The 3-D nucleon structure in QCD

Mauro Anselmino - Torino University \& INFN

WE-Heraeus Physics School

QCD - Old Challenges and

 New OpportunitiesBad Honnef, Sept 24-30, 2017

The 1-D nucleon picture, successes and some failures Beyond the 1-D picture, quark intrinsic motion

New concepts, TMDs and GPDs, 3-D momentum and spatial distributions of quarks and gluons

How and what do we learn from data about the 3-D nucleon structure? (mainly in momentum space)

Open problems and future experiments
special issue of EPJA dedicated to the 3D nucleon structure, EPJ A52, 2016, n.6-15 contributions, (Edts. M.A., P. Rossi, M. Guidal)
despite 50 years of studies the nucleon is still a very mysterious object, yet the most abundant piece of matter in the visible Universe

usual (successful) way of exploring the proton structure (collinear parton model)

DIS : $\ell p \rightarrow \ell X$

$$
Q^{2}=-q^{2} \quad x=\frac{Q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot \ell}{P \cdot q}
$$

Naive parton model: $\quad \frac{\mathrm{d} \sigma^{\ell p \rightarrow \ell X}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} q(x) \frac{\mathrm{d} \hat{\sigma}^{\ell q \rightarrow \ell q}}{\mathrm{~d} Q^{2}}$

QCD interactions induce a well known Q^{2} dependence

$$
\text { DIS - pQCD : } \quad q(x) \Rightarrow \underbrace{q\left(x, Q^{2}\right)}_{\text {PDFs }}
$$

DGLAP evolution equations
factorization:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} q\left(x, Q^{2}\right) \otimes \frac{\mathrm{d} \hat{\sigma}_{q}}{\mathrm{~d} Q^{2}}
$$

universality: same $q\left(x, Q^{2}\right)$ measured in DIS can be used in other processes

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation

$$
\begin{gathered}
\frac{d}{d\left(\ln Q^{2}\right)} q_{i}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left[q_{i} \otimes P_{q q}+g \otimes P_{q g}\right] \\
\frac{d}{d\left(\ln Q^{2}\right)} g\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left[\sum_{i}\left(q_{i}+\bar{q}_{i}\right) \otimes P_{g q}+g \otimes P_{g g}\right] \\
q \otimes P=P \otimes q \equiv \int_{x}^{1} d y \frac{q\left(y, Q^{2}\right)}{y} P\left(\frac{x}{y}\right) \\
P_{q q}=\frac{4}{3}\left[\frac{1+x^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(1-x)\right]+\mathcal{O}\left(\alpha_{s}\right) \\
P_{q g}=\frac{1}{2}\left[x^{2}+(1-x)^{2}\right]+\mathcal{O}\left(\alpha_{s}\right) \quad P_{q g}=\frac{4}{3} \frac{1+(1-x)^{2}}{x}+\mathcal{O}\left(\alpha_{s}\right) \\
P_{g g}=6\left[\frac{x}{(1-x)_{+}}+\frac{1-x}{x}+x(1-x)\right]+\frac{33-2 n_{f}}{6} \delta(1-x)+\mathcal{O}\left(\alpha_{s}\right) \\
\int_{0}^{1} d x \frac{f(x)}{(1-x)_{+}}=\int_{0}^{1} d x \frac{f(x)-f(1)}{(1-x)}
\end{gathered}
$$

H1 and ZEUS

$F_{2}=\sum_{q} x q\left(x, Q^{2}\right) \quad$ from M. Pennington, arXiv:1604.01441

N	x
0	0.85
1	0.74
2	0.65
3	0.55
4	0.45
5	0.34
6	0.28
7	0.23
8	0.18
9	0.14
10	0.11
11	0.10
12	0.09
13	0.07
14	0.05
15	0.04
16	0,026
17	0,018
18	0,013
19	0,008
20	0,005

JLab inser \dagger

I	\circ	N
A	38°	0
B	41°	1
C	45°	2
D	55°	3
E	60°	4
F	70°	5

H1 and ZEUS

unpolarized distribution
 $x f_{a}\left(x, Q^{2}\right)$

H. Abramowicz et al., Eur. Phys. J. C75 (2015) 580

PDFs are very useful, they can be used to predict cross sections for several processes

Cross section for $p p \rightarrow \pi X$ in $p Q C D$

based on factorization theorem (in collinear configuration)

$$
\mathrm{d} \sigma=\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{f_{a / p}\left(x_{a}\right) \otimes f_{b / p}\left(x_{b}\right)}_{\text {PDF }} \otimes \underbrace{\mathrm{d} \hat{\sigma}^{a b \rightarrow c d} \otimes \underbrace{D_{\pi / c}(z)}_{\mathrm{FF}}}_{\substack{\text { PQCD elementary } \\ \text { interactions }}}
$$

mid-rapidity RHIC data, unpolarised cross sections

 (arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)
large P_{T} single pion production $p p \rightarrow \pi X$

good agreement between RHIC data
and collinear PQCD calculations
but there are problems with spin dependent data ...
$A_{N}=$ simple left-right asymmetry

$$
A_{N}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)+d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\uparrow}\left(-\boldsymbol{P}_{T}\right)}{2 d \sigma^{\operatorname{unp}}\left(P_{T}\right)}
$$

$$
A_{N} \equiv \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto \sin \theta
$$

transverse Single Spin Asymmetry (SSA)

A_{N} large and persistent at high energies

SSA in $p p \rightarrow \pi X ?$

$$
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{\Delta_{T} f_{a}}_{\substack{\text { transversity }}} \otimes f_{b} \otimes \underbrace{\left[\mathrm{~d} \hat{\sigma}^{\uparrow}-\mathrm{d} \hat{\sigma}^{\downarrow}\right]}_{\text {PQCD elementary }} \otimes \underbrace{D_{\pi / c}}_{\mathrm{FF}}
$$

$$
A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \hat{a}_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \begin{gathered}
\text { was considered } \\
\text { almost a theorem }
\end{gathered}
$$

Transverse single spin asymmetries in elastic scattering

$$
\begin{gathered}
A_{N} \equiv \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto \sin \theta \\
\text { Example: } p p \rightarrow p p \\
5 \text { independent helicity amplitudes } \\
A_{N} \propto \operatorname{Im}\left[\Phi_{5}\left(\Phi_{1}+\Phi_{2}+\Phi_{3}-\Phi_{4}\right)^{*}\right]
\end{gathered} \quad\left\{\begin{array}{l}
H_{++;++} \equiv \Phi_{1} \\
H_{--;++} \equiv \Phi_{2} \\
H_{+-;+-} \equiv \Phi_{3} \\
H_{-+;+-} \equiv \Phi_{4} \\
H_{-+;++} \equiv \Phi_{5}
\end{array}\right.
$$

Single spin asymmetries at partonic level. Example: $q q^{\prime} \rightarrow q q^{\prime}$
$A_{N} \neq 0$ needs helicity flip + relative phase

QED and QCD interactions conserve helicity, up to corrections $\mathcal{O}\left(\frac{m_{q}}{E_{q}}\right)$
$\longleftrightarrow A_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s}$ at quark level
(Kane, Pumplin, Repko)
but large SSA observed at hadron level!
the (longstanding) proton spin puzzle
total spin carried by quarks
total spin carried by gluons orbital angular momentum of quarks and gluons
the total spin carried by quarks and gluons does not amount to $1 / 2$, one needs orbital angular momentum, then a 3-D description
many other (spin) effects in high energy interactions cannot be understood in the collinear configuration
.... we cannot state that we know the full partonic nucleon structure
parton intrinsic motion spin- k_{\perp} correlations?
orbiting quarks? spatial distribution? nucleon mass?

new concepts: Transverse Momentum Dependent distribution and fragmentation functions - TMDs

Generalized Partonic Distributions - GPDs
new probes and concepts to explore the nucleon structure

TMDs - Transverse Momentum Dependent (distribution and fragmentation functions)
(polarized) SIDIS and Drell-Yan, spin asymmetries in inclusive
(large pt) NN processes

$$
f_{a / p}\left(x, \boldsymbol{k}_{\perp} ; \boldsymbol{s}_{a}, \boldsymbol{S}\right)
$$

GPDs - Generalized Partonic Distributions

exclusive processes in leptonic and hadronic interactions

$$
q\left(x, \boldsymbol{b}_{T}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{T}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\boldsymbol{\Delta}_{T}^{2}\right) e^{-i \boldsymbol{b}_{T} \cdot \boldsymbol{\Delta}_{T}}
$$

TMDs in simple parton model

TMDs = Transverse Momentum Dependent Parton Distribution Functions (TMD-PDF) or Transverse Momentum Dependent Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with their intrinsic motion and spin, inside a fast moving proton, with its spin.

$$
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{S} \cdot \boldsymbol{s}_{q}
$$

"Sivers effect" "Boer-Mulders effect"

there are 8 independent TMD-PDFs

$f^{q}\left(x, \boldsymbol{k}^{2}\right) \quad$ unpolarized quarks in unpolarized protons unintegrated unpolarized distribution
$g_{1 L}^{q}\left(x, \boldsymbol{k}^{2}\right) \quad$ correlate SL of quark with S_{L} of proton unintegrated helicity distribution
$h_{1 T}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad \begin{aligned} & \text { correlate ST of quark with ST of proton } \\ & \text { unintegrated transversity distribution }\end{aligned}$
only these survive in the collinear limit
$f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)$ correlate k_{\perp} of quark with ST of proton (Sivers) $^{\text {p }}$ pror
$h_{1}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)$ correlate k_{\perp} and ST of quark (Boer-Mulders)

The nucleon at twist-2,

courtesy of A. Kotzinian

TMD-FFs give the number density of hadrons, with their momentum, originated in the fragmentation of a fast moving parton, with its spin.

$$
\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \quad \text { "Collins effect" }
$$

there are 2 independent TMD-FFs for spinless hadrons
$D_{1}^{q}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \quad$ unpolarized hadrons in unpolarized quarks $H_{1}^{\perp q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)$ correlate p_{\perp} of hadron with $\mathrm{st}^{\text {T of }}$ quark (Collins)

TMD formalism - The nucleon correlator, in collinear configuration: 3 distribution functions

$$
\begin{aligned}
\Phi_{i j}(k ; P, S) & =\sum_{X} \int \frac{\mathrm{~d}^{3} \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\Psi}_{j}(0)|X\rangle\langle X| \Psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} \xi e^{i k \cdot \xi}\langle P S| \bar{\Psi}_{j}(0) \Psi_{i}(\xi)|P S\rangle \\
\Phi(x, S) & =\frac{1}{2} \underbrace{f^{2}}_{f_{1}(x)} h_{+}+S_{L} \underbrace{}_{\Delta_{1 L}(x)} \gamma^{5} \not h_{+}+h_{1 T} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}]
\end{aligned}
$$

TMD-PDFs: the leading-twist correlator, with intrinsic k_{\perp}, contains 8 independent functions

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{\perp}\right)=\frac{1}{2}[f_{1} \not h_{+}+\underbrace{\perp}_{1 T} \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M}+\left(S_{L} \overparen{g_{1 L}}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}^{\perp}) \gamma^{5} k_{+} \\
& +\left(h_{1 T} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L}\left(h_{1 L}^{\perp}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M}\left(h_{1 T}^{\perp}\right) \frac{i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M}\right.\right. \\
& \left.+h_{1}^{\perp} \frac{\sigma_{\mu \nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M}\right]
\end{aligned}
$$

with partonic interpretation

how to "measure" TMDs?

need processes which relate physical observables to parton intrinsic motion

Drell-Yan processes

$$
p N \rightarrow \ell^{+} \ell^{-} X
$$

$$
e^{+} e^{-} \rightarrow h_{1} h_{2} X
$$

TMDs in SIDIS

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{CCD}}$ Two scales: $P_{T} \ll Q^{2}$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\begin{array}{c}
\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \\
\text { Sollinsers }
\end{array}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

the $F_{S_{B}}^{(\cdots)}$ cont the TMDs; plen of Spin Asymmetries

at leading twist there are 8 independent azimuthal modulations, with different combinations of TMDs.

$$
\begin{aligned}
& \left.F_{U U} \sim \sum_{a} e_{a}^{2} \int_{1}^{a}\right) \otimes D_{1}^{a} \\
& \left.\left.\begin{array}{l}
F_{L T}^{\cos \left(\phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(g_{1 T}^{\perp a}\right) \otimes D_{1}^{a} \\
\left.F_{U T}^{\sin \left(\phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} f_{1 T}^{\perp a}\right) \otimes D_{1}^{a}
\end{array}\right\} \begin{array}{c}
\text { chiral-even } \\
\text { TMDs }
\end{array} \begin{array}{l}
\left.F_{U T}^{\sin \left(\phi+\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} h_{h_{1 T}^{a}}^{a}\right) \otimes H_{1}^{\perp a} \\
\left.F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} h_{h_{1 T}^{\perp a}}^{\perp a}\right) \otimes H_{1}^{\perp a}
\end{array}\right\} \begin{array}{c}
\text { chiral-odd } \\
\text { TMDs }
\end{array} \\
& F_{L L} \sim \sum_{a} e_{a}^{2} \overparen{g_{1 L}^{a}} \otimes D_{1}^{a} \\
& F_{U U}^{\cos (2 \phi)} \sim \sum_{a} e_{a}^{2} h_{1}^{\perp a} \otimes H_{1}^{\perp a} \\
& \left.F_{U L}^{\sin (2 \phi)} \sim \sum_{a} e_{a}^{2} h^{\perp 1 L}\right) \otimes H_{1}^{\perp a}
\end{aligned}
$$

integrated $f_{1}^{q}(x)$ and $g_{1 L}^{q}(x)$ can be measured in usual DIS

TMDs in Drell-Yan processes

COMPASS, RHIC, Fermilab, NICA, AFTER...

factorization holds, two scales, M^{2}, and $q_{T} \ll M$ $\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}$ direct product of TMDs, no fragmentation process

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.\quad+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \\
& \quad \begin{array}{l}
\text { Sivers }
\end{array} \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper frame

Unpolarized cross section already very interesting

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

Collins-Soper frame

naive collinear parton model: $\lambda=1 \quad \mu=\nu=0$

$$
\lambda \neq 1 \quad \mu, \nu \neq 0 \quad 1-\lambda-2 \nu \neq 0
$$

Collins function from $e^{+} e^{-}$processes (Belle, BaBar, BES-III)

(another similar asymmetry can be measured, A_{0})

Do we have experimental evidence of TMD effects?

PT dependence of unpolarised SIDIS multiplicities

$$
M_{n}^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right) \equiv \frac{1}{\frac{d^{2} \sigma^{D I S}\left(x_{B}, Q^{2}\right)}{d x_{B} d Q^{2}}} \frac{d^{4} \sigma\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)}{d x_{B} d Q^{2} d z_{h} d P_{T}}
$$

HERMES $M_{p}^{\pi^{+}}$

A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D87, 074029 (2013)
$\boldsymbol{P}_{T} \simeq \boldsymbol{p}_{\perp}+z \boldsymbol{k}_{\perp}$
origin of P_{T} dependence in SIDIS with TMD factorisation

$\Lambda_{\mathrm{QCD}} \simeq k_{\perp} \simeq P_{T} \ll Q$
$\boldsymbol{P}_{T} \simeq \boldsymbol{p}_{\perp}+z_{h} \boldsymbol{k}_{\perp}$
elementary interaction: $\gamma^{*} q \rightarrow q^{\prime}$

Clear evidence for Sivers and Collins effects from SIDIS data (HERMES, COMPASS, JLab)

COMPASS data, Phys. Lett. B744 (2015) 250
origin of Sivers effect in SIDIS - $F_{U T}^{\sin \left(\phi-\phi_{S}\right)}$

$$
\begin{aligned}
& \mathrm{d} \sigma^{\uparrow, \downarrow}=\sum_{q} f_{q / p^{\uparrow}, .}\left(x, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}\left(y, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes D_{h / q}\left(z, \boldsymbol{p}_{\perp} ; Q^{2}\right) \\
& f_{q / p^{\uparrow, \downarrow}}\left(x, \boldsymbol{k}_{\perp}^{q}\right)=f_{q / p}\left(x, k_{\perp}\right) \pm \frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& \left(\Delta^{N} f_{q / p^{ }}=-\frac{2 k_{\perp}}{M} f_{1 T}^{\perp q}\right) \\
& \left.\sum_{q}^{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=} \Delta^{\Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right.}\right) \underbrace{\boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)} \otimes \mathrm{d} \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes D_{h / q}\left(z, \boldsymbol{p}_{\perp}\right) \\
& \sin \left(\varphi-\phi_{S}\right) \quad \text { no } S S A \text { if } \mathbf{k}_{\perp}=0 \text { ! } \\
& \begin{array}{c}
\text { measured } \\
\text { quantity }
\end{array}\left\{\begin{array}{c}
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle=A_{U T}^{\sin \left(\phi-\phi_{S}\right)} \\
\int \mathrm{d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]
\end{array}\right.
\end{aligned}
$$

origin of Sivers effect in DY processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\begin{aligned}
& \mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp 1}\right) \otimes f_{\bar{q} / p}\left(x_{2}, k_{\perp 2}\right) \otimes \mathrm{d} \hat{\sigma} \\
& q=u, \bar{u}, d, \bar{d}, s, \bar{s}
\end{aligned}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

Collins effect in SIDIS

$$
\begin{aligned}
D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right) & =D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& =D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

origin of Collins asymmetry in SIDIS $-F_{U T}^{\sin \left(\phi+\phi_{S}\right)}$

$$
\begin{aligned}
& D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right)=D_{h / p}\left(z, p_{\perp}\right)+ \\
& \text { 斌 } D_{h / q^{\dagger}}\left(z, p_{\perp}\right) s_{q} \cdot\left(\hat{p}_{q} \times \hat{p}_{\perp}\right. \\
& \begin{array}{c}
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{q}^{h_{1 q}\left(x, k_{\perp}\right)} \otimes \mathrm{d} \Delta \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes \Delta^{N} D_{D_{h / q^{\uparrow}}\left(z, \boldsymbol{p}_{\perp}\right)} \\
\text { no SSA if } \mathbf{p}_{\perp}=0!
\end{array} \\
& A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \equiv 2 \frac{\int \mathrm{~d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi+\phi_{S}\right)}{\int \mathrm{d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]} \\
& \mathrm{d} \Delta \hat{\sigma}=\mathrm{d} \hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\uparrow}}-\mathrm{d} \hat{\sigma}^{\ell q^{\uparrow}} \rightarrow \ell q^{\downarrow}
\end{aligned}
$$

Collins effect in SIDIS couples to transversity

independent evidence for Collins effect

 from $e^{+} e^{-}$data at Belle, BaBar and BES-III$$
A_{12}\left(z_{1}, z_{2}\right) \sim \Delta^{N} D_{h_{1} / q^{\dagger}}\left(z_{1}\right) \otimes \Delta^{N} D_{h_{2} / \bar{q}^{\uparrow}}\left(z_{2}\right)
$$

I. Garzia, arXiv:1201.4678

a similar asymmetry just measured by BES-III (arXiv 1507:06824)

Collins effect clearly observed both in SIDIS and e+eprocesses, by several Collaborations
In general clear evidence for quark intrinsic motion; how do we extract information on TMDs from data?

What do we learn from data?

TMD extraction from data - first phase (simple parameterisation, no TMD evolution, limited number of parameters, ...) unpolarised TMDs - fit of SIDIS multiplicities (M.A, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005)

HERMES $M_{p}^{\pi^{+}}$

measured quantity

$$
M_{n}^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right) \equiv \frac{1}{\frac{d^{2} \sigma^{D I S}\left(x_{B}, Q^{2}\right)}{d x_{B} d Q^{2}}} \frac{d^{4} \sigma\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)}{d x_{B} d Q^{2} d z_{h} d P_{T}}
$$

in TMD factorisation at order (k_{\perp} / Q)

$$
\begin{aligned}
\frac{d \sigma^{\ell+p \rightarrow \ell^{\prime} h X}}{d x_{B} d Q^{2} d z_{h} d P_{T}^{2}} & =\frac{2 \pi^{2} \alpha^{2}}{\left(x_{B} s\right)^{2}} \frac{\left[1+(1-y)^{2}\right]}{y^{2}} \quad \text { elementary interaction, | } q \rightarrow \mid q \\
& \times \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{p}_{\perp} \delta^{(2)}\left(\boldsymbol{P}_{T}-z_{h} \boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp}\right) f_{q / p}\left(x, k_{\perp}\right) D_{h / q}\left(z, p_{\perp}\right) \\
& \equiv \frac{2 \pi^{2} \alpha^{2}}{\left(x_{B} s\right)^{2}} \frac{\left[1+(1-y)^{2}\right]}{y^{2}} F_{U U} .
\end{aligned}
$$

assume simple x and k_{\perp}

$$
f_{q / p}\left(x, k_{\perp}\right)=f_{q / p}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle}
$$ factorization and a gaussian k_{\perp} dependence

$$
D_{h / q}\left(z, p_{\perp}\right)=D_{h / q}(z) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
$$

then $\quad F_{U U}=\sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right) D_{h / q}\left(z_{h}\right) \frac{e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}}{\pi\left\langle P_{T}^{2}\right\rangle}$
the good fit of the data shows a clear support for a gaussian distribution

$$
\frac{d^{2} n^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)}{d z_{h} d P_{T}^{2}}=\frac{1}{2 P_{T}} M_{n}^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)=\frac{\pi \sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right) D_{h / q}\left(z_{h}\right)}{\sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right)} \frac{e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}}{\pi\left\langle P_{T}^{2}\right\rangle}
$$

$$
\left\langle P_{T}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+z_{h}^{2}\left\langle k_{\perp}^{2}\right\rangle
$$

two correlated parameters

$$
\left\langle k_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2} \quad\left\langle p_{\perp}^{2}\right\rangle=0.12 \pm 0.01 \mathrm{GeV}^{2}
$$

(M.A, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005)
a similar analysis performed by Signori, Bacchetta, Radici, Schnell, JHEP 1311 (2013) 194; it also assumes gaussian behaviour
extraction of u and d Sivers functions - first phase measured quantity

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=2 \frac{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right] \sin \left(\phi_{h}-\phi_{S}\right)}{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}+d \sigma^{\downarrow}\right]}
$$

TMD factorization at $\mathcal{O}\left(k_{\perp} / Q\right)$

$$
\begin{gathered}
\frac{d \sigma^{\ell p^{\uparrow} \rightarrow \ell h} x}{d x_{B} d Q^{2} d z_{h} d^{2} \boldsymbol{P}_{T}}=\sum_{q}\left(e _ { q } ^ { 2 } \int d ^ { 2 } \boldsymbol { k } _ { \perp } f _ { q / p ^ { \uparrow } } (x , k _ { \perp }) \left(\frac{2 \pi \alpha^{2}}{x^{2} s^{2}} \hat{s}^{2}+\hat{u}^{2}\right.\right. \\
Q^{4}
\end{gathered} D_{h / q}\left(z, p_{\perp}\right) .
$$

two different notations $\quad \Delta^{N} f_{q / p^{\dagger}}=-\frac{2 k_{\perp}}{M_{p}} f_{1 T}^{\perp q}$

simple parameterisations

$$
\begin{aligned}
& \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}, Q\right)=2 \mathcal{N}(x) h\left(k_{\perp}\right) \underbrace{f_{q / p}(x, Q) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle}}_{f_{q / p}\left(x, k_{\perp}\right)} \\
& \mathcal{N}_{q}(x)=N_{q} x^{\alpha_{q}}(1-x)^{\beta_{q}} \frac{\left(\alpha_{q}+\beta_{q}\right)\left(\alpha_{\alpha}+\beta_{q}\right)}{\alpha_{q}^{\alpha_{q} \beta_{q}^{\beta_{q}}}} \\
& h\left(k_{\perp}\right)=\sqrt{2 e} \frac{k_{\perp}}{M_{1}} e^{-k_{\perp}^{2} / M_{1}^{2}} \\
& D_{h / q}\left(z, p_{\perp}\right)=D_{h / q}(z) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

Q^{2} evolution only taken into account in the collinear part (usual DGLAP PDF evolution)
M.A, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, Phys.

Rev. D71 (2005) 074006; Eur. Phys. J. A39 (2009) 89 (results in agreement with those of several other groups)
most recent extraction of the Sivers functions
M.A, M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin, JHEP 1704 (2017) 046

TMD extraction: transversity and Collins functions - first phase M. A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PRD 87 (2013) 094019

SIDIS and $e+e$ - data, simple parameterization, no TMD evolution, agreement with extraction using di-hadron FF
(recent papers by Bacchetta, Courtoy, Guagnelli, Radici, JHEP 1505 (2015) 123; Kang, Prokudin, Sun, Yuan, Phys. Rev. D91 (2015) 071501; Phys. Rev. D93 (2016) 014009)

measured quantities

$$
\begin{aligned}
& A_{U T}^{\sin \left(\phi_{S}+\phi_{h}\right)}=2 \frac{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right] \sin \left(\phi_{S}+\phi_{h}\right)}{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}+d \sigma^{\downarrow}\right]} \mathrm{d}^{6} \sigma \equiv \frac{\mathrm{~d}^{6} \sigma^{\ell p^{\uparrow} \rightarrow \ell h X}}{\mathrm{~d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} z_{h} \mathrm{~d}^{2} \boldsymbol{P}_{T} \mathrm{~d} \phi_{S}}
\end{aligned}
$$

$D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right)=D_{h / p}\left(z, p_{\perp}\right)+$ $\frac{1}{2} \Delta^{N} D_{h / q^{\top}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)$

$$
\frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)}
$$

actual measurement is a ratio of such cross sections

with simple parameterization, TMD factorisation gives

$$
\begin{aligned}
& \Delta_{T} q\left(x, k_{\perp}\right)=\frac{1}{2} \mathcal{N}_{q}^{T}(x)\left[f_{q / p}(x)+\Delta q(x)\right] \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle_{T}}}{\pi\left\langle k_{\perp}^{2}\right\rangle_{T}} \quad \Delta_{T} q=h_{1 T}^{q} \\
& \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right)=2 \mathcal{N}_{q}^{C}(z) D_{h / q}(z) h\left(p_{\perp}\right) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle} \quad \Delta^{N} D_{h / q^{\uparrow}}=\frac{2 p_{\perp}}{z M_{h}} H_{1}^{\perp q} \\
& A_{U T}^{\sin \left(\phi_{S}+\phi_{h}\right)}=\frac{\sum_{q} e_{q}^{2} \int d \phi_{S} d \phi_{h} d^{2} \boldsymbol{k}_{\perp} \Delta_{T} q\left(x, k_{\perp}\right) \frac{d(\Delta \hat{\sigma})}{d y} \Delta^{N} D_{h / q^{\top}}\left(z, p_{\perp}\right) \sin \left(\phi_{S}+\varphi+\phi_{q}^{h}\right) \sin \left(\phi_{S}+\phi_{h}\right)}{\sum_{q} e_{q}^{2} \int d \phi_{S} d \phi_{h} d^{2} \boldsymbol{k}_{\perp} f_{q / p}\left(x, k_{\perp}\right) \frac{d \hat{\sigma}}{d y} D_{h / q}\left(z, p_{\perp}\right)} \\
& \text { where } \frac{d(\Delta \hat{\sigma})}{d y}=\frac{d \hat{\sigma}^{\ell q^{\dagger} \rightarrow \ell q^{\dagger}}}{d y}-\frac{d \hat{\sigma}^{\ell q^{\dagger} \rightarrow \ell q^{\downarrow}}}{d y}=\frac{4 \pi \alpha^{2}}{s x y^{2}}(1-y) \\
& \frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)}=\frac{3 \alpha^{2}}{4 s} \sum_{q} e_{q}^{2}\left\{\left(1+\cos ^{2} \theta\right) D_{h_{1} / q}\left(z_{1}\right) D_{h_{2} / \bar{q}}\left(z_{2}\right)\right. \\
& +\frac{1}{4} \sin ^{2} \theta \cos \left(\varphi_{1}+\varphi_{2} \Delta^{N} D_{h_{1} / q^{\uparrow}} z_{1} \Delta^{N} D_{h_{2} / \bar{q}^{\uparrow}}\left(z_{2}\right)^{\prime},\right\} \\
& \int d^{2} \boldsymbol{p}_{\perp} \triangle^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \equiv \Delta^{N} D_{h / q^{\uparrow}}(z)^{\prime}
\end{aligned}
$$

recent BaBar data on the p_{\perp} dependence of the Collins function (first direct measurement)

$$
\frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} p_{\perp 1} d p_{\perp 1} p_{\perp 2} d p_{\perp 2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)}
$$

gaussian p_{\perp} dependence of Collins functions
(M.A., Boglione, D'Alesio, Gonzalez, Melis, Murgia, Prokudin, Phys. Rev. D92 (2015) 114023)
recent results from COMPASS and a previous combined fit of SIDIS (HERMES and COMPASS) and $e^{+} e^{+}$asymmetries

COMPASS Collaboration, Phys. Lett. B744 (2015) 250
more on the Sivers effect, what does it teach us? it induces distortions in the parton distributions

$$
f_{q / p, \boldsymbol{S}^{(}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

$$
=f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

models of Sivers function and gauge links, process dependence

SIDIS final state interactions $\left(\Rightarrow A_{N}\right)$

D-Y initial state interactions $\left(\Rightarrow-A_{N}\right)$

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344 Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032
but the the Sivers effect has a simple physical picture...

$$
\begin{aligned}
f_{q / p, \boldsymbol{S}}\left(x, \boldsymbol{k}_{\perp}\right) & =f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\dagger}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

left-right spin asymmetry for the process $\gamma^{*} q \rightarrow q$
the spin- \mathbf{k}_{\perp} correlation is an intrinsic property of the nucleon; it should be related to the parton orbital motion

First results from RHIC, $p^{\uparrow} p \rightarrow W^{ \pm} X$
STAR Collaboration, PRL 116 (2016) 132301

some hints at sign change of Sivers function..... (new results from COMPASS expected soon)
M.A, M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin, JHEP 1704 (2017) 046

(a)
estimates of the Sivers asymmetry A_{N} for $\mathrm{W}^{+}(a)$ and $\mathrm{W}^{-}(b)$ production, assuming a sign change of the SIDIS Sivers functions, compared with the experimental data as function of y_{w}

$$
\begin{aligned}
& \left\langle\chi^{2} / \text { n.o.d. }\right\rangle=1.63 \quad \text { with } \text { sign change } \\
& \left\langle\chi^{2} / \text { n.o.d. }\right\rangle=2.35 \quad \text { with no sign change }
\end{aligned}
$$

Sivers asymmetry in DY at COMPASS arXiv:1704.00488

Sivers function and orbital angular momentum

Ji's sum rule

$$
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}(x, 0,0)+E^{q}(x, 0,0)\right]
$$

anomalous magnetic moments

$$
\begin{gathered}
\kappa^{p}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\left(E^{q_{v}}=E^{q}-E^{\bar{q}}\right)
\end{gathered}
$$

Sivers function and orbital angular momentum assume

$$
\begin{aligned}
& f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right) \\
& f_{1 T}^{\perp(0) a}(x, Q)=\int d^{2} \boldsymbol{k}_{\perp} \widehat{f}_{1 T}^{\perp a}\left(x, k_{\perp} ; Q\right) \\
& L(x)=\text { lensing function } \\
& \text { (unknown, can be computed in models) }
\end{aligned}
$$

parameterize Sivers and lensing functions
fit SIDIS and magnetic moment data obtain E^{q} and estimate orbital angular momentum results at $Q^{2}=4 \mathrm{GeV}^{2}: \mathrm{J}^{u} \approx 0.23, \mathrm{~J}^{\neq u} \approx 0$

Bacchetta, Radici, PRL 107 (2011) 212001

other experimental evidence of the Sivers and Collins effects

SSA in hadronic processes: TMDs, a possible explanation Generalization of collinear scheme (GPM) (assuming factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)}_{\text {期 }} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}}_{\text {single spin effects in TMDs }}
$$

TMDs and QCD - TMD evolution

how does gluon emission affect the parton transverse motion? TMD phenomenology - phase 2
Different TMD evolution schemes and different implementations within the same scheme it needs non perturbative inputs

> dedicated workshops, QCD Evolution 2011, 2012, 2013, 2014, 2015, 2016, 2017

dedicated tools:

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
study of the QCD evolution of TMDs and
TMD factorisation in rapid development
Collins, "Foundations of perturbative QCD", Cambridge University Press (2011)

TMD phenomenology - phase 2
how does gluon emission affect the transverse motion?

a few selected results, examples

TMD evolution of up quark Sivers function

Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function

Evolved Torino Gaussian Fits
Up Quark Sivers Function, $x=0.1$

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043
TMD evolution of Sivers function studied also by Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013

Extraction of transversity and Collins

 functions with TMD evolution(Kang, Prokudin, Sun, Yuan, Phys. Rev. D93 (2016) 014009)

moment of Collins functions

comparison with phase 1 extraction, $Q^{2}=2.4 \mathrm{GeV}^{2}$
(Kang, Prokudin, Sun, Yuan, Phys. Rev. D93 (2016) 014009 no compelling evidence of TMD evolution yet
A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, A. Signori, JHEP 1706 (2017) 081

q_{T} dependence of cross-section for Z_{0} production at TEVATRON

first global fit of unpolarized TMD-PDFs and TMD-FFs from SIDIS, DY and Zo production data. Based on TMD factorisation with TMD evolution
but TMD-PDFs are not the whole story

Exploring the 3-dimensional phase-space structure of the nucleon
$\left.\boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}\right)$

phase-space parton distribution, $W(\boldsymbol{k}, \boldsymbol{b})$

(S. Meissner, Metz, Schlegel) TGPD or GPCF Wigner
function (Belitsky, Ji, Yuan)

$$
\int d^{2} \boldsymbol{k}_{\perp} H(\boldsymbol{k}, \boldsymbol{\Delta})=H\left(x, \xi, \boldsymbol{\Delta}_{T}\right) \quad \text { GPDs }
$$

GPDs (8 independent ones)

(recover partonic distributions in the forward limit)

$$
H, E, \tilde{H}, \tilde{E} ; H_{T}, E_{T}, \tilde{H}_{T}, \tilde{E}_{T}(x, \xi, t)
$$

(a)

DVCS

(b)
hard meson production
exclusive leptonic processes.
quark spatial transverse distribution $q\left(x, \boldsymbol{b}_{T}\right)$

(a)

(b) $x<0.1 \quad x \sim 0.3 \quad x \sim 0.8$
femtophotography or tomography of the nucleon
courtesy of C. Weiss

most general correlator (off diagonal)

$$
\begin{gathered}
k-\frac{1}{2} \Delta \mu \nmid \frac{1}{2} \Delta-P+\frac{1}{2} \Delta
\end{gathered}
$$

$$
\begin{aligned}
& H(k, P, \Delta)=(2 \pi)^{-4} \int d^{4} z e^{i z k} \\
& \quad \times\left\langle p\left(P+\frac{1}{2} \Delta\right)\right| \bar{q}\left(-\frac{1}{2} z\right) \Gamma q\left(\frac{1}{2} z\right)\left|p\left(P-\frac{1}{2} \Delta\right)\right\rangle
\end{aligned}
$$

two-quark correlation function
light-cone variables $\quad v=\left(v^{+}, v^{-}, \boldsymbol{v}\right) \quad v^{ \pm}=\frac{1}{\sqrt{2}}\left(v^{0} \pm v^{3}\right)$

$$
x=\frac{k^{+}}{P^{+}} \quad 2 \xi=-\frac{\Delta^{+}}{P^{+}}
$$

$\Delta=0$ inclusive processes, cross sections
$\Delta \neq 0$ exclusive processes, amplitudes

The nucleon landscape
 Markus Diehl, Eur. Phys. J. A52 (2016) 149

models of the Wigner distribution most welcome....

Burkardt, Pasquini, Eur. Phys. J. A52 (2016) 161

special issue of EPJA dedicated to the 3D nucleon structure, EPJ A52, 2016, n. 6 15 contributions,
(Edts. M.A., P. Rossi, M. Guidal)

future facilities and experiments: D-Y @ COMPASS
 JLAB 12 GeV EIC BESIII AFTER NICA-SPD

possible EIC kinematical coverage - SIDIS
Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all: Eur. Phys. J. A52 (2016) 268

possible EIC kinematical coverage - Deeply Virtual Compton Scattering
expected results at EIC - from DVCS to GPDs to spatial parton distributions EIC White Paper, arXiv:1212.1701

Figure 1.4: The projected precision of the transverse spatial distribution of gluons as obtained from the cross-section of exclusive J / Ψ production. It includes statistical and systematic uncertainties due to extrapolation into the unmeasured region of momentum transfer to the scattered proton. The distance of the gluon from the center of the proton is b_{T} in femtometers, and the kinematic quantity $x_{V}=x_{B}\left(1+M_{J / \Psi}^{2} / Q^{2}\right)$ determines the gluon's momentum fraction. The collision energies assumed for Stage-I and Stage-II are $E_{e}=5,20 \mathrm{GeV}$ and $E_{p}=100,250 \mathrm{GeV}$, respectively.

some hadron physics in the world

The 3D nucleon structure is mysterious and fascinating.
Many experimental results show the necessity to go beyond the simple collinear partonic picture and give new information. Crucial task is interpreting data and building a consistent 3D description of the nucleon.
Sivers and Collins effects are well established, with many transverse spin asymmetries resulting from them. Sivers function, TMDs and orbital angular momentum? QCD analysis of TMDs and GPDs sound and well developed.

Combined data from SIDIS, Drell-Yan, $e+e-$, with theoretical modelling, should lead to a true 3D imaging of the proton
Waiting for JLab 12, new COMPASS results, and, crucially, for an EIC dedicated facility

thank you!

