z, p⊥) , (31)

whereas the non-diagonal elements

Dh/q
+−(z, p⊥) = Dh/q

+−(z, p⊥) eiϕ , (32)

Dh/q
−+(z, p⊥) = Dh/q

−+(z, p⊥) e−iϕ = −Dh/q
+−(z, p⊥) e−iϕ ,

are related to the Collins fragmentation function
∆NDh/q↑(z, p⊥) [11] by

∆NDh/q↑(z, p⊥) = −2i Dh/q
+−(z, p⊥) = 2i Dh/q

−+(z, p⊥) .
(33)

The angle ϕ in Eq. (33) is the azimuthal angle identifying
the direction of the observed hadron h in the helicity
frame of the fragmenting quark q. Similar relations hold
for the antiquark fragmentation functions, where one has
to take into account a sign difference in ϕ originating
from the fact that the antiquark is chosen to move along
the −ẑ direction. Finally, inserting Eqs. (30)–(33) into
Eq. (29) and performing the sum over the quark helicities
one obtains

dσe+e−→h1h2X

dz1 dz2 d2p⊥1 d2p⊥2 d cos θ
=

3πα2

2s

∑

q

e2
q

{

(1 + cos2 θ)Dh1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
1

4
sin2 θ ∆NDh1/q↑(z1, p⊥1)∆NDh2/q̄↑(z2, p⊥2) cos(ϕ1 + ϕ2)

}

. (34)

Eq. (34) shows that the study of the correlated produc-
tion of two hadrons (one for each jet) in unpolarized e+e−

collisions offers a direct access to the Collins functions,
both regarding their z and p⊥ dependences. So far, only
data on the z dependence are available. Notice that by in-
tegrating over the intrinsic transverse momenta p⊥1 and
p⊥2 one recovers the usual unpolarized cross section,

dσe+e−→h1h2X

dz1 dz2 d cos θ
= (35)

3πα2

2s
(1 + cos2 θ)

∑

q

e2
q Dh1/q(z1)Dh2/q̄(z2) ,

having used

∫

d2p⊥Dh/q(z, p⊥) = Dh/q(z) . (36)

To construct the physical observable measured by the
Belle Collaboration, we now perform a change of angular
variables from (ϕ1, ϕ2) to (ϕ1, ϕ1+ϕ2) and then integrate
over the moduli of the intrinsic transverse momenta, p⊥1

and p⊥2, and over the azimuthal angle ϕ1. This leads to

dσe+e−→h1h2X

dz1 dz2 d cos θ d(ϕ1 + ϕ2)
=

3α2

4s

∑

q

e2
q

{

(1 + cos2 θ)Dh1/q(z1)Dh2/q̄(z2)

+
1

4
sin2 θ cos(ϕ1 + ϕ2)∆NDh1/q↑(z1)∆NDh2/q̄↑(z2)

}

, (37)

where we have defined

∫

d2p⊥∆NDh/q↑(z, p⊥) ≡ ∆NDh/q↑(z) . (38)

By normalizing Eq. (37) to the azimuthal averaged cross
section,

⟨dσ⟩ ≡ 1

2π

dσe+e−→h1h2X

dz1 dz2 d cos θ
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recent BaBar data on the p⊥ dependence of the 
Collins function (first direct measurement)

gaussian p⊥ dependence of Collins functions 
(M.A., Boglione, D’Alesio, Gonzalez, Melis, Murgia, Prokudin, Phys. Rev. D92 (2015) 114023) 
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X processes

Independent information on the Collins functions can be obtained in unpolarised e+e� processes, by looking at
the azimuthal correlations of hadrons produced in opposite jets [7]. The Belle Collaboration [8, 31, 32] and, more
recently, the BaBar Collaboration [12] have measured azimuthal hadron-hadron correlations for inclusive charged pion
production in e+e� ! ⇡ ⇡X processes, which, involving the convolution of two Collins functions, can be interpreted
as a direct measure of the Collins e↵ect.

Two methods have been adopted in the experimental analysis of the Belle and BaBar data [7, 9, 12, 31]:

1. In the “thrust-axis method” the jet thrust axis, in the e+e� c.m. frame, fixes the ẑ direction and the e+e� ! q q̄
scattering defines the cxz plane; '

1

and '
2

are the azimuthal angles of the two hadrons around the thrust axis,
while ✓ is the angle between the lepton direction and the thrust axis. In this reference frame, with unpolarised
leptons, the cross section can be written as [9]:
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(15)

Until very recently, only data on the z dependence were available, while p?1

and p?2

were integrated out.
However, in 2014 the BaBar Collaboration has released a new analysis in which multidimensional data are
presented [12]. This represents the first direct measurement of the dependence of the Collins function on the
intrinsic transverse momenta p?1

and p?2

.

By normalizing Eq. (15) to the azimuthal averaged cross section,
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To eliminate false asymmetries, the Belle and BaBar Collaborations consider the ratio of unlike-sign (⇡+⇡� +
⇡�⇡+) to like-sign (⇡+⇡+ + ⇡�⇡�) or charged (⇡+⇡+ + ⇡+⇡�+⇡�⇡+ + ⇡�⇡�) pion pair production, denoted
respectively with indices U , L and C. For example, in the case of unlike- to like-pair production, one has
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Fig. 8: Comparison between the Collins asymmetries for pions and one of the fits in [18] (fit with standard
parameterisation and fit of A12 Belle asymmetries [19]). The preliminary asymmetries from 2010 data are included
in the fit.

COMPASS asymmetries on deuteron [8] and for unidentified hadrons on proton [11]. In Fig. 12, the
results of some of these fits [23–25], which employ Q

2 TMD evolutions, are shown to well reproduce
the COMPASS results. It will be interesting to see the results of such fits when the results presented
in this Letter will be included. More information on the Q

2 evolution is provided by the study of the
Sivers asymmetries in the low-y region between 0.05 and 0.1. The pion asymmetries in this region are
compared in the left panel of Fig. 13 to the asymmetries obtained in the standard y range and with the cut
x > 0.032. The mean Q

2 values of these two samples are respectively 3.5 (GeV/c)2 and 1.8 (GeV/c)2.
As for unidentified hadrons, there is an indication for an increase of the ⇡

+ asymmetries at low-y. The
dependence of the Sivers asymmetries with z is further investigated considering the z region between
0.1 and 0.2, where the asymmetries show smaller values. The comparison of the pion asymmetries as a
function of x for the two separated z ranges are shown in the right panel of Fig. 13. For negative pions,
a positive signal shows up in the low-z region, which is not observed for larger values of z.

In summary, using the high statistics data collected in 2007 and 2010, COMPASS has measured the
Collins and Sivers asymmetries in muonproduction of charged pions and charged and neutral kaons
produced off transversely polarised protons. The high energy muon beam allowed the measurement of
a broad kinematic range in x and Q

2. The x, z and pT dependences of the asymmetries were studied.
Further investigations extending the range in z and y were also performed. The Collins asymmetries are
definitely different from zero for pions and there are hints of a non-zero signal also for kaons, although
in this case the statistical significance is marginal. The Sivers asymmetries are positive for positive pions
and kaons, although different in size. This result is of particular interest since it can be used to access
the sea quark Sivers PDFs. The results presented in this paper provide an important input for the global
analyses. Together with other measurements covering complementary kinematic ranges, they allow the
study of the Q

2 dependence of the asymmetries and the quantitative extraction of the Collins FF and

recent results from COMPASS and a previous combined fit 
of SIDIS (HERMES and COMPASS) and e+e+ asymmetries 

COMPASS Collaboration, Phys. Lett. B744 (2015) 250



more on the Sivers effect, what does it teach us? 
 it induces distortions in the parton distributions 
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Figure 4: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in SIDIS. The longer cut denotes the final state of the process, while the shorter
cut demonstrates the origin of the phase needed for the asymmetry.

3.2 Drell-Yan Process

We now perform a similar calculation for the Drell-Yan process in the same model consid-
ered above for deep inelastic scattering. We will consider the scattering of an antiquark on a
transversely-polarized proton with transverse spin eigenvalue � that produces a virtual photon,
which then decays into a dilepton pair with invariant mass q2 = Q2. This process is shown in
Fig. 5 at the level of virtual photon production: q + p" ! �⇤

+ X.

�

�

p

�
p p � r

�

q

��
q � r

r

(A)

(B)

k

q � kq � r

k � r

p � k p � r

q
��

Figure 5: Diagrams for the q + p" ! �⇤
+ X DY amplitude at one-loop order (A) and tree-

level (B). The incoming proton and anti-quark are denoted by the lower and upper solid lines
correspondingly, with the outgoing diquark denoted by the dashed line.

Following [9], we work in a generic frame collinear to the proton (~p? =

~
0?). We define the

longitudinal momentum fraction of the photon to be � ⌘ q+/p+ and the momentum fraction
exchanged in the t-channel to be � ⌘ r+/p+. As before, four-momentum conservation and the

15

SIDIS final state interactions (⇒ AN)

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344                                            
Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

Figure 6: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in the Drell-Yan process. The longer cut denotes the final state of the process, while
the shorter cut demonstrates the origin of the phase needed for the asymmetry.

It is interesting to investigate the diagrammatic origin of the sign-flip in Eqs. (61) and (62).
To do that we consider the diagram contributing to the single-spin asymmetry in the Drell-Yan
process shown in Fig. 6. As follows from the calculation in Appendix B, the asymmetry in
the Drell-Yan case arises due to putting the (q � k)- and k-lines in Fig. 5 (A) (corresponding
to lines ¨ and ≠ in Figs. 13 and 14) on mass-shell: this is illustrated in Fig. 6 by the second
(shorter) cut, in analogy to Fig. 4. Comparing Figures 6 and 4, we see that the minus sign in
Eqs. (61) and (62) arises due to the replacement of the outgoing eikonal quark in Fig. 4 by the
incoming eikonal anti-quark in Fig. 6: this is in complete analogy with the original Wilson-line
time-reversal argument of Collins [8] (see also [36]).

However, a closer inspection of Figures 4 and 6 reveals that the cuts generating the complex
phase appear to be different: in Fig. 4 the (shorter) cut crosses the struck quark and the diquark
lines, while in Fig. 6 the (shorter) cut crosses the anti-quark line and the line of the quark in
the proton wave function. While we have already identified the outgoing quark/incoming anti-
quark duality in SIDIS vs. DY as generating the sign flip, the fact that in the proton’s wave
function the diquark is put on mass shell in SIDIS and the quark is put on mass shell in DY
makes one wonder why the absolute magnitudes of the asymmetries in Eq. (62) are equal. After
all, different cuts may lead to different contributions to the magnitudes of the asymmetry.

Ultimately the origin of Eq. (62) is in the fact that spin-asymmetry is a pseudo T -odd
quantity and the Wilson lines describing the outgoing quark in SIDIS and the incoming anti-
quark in DY are related by a time-reversal transformation [8]. However, in the diagrams at
hand the origin of the equivalence of the shorter cuts in Figs. 4 and 6 is as follows. Consider the
splitting of a polarized proton into a quark and a diquark as shown in Fig. 7: this subprocess
is common to both diagrams in Figs. 4 and 6. The essential difference between Figs. 4 and 6
that we are analyzing is in the fact that in Fig. 4 the diquark is on mass shell, while in Fig. 6
the quark is on mass shell.

Concentrating on the denominators of the quark and diquark propagators in Fig. 7 we shall
write for the SIDIS case of Fig. 4 (quark is off mass shell, diquark is on mass shell)

1

k2
�
�
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2 � �2
�

=

�1
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�
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), (66)

where we have used Eqs. (21), (34), and (30) along with x ⇡ �, and, in the last step, neglected

20

D-Y initial state interactions (⇒ -AN)

models of Sivers function and 
gauge links, process dependence [fq�

1T ]SIDIS = �[fq�
1T ]DY
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but the the Sivers effect has a simple physical picture…

PT � k�

spin

spin

left-right spin asymmetry for the process �⇤q ! q

the spin-k⊥ correlation is an intrinsic property of the 
nucleon; it should be related to the parton orbital motion 

fq/p,S(x,k?) = fq/p(x, k?) +
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FIG. 4. [Color online] Transverse single-spin asymmetry amplitude for W+ (left plot) and W− (right plot) versus yW compared
with the non TMD-evolved KQ [11] model, assuming (solid line) or excluding (dashed line) a sign change in the Sivers function.
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some hints at sign change of Sivers function….. 
(new results from COMPASS expected soon)



estimates of the Sivers asymmetry AN for W+(a) and W-(b) 
production, assuming a sign change of the SIDIS Sivers 

functions, compared with the experimental data as function of yW 
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Figure 3. Our estimates of the Sivers asymmetry AN for W+ (a) and W

� (b) production, assuming
a sign change of the SIDIS Sivers functions, compared with the experimental data as function of
yW . qT is integrated in the region [0.5, 10] GeV.
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Figure 4. Our estimates of the Sivers asymmetry AN for W

+ and W

� production, assuming a
sign change of the SIDIS Sivers functions, compared with the experimental data as function of qT .
yW is integrated in the region [�1, 1].

of AN , Fig. 4, and the yZ dependence of AN for Z

0, Fig. 5. In the latter case there
is only one single data point, with a big error, indicating a large positive asymmetry.

• The data on the yW dependence are given by collecting all W ’s produced with qT

up to 10 GeV. The simple model of D-Y TMD factorisation without evolution that
we use in this analysis is expected to hold for lower values of qT ; integrating the
theoretical results up to such values, in order to compare with the available data,
is a somewhat ambiguous procedure. Implementation of the TMD evolution would
not help to make the agreement with the data better in this case, as TMD evolution
predicts a suppression of the asymmetries for higher values of Q2 with respect to the
initial lower scale [11]. This suppression might become moderate depending on the
shape of the non-perturbative input of TMD evolution [28–30].
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FIG. 3: Predictions for W+ (a) and W

� (b) with sign change of Sivers functions compared with experimental data as function
of y. qT is integrated in the region [0, 5] GeV.

FIG. 4: Probability density functions for �2 of our predictions of W± asymmetry from all parameter sets used to calculate the
error band. Fitted normal distributions are shown as solid lines.

h�2
/n.o.d.i = 2.35 while sign change yields lower h�2

/n.o.d.i = 1.63. Notice that either scenario has tension with our
model, indeed the values of �2 are greater than zero. Using our results from Fig. 5 we may conclude that indeed W±

data provides an indication of the sign change according to Eq. (1).
Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
details of application of re-weighting are explained in Ref. [27]. Probability density function for model parameters ,
P(↵), is going to be modified in presence of new data and the Bayes theorem states that

P(↵|D) =
P(D|↵)
P(D)

P(↵), (25)

where P(↵|D) is the so-called posterior density, is the updated pdf from the prior density P(↵). The quantity P(D|↵)
called the likelihood function, represents the conditional probability for a data set D given the parameters ↵ of the
model. The quantity P(D) ensures the normalization of the posterior density to unity.
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Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
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P(↵), is going to be modified in presence of new data and the Bayes theorem states that

P(↵|D) =
P(D|↵)
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model. The quantity P(D) ensures the normalization of the posterior density to unity.
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Fig. 5: Extracted Drell-Yan TSAs related to Sivers, transversity and pretzelosity TMD PDFs (top to
bottom). Error bars represent statistical uncertainties. Systematic uncertainties (not shown) are 0.7 times
the statistical ones.
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predictions are evaluated with (without) the sign-change hypothesis. The error bar represents the total
experimental uncertainty.

values from this measurement is available on HepData [37]. The last column in Fig. 5 shows the results
for the three extracted TSAs integrated over the entire kinematic range. The average Sivers asymmetry
A

sinj
S

T

is found to be above zero at about one standard deviation of the total uncertainty. In Fig. 6, it
is compared with recent theoretical predictions from Refs. [19, 20, 21] that are based on different Q

2-
evolution approaches. The positive sign of these theoretical predictions for the DY Sivers asymmetry was
obtained by using the sign-change hypothesis for the Sivers TMD PDFs, and the numerical values are
based on a fit of SIDIS data for the Sivers TSA [9, 11, 12]. The figure shows that this first measurement
of the DY Sivers asymmetry is consistent with the predicted change of sign for the Sivers function.

The average value for the TSA A

sin(2j
CS

�j
S

)
T

is measured to be below zero with a significance of about
two standard deviations. The obtained magnitude of the asymmetry is in agreement with the model
calculations of Ref. [38] and can be used to study the universality of the nucleon transversity function.
The TSA A

sin(2j
CS

+j
S

)
T

, which is related to the nucleon pretzelosity TMD PDFs, is measured to be above
zero with a significance of about one standard deviation. Since both A

sin(2j
CS

�j
S

)
T

and A

sin(2j
CS

+j
S

)
T

are
related to the pion Boer-Mulders PDFs, the obtained results may be used to study this function further and
to possibly determine its sign. They may also be used to test the sign change of the nucleon Boer-Mulders
TMD PDFs between SIDIS and DY as predicted by QCD [6, 7, 8], when combined with other past and
future SIDIS and DY data related to target-spin-independent Boer-Mulders asymmetries [39, 40, 41].

Sivers asymmetry in DY at COMPASS  
arXiv:1704.00488

sign change

no sign change



Sivers function and orbital angular momentum 

Ji’s sum rule

Jq =
1
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Sivers function and orbital angular momentum 

assume

L(x) = lensing function                        
(unknown, can be computed in models)

parameterize Sivers and lensing functions
fit SIDIS and magnetic moment data

obtain Eq and estimate orbital angular momentum 

results at Q2 = 4 GeV2: Ju ≈ 0.23, Jq≠u ≈ 0

f
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Z
d

2k? b
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?a
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f

?(0)a
1T (x;Q2

L) = �L(x)Ea(x, 0, 0;Q2
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Bacchetta, Radici, PRL 107 (2011) 212001
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 
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TMDs and QCD - TMD evolution  

 TMD phenomenology - phase 2
how does gluon emission affect the parton transverse motion?

dedicated workshops, QCD Evolution 
2011, 2012, 2013, 2014, 2015, 2016, 2017

Different TMD evolution schemes and different 
implementations within the same scheme          

it needs non perturbative inputs

study of the QCD evolution of TMDs and 
TMD factorisation in rapid development 

TMDlib and TMDplotter: library and plotting tools for 
transverse-momentum-dependent parton distributions

dedicated tools:

Collins, “Foundations of perturbative QCD”, Cambridge University Press (2011)



Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

 TMD phenomenology - phase 2
how does gluon emission affect the transverse motion?

a few selected results, examples
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FIG. 1: (Color online.) The (negative of the) up quark Sivers function at x = 0.1 evolved from Q =
√
2.4 GeV(solid maroon)

to Q = 5 GeV(dashed blue) and Q = 91.19 GeV(dot-dashed red). The upper plot is found by evolving the Gaussian fits of
the Bochum group [14] and the lower plot is found by evolving the Gaussian fits of the Torino group [15]. In the case of the
Bochum fits, the down quark Sivers function is just the negative of the up quark one. For the Torino fits, the down quark
Sivers function is obtained by multiplying the up quark Sivers function by −1.35. These functions acquire an overall reversal
of sign if used in Drell-Yan.

lattice QCD calculations [48] can aid in providing mean-
ingful parametrizations of the nonperturbative input over
the whole of phase space and open up interesting ques-
tions regarding the matching of purely nonperturbative
descriptions of the Sivers function to pQCD.

C. Evolved Gaussian Parametrizations

Figure 1 suggests that, apart from the tail at large
kT , the Sivers function continues to be well described by
a Gaussian shape, even after evolution to large Q. To
describe the evolution of a purely Gaussian parametriza-
tion, with the x and kT dependence factorized, requires
only a specification of the scale dependence of the Gaus-
sian parameters. This saves having to directly calculate
Eq. (44), and its transformation to momentum space,
separately for each value of Q and x. Because of the
general convenience of working with Gaussian functions,
we have obtained Gaussian fits for a range of Q starting
at Q =

√
2.4 GeV for the Bochum and Torino fits up

to Q = 90 GeV. The fits are obtained using the Wol-
fram Mathematica 7 FindFit routine, and examples
are shown as the dashed curves in Fig. 2. A table of the
resulting values for the Gaussian parameters is shown in
Table I. (Fortran, C++, and Wolfram Mathematica

7 code that produce evolved Gaussian fits is available

at [49].)

In Fig. 2, we illustrate the quality of the Gaussian
fits to the Sivers function at intermediate and large
Q (Q = 5 GeV and 91.19 GeV, respectively). In
practice, the Sivers effect is often probed via observ-
ables like Eq. (52), so we have plotted the integrand,
−2πk3TF

⊥ up
1T (x, kT ;µ,Q). Note that, after the evolution

to large Q, the −2πk3TF
⊥ up
1T (x, kT ;µ,Q) acquires a very

broad tail for both the Bochum and Torino fits. The
tail falls off slowly; for Q = 91.19 GeV, the ratio of the
value of the Bochum fit at kT = 10 GeV to the value at
kT = 5 GeV is about 0.65. This is roughly consistent
with the 1/kT fall-off at large kT that is expected from
the power counting arguments in Sec. III C. The last two
columns in Table I show the values of kT where the ra-
tio of the Gaussian fits to the original Sivers functions
is 0.8. That is, above kTorinoT,max (GeV) the Gaussian fits to
the evolved Torino Sivers function drop to less than 0.8
of the original evolved Sivers function and similarly for
kBochum
T,max .

That the description at small kT remains Gaussian is
not entirely surprising given that the input we use for
the nonperturbative evolution is Gaussian (gK(bT ) ∝ b2).
However, it should be emphasized that the perturbative
contribution to evolution results in a substantial modifi-
cation of the shape and normalization of the TMD PDF,

TMD evolution of up quark Sivers function 
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FIG. 3: (Color online.) The evolving Gaussian parameters for −2πk3
TF

⊥up
1T (x, kT ;µ,Q) for a range of Q obtained from the

Torino and Bochum fits. Table I lists the Gaussian parameters for a selection of Q.

tant difference from the unpolarized case is in the match-
ing at large-kT . In the unpolarized case, the TMD PDF
(or FF) matches to a twist-2 collinear factorization treat-
ment at large kT , whereas the Sivers function matches
to a twist-3 collinear factorization treatment related to
the Qiu-Sterman formalism, as in Eq. (47). Thus, the
treatment provided in this article unifies several different
aspects of TMD physics.

It is worth commenting on the often repeated state-
ment (see, e.g., Ref. [51]) that calculations in covariant
gauges are impractical or inconvenient, and that working
in light-cone gauge is therefore preferred. In our work,
we find that the opposite is true. Namely, the calculation
of the perturbative parts (at least to order αs) follows
clear-cut steps in Feynman gauge, while the derivation
of TMD-factorization theorems is much more direct in
Feynman gauge than in light-cone gauge. (Indeed, we
are not aware of the existence of a detailed light-cone
gauge derivation of TMD factorization.) Moreover, once
the calculation of the perturbative parts has been per-
formed in Feynman gauge, a generalized parton-model in-
terpretation follows directly from the TMD-factorization
formula in Eq. (1). For these reasons, we advocate con-
tinuing to work in Feynman gauge for both calculations
and derivations.

We have implemented the evolution explicitly using
as input the already known γF , γD and γK (supplied
for easy reference in the Appendix, previous fixed-scale
Gaussian fits of the Sivers function at low-Q [14, 15], and
previous fits of the CSS formalism to DY [33]. For the ex-
plicit calculations in the present article, we have focused
only on the low-kT region where we need not be con-
cerned with the treatment of the Qiu-Sterman formalism
at large kT , and the approximations of Sec. V make sense.

The resulting evolved momentum-space Sivers functions
are shown in Fig. 1. Comparing with Fig. 1 of Ref. [22]
for the evolution of the unpolarized TMD PDF, one sees
even more suppression as Q is increased than in the un-
polarized case. Also note that a significant perturbative
tail is generated at large Q as shown in Fig. 2. We reem-
phasize that this should be kept in mind when evaluating
integrals like Eq. (52).

Gaussian parametrizations are particularly convenient
for doing explicit calculations. Therefore, we have tested
the quality of Gaussian fits after evolution to large Q
and find that the Gaussian function provides an excellent
approximation to the Sivers function at small kT , even
for Q ≈ 90.0 GeV. We have made these fits available, as
well as code for generating evolved TMDs at a website
maintained by two of us (Aybat and Rogers) [49].

Much work remains to be done in the effort to connect
a full QCD treatment of TMDs with phenomenology. An
explicit implementation of the matching to the twist-3
Qiu-Sterman formalism is still needed, and will be partic-
ularly important for a correct treatment of kT -weighted
observables in which the extra kT factors enhance the
contribution from the large kT region. The recent work
of Ref. [25] may help. Moreover, as new data become
available for both polarized and unpolarized cross sec-
tions, it will be useful to construct new fits that include
evolution from the beginning. Finally, explicit calcula-
tions, analogous to the ones presented here, need to be
applied to the other TMDs like the Boer-Mulders and
Collins functions.

At large Q, the shape of the distribution is especially
sensitive to the value of bmax, g2 and the functional form
of gK(bT ). Reference [34], for example, finds that a larger
value of bmax is preferred, along with a corresponding

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function 

TMD evolution of Sivers function studied also by 
Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013
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FIG. 3. Extracted transversity distribution (a) and Collins regimentation function (b) at three different scales Q2 = 2.4 (dotted
lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. The shaded region corresponds to our estimate of 90% C.L.
error band at Q2 = 10 GeV2.
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FIG. 4. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to 90% C.L.
interval at Q2 = 10 GeV2.

E. Transversity, Collins fragmentation functions and tensor charge

We plot transversity and the Collins fragmentation function in Fig. 3 at two different scales Q2 = 10 and 1000
GeV2. In order to evaluate functions we solve appropriate DGLAP equations for transversity Eq. (69) and twist-3
collins functions Eq. (71). Due to the fact that neither of the functions mixes with gluons, these distributions do not
change drastically in low-x region due to DGLAP evolution.
Transversity enters directly in SIDIS asymmetry and we find that the main constraints come from SIDIS data only,

its correlations with errors of Collins FF turn out to be numerically negligible. We thus vary only χ2
SIDIS and use

∆χ2
SIDIS = 22.2 for 90% C.L. and ∆χ2

SIDIS = 6.4 for 68% C.L. calculated using Eq. (123). Since the experimental
data has only probed the limited region 0.0065 < xB < 0.35, we define the following partial contribution to the tensor
charge

δq[xmin,xmax]
(
Q2
)
≡
∫ xmax

xmin

dxhq
1(x,Q

2) . (127)

In Fig. 4, we plot the χ2 Monte Carlo scanning of SIDIS data for the contribution to the tensor charge from such a

Extraction of transversity and Collins 
functions with TMD evolution  

(Kang, Prokudin, Sun, Yuan, Phys. Rev. D93 (2016) 014009)

transversity 
distributions

moment of Collins 
functions



35

)2
(x

,Q
1

x 
h

u
d

x

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

-0.15
-0.1

-0.05
0

0.05

Kang et al (2015)
Anselmino et al (2013)

(a)

)2
(x

,Q
1

x 
h

u
d

x

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

Kang et al (2015)
Radici et al (2015)

(b)

FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
(b) Comparison of extracted transversity (solid lines and shaded region) at Q2 = 2.4 GeV2 with Pavia 2015 extraction [18]
(shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
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FIG. 8: Cross section di↵erential with respect to the transverse momentum qT of a Z boson produced from pp̄ collisions at
Tevatron. The four panels refer to di↵erent experiments (CDF and D0) with two di↵erent values for the center-of-mass energy
(
p
s = 1.8 TeV and

p
s = 1.96 TeV). In this case the band is narrow due to the narrow range for the best-fit values of g

2

.

⇠

max

[GeV�1] ⇠

min

[GeV�1] g

2

[GeV2]

(fixed) (fixed)

All replicas 2e��E 2e��E
/Q 0.13± 0.01

Replica 105 2e��E 2e��E
/Q 0.128

TABLE X: Values of parameters common to TMD PDFs and TMD FFs.

TMD PDFs g

1

↵ � �

[GeV2] [GeV�2]

All replicas 0.28± 0.06 2.95± 0.05 0.17± 0.02 0.86± 0.78

Replica 105 0.285 2.98 0.173 0.39

TMD FFs g

3

� � � �F g

4

[GeV2] [GeV�2] [GeV2]

All replicas 0.21± 0.02 1.65± 0.49 2.28± 0.46 0.14± 0.07 5.50± 1.23 0.13± 0.01

Replica 105 0.212 2.10 2.52 0.094 5.29 0.135

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at Q = 1 GeV.
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FIG. 9: Correlation between transverse momenta in TMD FFs, hP 2

?

i(z = 0.5), and in TMD PDFs, hk2

?

i(x = 0.1), in di↵erent
phenomenological extractions. (1): average values (white square) obtained in the present analysis, values obtained from each
replica (black dots) and 68% C.L. area (red); (2) results from Ref. [23], (3) results from Ref. [97], (4) results from Ref. [76] for
Hermes data, (5) results from Ref. [76] for Hermes data at high z, (6) results from Ref. [76] for normalized Compass data,
(7) results from Ref. [76] for normalized Compass data at high z, (8) results from Ref. [15].
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FIG. 10: Kinematic dependence of
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↵
(x) (a) and of

⌦
P 2

?

↵
(z) (b). The bands are the 68% C.L. envelope of the full sets of

best-fit curves.

C. Stability of our results

In this subsection we discuss the e↵ect of modifying some of the choices we made in our default fit. Instead of
repeating the fitting procedure with di↵erent choices, we limit ourselves to checking how the �

2 of a single replica is
a↵ected by the modifications.

As starting point we choose replica 105, which, as discussed above, is one of the most representative among the
whole replica set. The global �2

/d.o.f. of replica 105 is 1.51. We keep all parameters fixed, without performing any
new minimization, and we compute the �

2

/d.o.f. after the modifications described in the following.
First of all, we analyze Hermes data with the same strategy as Compass, i.e., we normalize Hermes data to the

value of the first bin in P

hT

. In this case, the global �2

/d.o.f. reduces sharply to 1.27. The partial �2 for the di↵erent
SIDIS processes measured at Hermes are shown in Table XII. This confirms that normalization e↵ects are the main
contribution to the �

2 of SIDIS data and have minor e↵ects on TMD-related parameters. In fact, even if we perform
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(recover partonic distributions in the forward limit) 
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Figure 11. The “handbag” diagrams representing Deeply Virtual Compton Scattering (DVCS)
and Deeply Virtual Meson Production (DVMP). As in Fig. 3, the initial (virtual) photon is
produced by a scattered electron. x ± ⇠ are the fractions of the proton’s momentum along the
light-cone carried by the active parton before and after the collision.

To understand orbital motion whether of quarks or gluons requires a connection between
the momentum of each parton and its position, Fig. 10. We move from the one dimensional
momentum distribution of partons (Fig. 9) to their multi-dimensional generalisations.
Transverse Momentum-dependent Distributions (TMDs) describe the correlation of the
polarisation of the quarks of di↵erent flavours with the polarisation of the proton. By measuring
di↵erent observables in Semi-Inclusive Deep Inelastic Scattering (SIDIS), TMDs combined with
fragmentation functions (as a quark materialises as a detected hadron) can be determined. The
feasibility of separating TMDs [45, 46] has been shown using results from Hermes [47, 46] and

Figure 12. A contour plot of the k? distribution of unpolarised quarks inside a proton that
is coming towards you. On the left is for an unpolarised proton: the parton distribution is
symmetric. On the right is shown how this changes if the proton is polarised in the y-direction,
indicated by the arrow on the right. One sees the quark distribution distorted and shifted. This
change contributes to what is called the Sivers function. Indeed, experiment reveals that when
such distributions are decomposed into flavours, the up quarks shift one way and the down the
other way [48]. These e↵ects allow the angular momentum carried by quarks to be determined.
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2 Markus Diehl: Introduction to GPDs and TMDs

of which is strongly restricted by rotational invariance).
Several GPDs and TMDs describe specific spin-orbit cor-
relations at the parton level and are sensitive to parton or-
bital angular momentum, which is a crucial ingredient in
describing how the overall spin of the nucleon arises from
its constituents. In section 5 we make some comments on
this topic, which is reviewed in detail in a dedicated con-
tribution to this volume [1].

For definiteness, we will mostly consider distributions
for quarks and antiquarks in the following. Gluon distribu-
tions can be discussed in close analogy, with appropriate
adaptions.

2 Space-time and momentum structure

In this section we review the variables on which differ-
ent kinds of parton distributions depend. This will allow
us to see how the different distributions are related to
each other. Any process that probes partons inside a nu-
cleon singles out a particular direction, providing a phys-
ical distinction between “longitudinal” and “transverse”.
This is naturally implemented in the parton model, where
one chooses a reference frame in which the hadron un-
der consideration moves fast. One is however not limited
to this choice: parton distributions are defined in a co-
variant way, and one can also discuss them in the hadron
rest frame. Of course, the process probing the parton still
singles out a particular direction in that frame, so that
transverse and longitudinal directions play different roles.
Thus, the information one can gain about partons in the
proton inevitably breaks manifest three-dimensional rota-
tion invariance. For definiteness, we will in the following
consider a reference frame in which the hadron moves fast
in the positive z direction (exactly or approximately). A
suitable set of coordinates is then given by the light-cone
coordinates v± = (v0 ± v3)/

√
2 and the transverse com-

ponents v = (v1, v2) of a given four-vector v.
A two-parton correlation function for quarks is defined

as the matrix element of a bilinear quark field operator
between proton states:

H(k, P,∆) = (2π)−4

∫
d4z eizk

×
〈
p(P + 1

2∆)|q̄(− 1
2z)Γ q(12z)|p(P − 1

2∆)
〉
. (1)

The Dirac matrix Γ selects the twist1 and the parton spin
degrees of freedom, and we have omitted labels for the
proton spin state. For the moment we put aside field the-
oretical issues such as the regularisation and renormalisa-
tion of the operator and the insertion of a Wilson line be-
tween the two quark quark fields. The parton and proton
momenta are shown in figure 1. Notice that the on-shell
condition for the proton states results in the conditions
P∆ = 0 and 4P 2 + ∆2 = 4m2, where here and in the
following m denotes the proton mass.

1 There are several – slightly different – definitions of the
term “twist”. We will not expand on this topic here and refer
to [2] for a detailed discussion.

While H(k, P,∆) is a smooth function of ∆, the cases
where this momentum transfer is zero or not correspond
to distinct physical situations:

1. In the forward limit ∆ = 0 the function appears in
the cross section of inclusive processes. Glossing over
complications from confinement, one may insert a com-
plete set |X⟩⟨X | of states between the fields q̄ and q
in the matrix element (1). This gives essentially the
amplitude A for emitting a quark or antiquark from
the proton, with a system of spectator partons X left
behind, multiplied by the conjugate A∗ of that ampli-
tude as required for the computation of a cross sec-
tion. The representation as a squared amplitude A∗A
opens the possibility to interpret certain forward dis-
tributions as probability densities in the sense of quan-
tum mechanics. Taken literally, this interpretation no
longer holds after the regularisation and renormalisa-
tion already mentioned, but if taken with due caution
it remains a valuable guide for physical intuition.
We note that in the forward limit, it is convenient to
take a frame where P = 0, so that the proton moves
exactly along the z axis.

2. In non-forward kinematics ∆ ̸= 0 the function appears
in the amplitude of exclusive reactions, with an incom-
ing proton of momentum P−∆/2 and an outgoing one
of momentum P +∆/2. The functions in this case are
often called “generalised”.

In physical observables, the correlation function (1) typ-
ically is integrated over one or more components of the
four-momentum k. Let us review this step by step.

1. After an integral over k−, the quark and antiquark
fields are evaluated at z+ = 0. This admits a very
elegant interpretation in the framework of light-cone
quantisation: quark fields are quantised at light-cone
time z+ = 0, where they obey the anticommutation
relations for free fields and have a Fourier decomposi-
tion in terms of creation and annihilation operators for
quarks and antiquarks. This may be seen as the field
theory implementation of the parton model, where par-
tons are regarded as quasi-free just before they are
probed in a physical process. The parton states cre-
ated or annihilated by the fields have positive plus-
momentum, so that depending on the respective signs
of k+ −∆+/2 and k+ +∆+/2, the matrix element in
figure 1 describes the emission and reabsorption of a
quark, the emission and reabsorption of an antiquark,
or (for ∆+ ̸= 0 only) the emission or absorption of a
quark-antiquark pair (see figure 3 below). At z+ = 0,
the representation of the parton correlation function as

k − 1
2∆ k + 1

2∆

P − 1
2∆ P + 1

2∆

Fig. 1. Momentum assignments in the general quark correla-
tion function (1).

inclusive processes, cross sections� = 0

exclusive processes, amplitudes� 6= 0

x =
k

+

P

+
2⇠ = ��+

P

+

most general correlator (off diagonal)
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1p
2
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For definiteness, we will mostly consider distributions
for quarks and antiquarks in the following. Gluon distribu-
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In this section we review the variables on which differ-
ent kinds of parton distributions depend. This will allow
us to see how the different distributions are related to
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cleon singles out a particular direction, providing a phys-
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proton spin state. For the moment we put aside field the-
oretical issues such as the regularisation and renormalisa-
tion of the operator and the insertion of a Wilson line be-
tween the two quark quark fields. The parton and proton
momenta are shown in figure 1. Notice that the on-shell
condition for the proton states results in the conditions
P∆ = 0 and 4P 2 + ∆2 = 4m2, where here and in the
following m denotes the proton mass.
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term “twist”. We will not expand on this topic here and refer
to [2] for a detailed discussion.

While H(k, P,∆) is a smooth function of ∆, the cases
where this momentum transfer is zero or not correspond
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1. In the forward limit ∆ = 0 the function appears in
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opens the possibility to interpret certain forward dis-
tributions as probability densities in the sense of quan-
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exactly along the z axis.

2. In non-forward kinematics ∆ ̸= 0 the function appears
in the amplitude of exclusive reactions, with an incom-
ing proton of momentum P−∆/2 and an outgoing one
of momentum P +∆/2. The functions in this case are
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H(x, ξ,∆2)

∑n
k=0Ank(∆2) (2ξ)k
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Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P,∆) defined
in (1). Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-
momentum (commonly called “longitudinal momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant
momentum transfer can be expressed in terms of longitudinal and transverse variables as ∆2 = −(4ξ2m2 +∆

2)/(1− ξ2). Only
kinematic arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation
of rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in figure 2. Let us start at the
top of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact descrip-
tion of final-state kinematics [7,8]. Under the name of
“beam functions”, they have also been introduced in
soft-collinear effective theory (SCET) for the resum-
mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
The considerations in [6] and [9,10,11] focus on the re-
gion of large parton virtuality k2 and compute the un-
integrated distributions in terms of conventional par-
ton distribution functions (PDFs), an aspect we will
discuss in more detail for TMDs in section 4.
A detailed analysis of factorisation with unintegrated
distributions has been given for semi-inclusive deep in-
elastic scattering (SIDIS) in [8]. For hadron-hadron

collisions there are strong arguments that this type
of factorisation generically fails, due to soft gluon ex-
change between the spectator partons in each hadron
[12,13]. In kinematics referred to as the Glauber re-
gion, these soft interactions “tie together” the two had-
rons in a way that prevents one from describing the
non-perturbative dynamics by matrix elements that
pertain to only one hadron and not to both. To estab-
lish factorisation, one has to show that (after appro-
priate approximations) gluon exchange in the Glauber
region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for ∆ = 0 and in [15] for
∆ ̸= 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longitu-
dinal momentum. Integrating the Wigner distribution
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Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P,∆) defined
in (1). Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-
momentum (commonly called “longitudinal momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant
momentum transfer can be expressed in terms of longitudinal and transverse variables as ∆2 = −(4ξ2m2 +∆

2)/(1− ξ2). Only
kinematic arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation
of rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in figure 2. Let us start at the
top of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact descrip-
tion of final-state kinematics [7,8]. Under the name of
“beam functions”, they have also been introduced in
soft-collinear effective theory (SCET) for the resum-
mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
The considerations in [6] and [9,10,11] focus on the re-
gion of large parton virtuality k2 and compute the un-
integrated distributions in terms of conventional par-
ton distribution functions (PDFs), an aspect we will
discuss in more detail for TMDs in section 4.
A detailed analysis of factorisation with unintegrated
distributions has been given for semi-inclusive deep in-
elastic scattering (SIDIS) in [8]. For hadron-hadron

collisions there are strong arguments that this type
of factorisation generically fails, due to soft gluon ex-
change between the spectator partons in each hadron
[12,13]. In kinematics referred to as the Glauber re-
gion, these soft interactions “tie together” the two had-
rons in a way that prevents one from describing the
non-perturbative dynamics by matrix elements that
pertain to only one hadron and not to both. To estab-
lish factorisation, one has to show that (after appro-
priate approximations) gluon exchange in the Glauber
region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for ∆ = 0 and in [15] for
∆ ̸= 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longitu-
dinal momentum. Integrating the Wigner distribution

models of the Wigner distribution most welcome.…
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Abstract. We review the status of our understanding of nucleon structure based on the modelling of dif-
ferent kinds of parton distributions. We use the concept of generalized transverse momentum dependent
parton distributions and Wigner distributions, which combine the features of transverse-momentum de-
pendent parton distributions and generalized parton distributions. We revisit various quark models which
account for different aspects of these parton distributions. We then identify applications of these distribu-
tions to gain a simple interpretation of key properties of the quark and gluon dynamics in the nucleon.

PACS. 12.38.Aw General properties of QCD (dynamics, confinement, etc.) – 13.60.Hb Total and inclusive
cross sections (including deep-inelastic processes)

1 Introduction

The nucleon as a strongly interacting many-body system
of quarks and gluons offers such a rich phenomenology
that models are crucial tools to unravel the many facets of
its nonperturbative structure. Although models oversim-
plify the complexity of QCD dynamics and are constructed
to mimic certain selected aspects of the underlying theory,
they are almost unavoidable when studying the partonic
structure of the nucleon and often turned out to be crucial
to open the way to many theoretical advances.

Recently, a new type of distribution functions, known
as generalized transverse momentum dependent parton
distributions (GTMDs), has emerged as key quantities
to study the parton structure of the nucleon [1–3]. They
parametrize the unintegrated off-diagonal quark-quark cor-
relator, depending on the three-momentum k of the quark
and on the four-momentum ∆ which is transferred by
the probe to the hadron. They have a direct connection
with the Wigner distributions of the parton-hadron sys-
tem, which represent the quantum-mechanical analogues
of classical phase-space distributions. Wigner distributions
provide five-dimensional (two position and three momen-
tum coordinates) images of the nucleon as seen in the
infinite-momentum frame [4–6]. As such they contain the
full correlations between the quark transverse position and
three-momentum.

In specific limits or after specific integrations of GT-
MDs, one can build up a natural interpretation of mea-
sured observables known as generalized parton distribu-
tions (GPDs) and transverse momentum-dependent par-
ton distributions (TMDs). Further limits/integrations re-
duce them to collinear parton distribution functions (PDFs)

FF(∆)

GTMD(x, k⃗⊥, ∆)

GPD(x, ∆)TMD(x, k⃗⊥)

PDF(x)TMSD(k⃗⊥)

TMFF

Charge

∆ = 0
∫
dx

∫
d2k⊥

(k⃗⊥, ∆)

Fig. 1. Representation of the projections of the GTMDs into
parton distributions and form factors.

and form factors (FFs) (see Fig 1 for a pictorial represen-
tation of the different links to GTMDs [7]).

The aim of this work is to review the most recent de-
velopments in modelling the GTMDs, Wigner distribu-
tions, GPDs and TMDs, discussing the complementary
and novel aspects encoded in these distributions. In sect. 2
we will focus on the GTMDs. As unifying formalism for
modelling such functions, we will adopt the language of
light-front wave functions (LFWFs), providing a represen-
tation of nucleon GTMDs which can be easily adopted in
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [70] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theor

i

= F (x
i

, z
i

, P i

hT

, Q2

i

;a0) with the M
parameters a0 = {a0

1

, ..., a0
M

} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each x

i

, Q2

i

,
z
i

and P i

hT

bin, the obtained values, value
i

,
for the Sivers function are distributed using
a Gaussian smearing with a width �

i

corre-
sponding to the simulated event rate at the
center-of-mass energy of

p
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb�1. To illustrate the achievable statistical
precision, the event rate for the production
of ⇡± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [70].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f?u

1T

, represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb�1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb�1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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dence on x, Q2 and t. At present it is not
clear whether polarized protons will be avail-

able.

Q2=100 GeV 2

Q2=50 GeV2Planned DVCS at fixed targ.:
COMPASS- dσ/dt, ACSU, ACST

JLAB12- dσ/dt, ALU, AUL, ALL
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Figure 2.19: An overview of existing and planned measurements of DVCS in the x,Q2 plane.

A first era of precise parton imaging will
begin with the 12 GeV upgrade at JLab, with
very high statistics and su�ciently high Q2

to probe partons at high-x, including the ef-
fects of polarization. Figure 2.19 gives an
overview of existing and anticipated mea-
surements of DVCS in the x,Q2 plane.

To realize the full physics potential of
parton imaging that we have discussed in the
previous section will require the EIC. Such
a machine will, for the first time, make it
possible to image partons with high statis-
tics and with polarization in a wide range
of small- to moderate-x. At high-x it will
complement the JLab 12 program with mea-
surements at large-Q2, thus opening up the
possibility to extract physics from scaling vi-

olations for high-momentum partons.
Let us finally mention that it is very dif-

ficult to obtain information on GPDs from
exclusive processes in p+p collisions. This is
due to the e↵ect of soft gluon exchange be-
tween spectator partons in the two protons,
which precludes a simple theoretical inter-
pretation of such reactions. Lepton-proton
scattering thus provides a privileged way to
quantify the spatial structure of the pro-
ton via GPDs. On the other hand, the in-
formation gained in lepton-proton scattering
can help to better understand important fea-
tures of proton-proton collisions, in particu-
lar the dynamics of multi-parton interactions
[121, 122].
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Figure 2.21: Top: The DVCS cross-section in two bins of x and Q2. The error bars reflect
statistical and assumed systematic uncertainties, but not the overall normalization uncertainty
from the luminosity measurement. For the left panels the assumed luminosity is 10 fb�1 for
|t| < 1GeV2 and 100 fb�1 for |t| > 1GeV2. Bottom: The distribution of partons in impact
parameter b

T

obtained from the DVCS cross-section. The bands represent the parametric errors
in the fit of d�DV CS

/dt and the uncertainty from di↵erent extrapolations to the regions of
unmeasured (very low and very high) t, as specified in Sec. 3.6 of [2].

measured value of ⇠ = x/(2 � x), whereas
the variable b

T

is legitimately interpreted as
a transverse parton position [92]. The bot-
tom panels of Figure 2.21 show that precise
images are obtained in a wide range of b

T

,
including the large b

T

region where a char-
acteristic dependence on b

T

and x due to
virtual pion fluctuations is predicted as dis-

cussed in Sec. 2.4.1. We emphasize that a
broad acceptance in t is essential to achieve
this accuracy. If, for instance, the measured
region of |t| starts at (300MeV)2 instead of
(175MeV)2, the associated extrapolation un-
certainty exceeds 50% for b

T

> 1.5 fm with
the model used here.
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The Confined Motion of Partons Inside
the Nucleon
Semi-inclusive DIS (SIDIS) measurements
have two natural momentum scales: the
large momentum transfer from the electron
beam needed to achieve the desired spatial
resolution, and the momentum of the pro-
duced hadrons perpendicular to the direction
of the momentum transfer, which prefers a
small value sensitive to the motion of con-
fined partons. Remarkable theoretical ad-
vances over the past decade have led to a
rigorous framework where information on the
confined motion of the partons inside a fast-
moving nucleon is matched to transverse-
momentum dependent parton distributions
(TMDs). In particular, TMDs are sensitive
to correlations between the motion of par-
tons and their spin, as well as the spin of the
parent nucleon. These correlations can arise
from spin-orbit coupling among the partons,
about which very little is known to date.
TMDs thus allow us to investigate the full
three-dimensional dynamics of the proton,
going well beyond the information about lon-
gitudional momentum contained in conven-
tional parton distributions. With both elec-

tron and nucleon beams polarized at collider
energies, the EIC will dramatically advance
our knowledge of the motion of confined glu-
ons and sea quarks in ways not achievable at
any existing or proposed facility.

Figure 1.3 (Left) shows the transverse-
momentum distribution of up quarks inside
a proton moving in the z direction (out of the
page) with its spin polarized in the y direc-
tion. The color code indicates the probabil-
ity of finding the up quarks. The anisotropy
in transverse momentum is described by the
Sivers distribution function, which is induced
by the correlation between the proton’s spin
direction and the motion of its quarks and
gluons. While the figure is based on a pre-
liminary extraction of this distribution from
current experimental data, nothing is known
about the spin and momentum correlations
of the gluons and sea quarks. The achiev-
able statistical precision of the quark Sivers
function from EIC kinematics is also shown
in Fig. 1.3 (Right). Currently no data exist
for extracting such a picture in the gluon-
dominated region in the proton. The EIC
will be crucial to initiate and realize such a
program.
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Figure 1.3: Left: The transverse-momentum distribution of an up quark with longitudinal
momentum fraction x = 0.1 in a transversely polarized proton moving in the z-direction, while
polarized in the y-direction. The color code indicates the probability of finding the up quarks.
Right: The transverse-momentum profile of the up quark Sivers function at five x values
accessible to the EIC, and corresponding statistical uncertainties.
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The Tomography of the Nucleon - Spa-
tial Imaging of Gluons and Sea Quarks
By choosing particular final states in elec-
tron+proton scattering, the EIC will probe
the transverse spatial distribution of sea
quarks and gluons in the fast-moving pro-
ton as a function of the parton’s longitudinal
momentum fraction, x. This spatial distri-
bution yields a picture of the proton that is
complementary to the one obtained from the
transverse-momentum distribution of quarks
and gluons, revealing aspects of proton struc-
ture that are intimately connected with the
dynamics of QCD at large distances. With
its broad range of collision energies, its high
luminosity and nearly hermetic detectors,
the EIC could image the proton with un-
precedented detail and precision from small
to large transverse distances. The accessible
parton momentum fractions x extend from
a region dominated by sea quarks and glu-
ons to one where valence quarks become im-

portant, allowing a connection to the precise
images expected from the 12 GeV upgrade
at JLab and COMPASS at CERN. This is
illustrated in Fig. 1.4, which shows the pre-
cision expected for the spatial distribution of
gluons as measured in the exclusive process:
electron + proton ! electron + proton +
J/ .

The tomographic images obtained from
cross-sections and polarization asymmetries
for exclusive processes are encoded in gen-
eralized parton distributions (GPDs) that
unify the concepts of parton densities and
of elastic form factors. They contain de-
tailed information about spin-orbit correla-
tions and the angular momentum carried by
partons, including their spin and their orbital
motion. The combined kinematic coverage
of the EIC and of the upgraded CEBAF as
well as COMPASS is essential for extracting
quark and gluon angular momentum contri-
butions to the proton’s spin.
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T
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kinematic quantity x
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= x
B

(1 +M2

J/ 

/Q2) determines the gluon’s momentum fraction. The
collision energies assumed for Stage-I and Stage-II are E

e

= 5, 20 GeV and E
p

= 100, 250 GeV,
respectively.
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Sivers and Collins effects are well established, with many 
transverse spin asymmetries resulting from them. 

Sivers function, TMDs and orbital angular momentum?        
QCD analysis of TMDs and GPDs sound and well developed.      

Combined data from SIDIS, Drell-Yan, e+e-, with 
theoretical modelling, should lead to a true 3D imaging 

of the proton 
Waiting for JLab 12, new COMPASS results, and, 

crucially, for an EIC dedicated facility ….

The 3D nucleon structure is mysterious and fascinating. 
Many experimental results show the necessity to go 

beyond the simple collinear partonic picture and give new 
information. Crucial task is interpreting data and building 

a consistent 3D description of the nucleon.  

thank you!


