Bad-Honnef, September 24-30, 2017

QCD-inspired model predictions of forward observables at the LHC and beyond

László Jenkovszky
BITP, Kiev
jenk@bitp.kiev.ua

- My thanks go to the Wilhelm and Else Heraeus Foundation for its hospiality and to

Norbert Bence, Francesco Celiberto, Oleg Kuprash, Mikael Mieskolainen, Rainer Schicker, István Szanyi for their collaboration

ITEMS:

- Why is forward physics important (however difficult and expensive!);
- Road map (in s, t and Q^{2}); $N N$ and ep;
- Basic ingredients, tools, measurables;
- General recipe for the construction of a scattering amplitude: input + unitarity;
- Elastic NN is a "building block", however elastic low-|t| scattering is not rewarding (no black holes, no supersym., no QGP, no dark matter, no sc. fiction);
- How many pomerons; "hard" vs "soft", QCD vs. "DL", extremism (Landau);
- History with the "hard" pomeron intercept;
- The odderon: bar pp-pp;
- Local qft, QCD, analytic S-matrix theory, res.-Regge duality; Regge trajectory;
- How many resonances (infinite or finite: melting and boiling?);
- Inelastic (SD, DD and central diffraction);
- "Reggeometry"; balancing between "soft" (NN) and "hard" (VMP);
- Theory and phenomenology (history of the A-bomb).
- Total cross section at LHC $\sigma(\mathrm{pp} \rightarrow$ anything $) \sim 0.1$ barn
- So a 1 pb Higgs cross section corresponds to one being produced every 10^{11} interactions! (further reduced by BR \times efficiency)
- Experiments have to be designed so that they can separate such a rare signal process from the background
- Rate $=L . \sigma$
where luminosity L (units $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$) is a measure of how intense the beams are LHC design luminosity $=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Factorization (nearly perfect at the LHC!)

$$
\left(g_{1} g_{2}\right)^{2}=\frac{\left(g_{1} f_{1}\right)^{2}\left(f_{1} g_{2}\right)^{2}}{\left(f_{1} f_{2}\right)^{2}}
$$

Hence

$$
\frac{d^{3} \sigma}{d t d M_{1}^{2} d M_{2}^{2}}=\frac{d^{2} \sigma_{1}}{d t d M_{1}^{2}} \frac{d^{2} \sigma_{2}}{d t d M_{2}^{2}} \frac{d \sigma_{e l}}{d t} .
$$

Assuming exponential cone, $t^{b t}$ and integrating in t, one gets

$$
\frac{d^{2} \sigma_{D D}}{d M_{1}^{2} d M_{2}^{2}}=k \frac{1}{\sigma_{e l}} \frac{d \sigma_{1}}{d M_{1}^{2}} \frac{d \sigma_{2}}{d M_{2}^{2}},
$$

where $k=r^{2} /(2 r-1), \quad r=b_{S D} / b_{e l}$.
Further integration in M^{2} yelds $\sigma_{D D}=k \frac{\sigma_{S D}^{2}}{\sigma_{e l}}$.

DUALITY:

TABLE I: Two-component duality

$\operatorname{ImA}(a+b \rightarrow c+d)=$	R	Pomeron
s-channel	$\sum A_{\text {Res }}$	Non-resonant background
t-channel	$\sum A_{\text {Regge }}$	Pomeron $(I=S=B=0 ; C=+1)$
Duality quark diagram	Fig. 1b	Fig. 2
High energy dependence	$s^{\alpha-1}, \alpha<1$	$s^{\alpha-1}, \alpha \geq 1$

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

The Pomeron trajectory

The Pomeron trajectory has threshold singularities, the lowest one being due to the twopion exchange, required by the t-channel unitarity. There is a constrain (Barut, Zwanziger; Gribov) from the t - channel unitarity, by which

$$
\Im \alpha(t) \sim\left(t-t_{0}\right)^{\Re \alpha\left(t_{0}\right)+1 / 2}, \quad t \rightarrow t_{0}
$$

where t_{0} is the lightest threshold. For the Pomeron trajectory it is $t_{0}=4 m_{\pi}^{2}$, and near the threshold:

$$
\begin{equation*}
\alpha(t) \sim \sqrt{4 m_{\pi}^{2}-t} . \tag{1}
\end{equation*}
$$

The slope of the cone for a single pole is: $B(s, t) \sim \alpha^{\prime}(t) \ln s$. The Regge residue $e^{b \alpha(t)}$ with a logarithmic trajectory $\alpha(t)=\alpha(0)-$ $\gamma \ln (1-\beta t)$, is identical to a form factor (geometrical model).

$$
\begin{equation*}
\Re e \alpha(s)=\alpha(0)+\frac{s}{\pi} P V \int_{0}^{\infty} d s^{\prime} \frac{\Im m \alpha\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} . \tag{7}
\end{equation*}
$$

In Eq. (7), PV denotes the Cauchy Principal Value of the integral. The imaginary part is related to the decay width by

$$
\begin{equation*}
\Gamma\left(M_{R}\right)=\frac{\Im m \alpha\left(M_{R}^{2}\right)}{\alpha^{\prime} M_{R}} . \tag{8}
\end{equation*}
$$

The quantity α^{\prime} in Eq. (8) denotes the derivative of the real part, $\alpha^{\prime}=\frac{\alpha \text { gre } \alpha(\alpha)}{\alpha s}$. The relation between $\Gamma(M)$ and $\mathfrak{G} \alpha \alpha(\mathrm{s})$ requires $\mathfrak{G} m \alpha(s)>0$. In a simple analytical model, the imaginary part is chosen as a sum of single threshold terms [25]

$$
\begin{equation*}
\mathfrak{G} \alpha(s)=\sum_{n} c_{n}\left(s-s_{n}\right)^{1 / 2}\left(\frac{s-s_{n}}{s}\right)^{\left|z e \alpha\left(s_{n}\right)\right|} \theta\left(s-s_{n}\right) . \tag{9}
\end{equation*}
$$

FIG. 6: Real part of f_{1} trajectory on the left, width function $\Gamma\left(\mathrm{M}^{2}\right)$ on the right.

FIG. 7: Real part of f_{2} trajectory on the left, width function $\Gamma\left(\mathrm{M}^{2}\right)$ on the right.

Let us start with a toy model of a non-linear trajectory, Following [18, 31], we write a simple trajectory in which the (additive) thresholds are those made of stable particles allowed by quantum numbers. For the ρ trajectory these are: $\pi \pi, K \bar{K}, N \bar{N}, \Lambda \bar{\Sigma}, \Sigma \bar{\Sigma}, \Xi \bar{\Xi}$. The relevant trajectory is:

$$
\begin{equation*}
\alpha_{\rho}(m)=7.64-0.127 \sqrt{m-0.28}-0.093 \sqrt{m-0.988}-0.761 \sqrt{m-1.88}-" \Lambda \bar{\Sigma}, \Sigma \bar{\Sigma}, \Xi \bar{\Xi} ", \tag{10}
\end{equation*}
$$

with the parameters of higher threshold quoterd in Ref. [18].

$$
N_{\text {theor }}=\int_{0}^{m} \rho_{\text {theor }}\left(m^{\prime}\right) d m^{\prime}
$$

where

$$
\rho_{\text {theor }}(m)=f(m) \exp (m / T)
$$

and $f(m) \approx A /\left(m^{2}+(500 \mathrm{MeV})^{2}\right)^{5 / 4}$ (alternative choices for this slowly varying function are possible).

According to Hagedorn's conjecture, confirmed by subsequent studies, the density of hadronic resonances increases exponentially, modulus a slowly varying function of mass, $f(m)$,

$$
\begin{equation*}
\rho(m)=f(m) \exp (m / T) \tag{1}
\end{equation*}
$$

up to about $m=2 \div 2.5 \mathrm{MeV}$, whereupon the exponential rise slows down
We extend the Hagedorn formula by introducing in the slope of relevant non-linear Regge trajectories. Anticipating a detailed quantitative analyses, one may observe immediately that flattening of $\Re \alpha\left(s=m^{2}\right)$ results in a drastic decrease of the relevant slope $\alpha^{\prime}(m)$ and a corresponding change of the Hagedorn spectrum, which we parametrize as

$$
\begin{equation*}
\rho(m) \sim(\Re \alpha(m))^{\prime} \exp (m / T) . \tag{3}
\end{equation*}
$$

Usually, one compares the cumulants of the spectrum, defined as the number of states with mass lower than m_{i}. The experimental curve is

$$
\begin{equation*}
N_{\text {exp }}(m)=\sum_{i} g_{i} \Theta\left(m-m_{i}\right), \tag{4}
\end{equation*}
$$

where $g_{i}=\left(2 J_{i}+1\right)\left(2 I_{i}+1\right)$ is the spin-isospin degeneracy of the i-th state and m_{i} is its mass. The theoretical curve

The (s, t) term of a dual amplitude is

$$
D(s, t)=c \int_{0}^{1} d x\left(\frac{x}{g_{1}}\right)^{-\alpha\left(s^{\prime}\right)-1}\left(\frac{1-x}{g_{2}}\right)^{-\alpha\left(t^{\prime}\right)-1},
$$

where s and t are the Mandelstam variables, and g_{1}, g_{2} are parameters, $g_{1}, g_{2}>1$. For simplicity, we set $g_{1}=g_{2}=g_{0}$.

1. Regge behavior, $s \rightarrow \infty, t=$ const : $D(s, t) \sim$ $s^{\alpha(t)-1}$;
2. Thereshold behavior, $s \rightarrow s_{0}: \quad D(s, t) \sim$ $\sqrt{s_{0}-s}\left[\right.$ const $\left.+\ln \left(1-s_{0} / s\right)\right]$;
3. Direct-channel poles:

$$
D(s, t)=\sum_{n=0}^{\infty} g^{n+1} \sum_{l=o}^{n} \frac{\left[-s \alpha^{\prime}(s)\right]^{l} C_{n-l}(t)}{[n-\alpha(s)]^{l+1}}
$$

Exotic direct-channel trajectory: $\alpha(s)=\alpha(0)+$ $\alpha_{1}\left(\sqrt{s}{ }_{0}-\sqrt{s_{0}-s}\right)$.
" GOLDEN" diffraction reaction: $J / \Psi p-$ scattering: By VMD, photoproduction is reduced to elastic hadron scattering:

$$
D(\gamma p-V p)=\sum \frac{e}{f_{V}} D(V p-V p)
$$

Elastic Scattering

CNI region: $\left|f_{C}\right| \sim\left|f_{N}\right| \rightarrow$ LHC: $-\dagger \sim 6.510^{-4} \mathrm{GeV}^{2} ; \theta_{\min } \sim 3.4 \mu \mathrm{rad}$

$$
\left(\theta_{\min } \sim 120 \mu \mathrm{rad} @ \mathrm{SPS}\right)
$$

$$
\begin{gathered}
\sigma_{t}(s)=\frac{4 \pi}{s} \operatorname{Im} A(s, t=0) ; \quad \frac{d \sigma}{d t}=\frac{\pi}{s^{2}}|A(s, t)|^{2} ; n(s) ; \\
\sigma_{e l}=\int_{t_{m i n \approx-s / 2 \approx \infty}^{t_{t h r} \approx 0} \frac{d \sigma}{d t} d t ; \sigma_{i n}=\sigma_{t}-\sigma_{e l} ; \quad B(s, t)=\frac{d}{d t} \ln \left(\frac{d \sigma}{d t}\right) ;}^{A_{p p}^{p \bar{p}}(s, t)=P(s, t) \pm O(s, t)+f(s, t) \pm \omega(s, t) \rightarrow L H C \approx P(s, t) \pm O(s, t),}
\end{gathered}
$$

where $P, O, \quad f . \omega$ are the Pomeron, odderon and non-leading Reggeon contributions.

$\alpha(\mathbf{0}) \backslash \mathbf{C}$	+	-
$\mathbf{1}$	\mathbf{P}	\mathbf{O}
$\mathbf{1 / 2}$	\mathbf{f}	ω

NB: The S-matrix theory (including Regge pole) is applicable to asymptotically free states only (not to quarks and gluons)!

1. On-shell (hadronic) reactions ($\mathrm{s}, \mathrm{t}, \mathrm{Q}^{\wedge} 2=\mathrm{m}^{\wedge} \mathbf{2}$); $t \longleftrightarrow \rightarrow b$ transformation dictionary:

$$
h(s, b)=\int_{0}^{\infty} d \sqrt{-t} \sqrt{-t} A(s, t)
$$

The Pomeron is a dipole in the j-plane

$$
\begin{gather*}
A_{P}(s, t)=\frac{d}{d \alpha_{P}}\left[\mathrm{e}^{-i \pi \alpha_{P} / 2} G\left(\alpha_{P}\right)\left(s / s_{0}\right)^{\alpha_{P}}\right]= \tag{6}\\
\mathrm{e}^{-i \pi \alpha_{P}(t) / 2}\left(s / s_{0}\right)^{\alpha_{P}(t)}\left[G^{\prime}\left(\alpha_{P}\right)+(L-i \pi / 2) G\left(\alpha_{P}\right)\right]
\end{gather*}
$$

Since the first term in squared brackets determines the shape of the cone, one fixes

$$
\begin{equation*}
G^{\prime}\left(\alpha_{P}\right)=-a_{P} \mathrm{e}^{b_{P}\left[\alpha_{P}-1\right]} \tag{7}
\end{equation*}
$$

where $G\left(\alpha_{P}\right)$ is recovered by integration, and, as a consequence, the Pomeron amplitude Eq. (??) can be rewritten in the following "geometrical" form (for the details of the calculations see [] and references therein)

$$
\begin{equation*}
A_{P}(s, t)=i \frac{a_{P} s}{b_{P} s_{0}}\left[r_{1}^{2}(s) \mathrm{e}^{r_{1}^{2}(s)\left[\alpha_{P}-1\right]}-\varepsilon_{P} r_{2}^{2}(s) \mathrm{e}^{r_{2}^{2}(s)\left[\alpha_{P}-1\right]}\right] \tag{8}
\end{equation*}
$$

where $r_{1}^{2}(s)=b_{P}+L-i \pi / 2, \quad r_{2}^{2}(s)=L-i \pi / 2, \quad L \equiv \ln \left(s / s_{0}\right)$ and the Pomeron trajectory:

$$
\begin{equation*}
\alpha_{P} \equiv \alpha_{P}(t)=1+\delta_{P}+\alpha_{1 P} t-\alpha_{2 P}\left(\sqrt{4 m_{\pi}^{2}-t}-2 m_{\pi}\right) \tag{9}
\end{equation*}
$$

Dipole model

- Scattering amplitude:

$$
A(s, t)_{p p}^{\bar{p} p}=A_{P}(s, t)+A_{f}(s, t) \pm A_{\omega}(s, t)
$$

Pomeron term:

$$
\begin{array}{ll}
A_{P}(s, t)=i \frac{a_{P} S}{b_{P} s_{0 P}}\left[r_{1}^{2}(s) e^{r_{1}^{2}(s)\left[\alpha_{P}-1\right]}-\varepsilon_{P} r_{2}^{2}(s) e^{r_{2}^{2}(s)\left[\alpha_{P}-1\right]}\right] & A_{f}(s, t)=a_{f} e^{b_{f} t} e^{-\frac{i \pi \alpha_{f}(t)}{2}}\left(s / s_{0}\right)^{\alpha_{f}(t)} \\
\text { where } & A_{\omega}(s, t)=i a_{\omega} e^{b_{\omega} t} e^{-\frac{i \pi \alpha_{\omega}(t)}{2}}\left(s / s_{0}\right)^{\alpha_{\omega}(t)}
\end{array}
$$

$$
r_{1}^{2}(s)=b_{P}+L-i \pi / 2
$$

$$
r_{2}^{2}(s)=L-i \pi / 2
$$

$$
L \equiv \ln \left(s / s_{0 P}\right)
$$

Pomeron trajectory:

$$
\alpha_{P} \equiv \alpha_{P}(t)=1+\delta_{P}+\alpha_{1 P} t-\alpha_{2 P}\left(\sqrt{4 m_{\pi}^{2}-t}-2 m_{\pi}\right)
$$

Reggeon trajectories:

$$
\begin{aligned}
& \alpha_{f}(t)=0.703+0.84 t \\
& \alpha_{\omega}(t)=0.435+0.93 t
\end{aligned}
$$

"break"

Local slopes $B(t)$ calculated for low- $|t|$ ISR $\quad R(t)$ calculated for low- $|t| 8 \mathrm{TeV}$ data.

$$
B(s, t)=\frac{d}{d t} \ln \frac{d \sigma(s, t)}{d t}
$$

> arXiv:1410.4106
G. Barbiellini et al., Phys. Lett. B 39 (1972) 663

$$
R(t)=\frac{d \sigma(t) / d t-r e f}{r e f}
$$

$$
r e f=A e^{B t}
$$

arXiv:1503.08111

$$
\rho=\frac{\mathfrak{R} F^{H}(0)}{\mathfrak{S} F^{H}(0)}=\cot \arg F^{H}(0)
$$

TOTEM measurement @ $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$:

$$
\beta^{\star}=2.5 \mathrm{~km} @ V / s=13 \mathrm{TeV}
$$

$$
\Rightarrow \sigma(\rho)=0.01
$$

pp Cross-Section Measurements

13 TeV : analysis in progress

Elastic, inelastic and total cross sections

Fitted $p p$ and $p \bar{p}$ total cross sections and calculated elastic and inelastic cross sections.

$$
\sigma_{t o t}(s)=\frac{4 \pi}{s} \operatorname{Im} A(s, t=0)
$$

$$
\sigma_{e l}(s)=\int_{t_{\min }}^{t_{\max }} \frac{d \sigma(s, t)}{d t} d t
$$

$$
\frac{d \sigma}{d t}(s, t)=\frac{\pi}{s^{2}}|A(s, t)|^{2}
$$

$$
\sigma_{i n}(s)=\sigma_{t o t}(s)-\sigma_{e l}(s)
$$

a_{P}	307.15	a_{f}	-17.0151
b_{P}	8.9767	b_{f}	4.54423
δ_{P}	0.04489	a_{ω}	9.78393
$\alpha_{1 P}$	0.42955	b_{ω}	8.21191
$\alpha_{2 P}$	0.0063817	s_{0}	1 (fixed)
ε_{P}	0 (fixed)	$s_{0 P}$	100 (fixed)

Values of fitted parameters.

Ratios of $\sigma_{e l} / \sigma_{t o t}, \sigma_{i n} / \sigma_{t o t}$ and $\sigma_{e l} / \sigma_{\text {in }}$

Calculated $\sigma_{e l} / \sigma_{\text {in }}$ ratio to $p p$ and $p \bar{p}$ scattering.

ρ-paramater

Fitted $p p$ and $p \bar{p} \rho$-paramater

New elastic slope measurements

The elastic slope data with preliminary TOTEM results.

Fitted $p p$ and $p \bar{p}$ elastic slope.
[1] R. Hagedorn, Nuovo Cim. Suppl. 3 (1965) 147.
[2] Wojciech Broniowski, Wojciech Florkowski, and Leonid Glozman, hep-ph/0407290.
[3] Wojciech Broniowski and Wojciech Florkowski, hep-ph/0004104; Wojciech Broniowski, Enrique Ruiz Arriola, hepph/1008.2317; Enrique Ruiz Arriola and Wojciech Broniowski, hep-ph/1210.7153; Wojciech Broniowski, nucl-th/1610.0967.
[4] Wojciech Broniowski, hep-ph/0008112.
[5] K.A. Olive et al. (Particle Data Group) Chinese Physics C 38 (2014) 090001, http://pdg.lbl.gov/.
[6] Thomas D. Cohen and Vojtech Krejcirik, hep-ph/1107.2130.
[7] S.Z. Belenky and L.D. Landau, Sov. Phys. Uspekhi 56 (1955) 309.
[8] E.V. Shuryak, Sov. J. Nucl. Phys. 16 (1973) 220.
[9] L. Burakovsky, Hadron spectroscopy in Regge Phenomenology, hep-ph/9805286.
[10] M.M. Brisudova, L. Burakovsky, T. Goldman and A. Szczepaniak, Nonlinear Regge trajectories and glueballs, nuclth/030303012.
$\operatorname{ImH}(s, b)=|h(s, b)|^{2}+G_{i n}(s, b)$, (h is associaed with the " opacity), Here from: $0 \leq|h(s, b)|^{2} \leq$ $\Im h(s, b)) \leq 1$. The Black Disc Limit (BDL) corresponds to $\Im h(s, b)=1 / 2$, provided $h(s, b)=$ $i(1-\exp [i \omega(s, b)] / 2$, with an imaginary eikonal $\omega(s, b)=i \Omega(s, b)$.

There is an alternative solution, that with the " minus" sign in $h(s, b)=\left[1 \pm \sqrt{1-4 G_{i n}(s, b)}\right] / 2$, giving (S.Troshin and N.Tyurin (Protvino)): $h(s, b)=$ $\Im u(s, b) /[1-i u(s, b))]$,

$$
\begin{gathered}
H(s, b)=\frac{1}{8 \pi s} \int_{0}^{\infty} d q q J_{0}(q b) A\left(s, t=-\vec{q}^{2}\right), \\
\sigma_{t}=\frac{1}{s} \operatorname{Im} A(s, 0), \quad \frac{d \sigma}{d t}=\frac{1}{16 \pi s^{2}}|A(s, t)|^{2} . \\
2 i H^{(E)}(s, b)=e^{2 i h(s, b)}-1 \\
H^{(U)}(s, b)=\frac{h(s, b)}{1-i h(s, b)} . \\
\operatorname{Im} H(s, b)=|H(s, b)|^{2}+G_{\text {inel }}(s, b)>0
\end{gathered}
$$

We use a unitarization procedure, different from the familiar eikonalizaion, according to which, in the impact parameter representation the unitarized amplitude in terms of the (Regge-pole) input $u(\rho, s)$ is

$$
\begin{equation*}
T(\rho, s)=\frac{u(\rho, s)}{1-i u(\rho, s)} \tag{20}
\end{equation*}
$$

The advantage of if this unitarization procedure (called, misleadingly also "u-matrix") is its simplicity compared to the eikolalization (rational functions compared to exponentials).

For $t=0$ calculations can be done analytically as a series in $1 / L$. By keeping terms and introducing the variable $x=\rho^{2} /\left(4 \alpha^{\prime} L\right.$, one gets [16] up to $O(1 / L)$

$$
\begin{equation*}
u(x, s)=i g e^{-\chi}(1+\chi x) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
g=\frac{\sigma_{0} \lambda}{16 \pi \alpha^{\prime}}, \quad \chi=(1+i \pi \lambda / 2) / \lambda L \tag{22}
\end{equation*}
$$

whereupon the profile function assumes the form

$$
\begin{gather*}
\frac{1}{1-i u}=\frac{i g e^{-\chi}}{1+g e^{-\chi}}\left(1+\chi \frac{x}{1+g e^{-\chi}}\right) . \tag{23}\\
g=\frac{\sigma_{0} \lambda}{16 \pi \alpha^{\prime}}, \quad \lambda=(1-\epsilon) / b . \tag{24}
\end{gather*}
$$

by substituting Eq. into Eq.we obtain
After a Fourier-Bessel transform over the DP amplitude Eq. (??), Sec. II, one gets for forward measurables, in the $O(1 / L)$ approximation $(L \equiv \ln s)$:

$$
\begin{equation*}
\sigma_{t o t}=\frac{16 \pi \alpha^{\prime}}{\lambda} \ln (1+g)(1+\lambda L) \tag{25}
\end{equation*}
$$

Unitarization

- Unitarized scattering amplitude:

$$
T(\rho, s)=\frac{u(\rho, s)}{1-i u(\rho, s)} \longrightarrow T(s, t)=q^{2} \int_{0}^{\infty} \frac{u(\rho, s)}{1-i u(\rho, s)} J_{0}(\rho \sqrt{-t}) d \rho^{2}
$$

$$
\text { (} \rho \text { - impact parameter; } q \text { - momentum in center-of-mass frame) }
$$

- The unitarized formulas for the forward measurables:

$$
\begin{aligned}
& \sigma_{t o t}=\frac{4 \pi \alpha_{1 P}}{\lambda} \ln (1+g)(1+\lambda L) \\
& \sigma_{e l}=\frac{4 \pi \alpha_{1 P}}{\lambda} \frac{g}{1+g}(1+\lambda L) \\
& \rho=\frac{\operatorname{ReT}(s, 0)}{\operatorname{ImT}(s, 0)}=\frac{\pi \lambda}{2(1+\lambda L)} \\
& \frac{\sigma_{e l}}{\sigma_{t o t}}=1-\frac{g}{(1+g) \ln (1+g)} \\
& \sigma_{t o t}=\frac{4 \pi \alpha_{1}}{\lambda}\left(\ln (1+g)-\frac{g}{1+g}\right)(1+\lambda L) \\
& B=\frac{2 \alpha_{1 P}}{\lambda} \frac{\Sigma}{\ln (1+g)}(1+\lambda L) \\
& \lambda=\left(1-\epsilon_{P}\right) / b_{P} \\
& L=\ln \left(s / s_{0 P}\right) \\
& g(s)=g_{01}\left(s / s_{01}\right)^{\varepsilon_{1}}+g_{02}\left(s / s_{02}\right)^{\varepsilon_{2}} \\
& \Sigma=\int_{0}^{\infty} \frac{g e^{-x} x d x}{1+g e^{-x}} \\
& \text { A.N. Wall, L.L. Jenkovszky, B.V. Struminsky, Sov. J. Particles and Nuclei, } 19 \text { (1988) }
\end{aligned}
$$

Application of the unitarized slope

Description for the elastic slope data using unitarization procedure.

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

The optical (generalised optical (Müller) theorem and triple-Regge limit (for high M only!)

The differentinl cross sertion for $1+2+X$ is
where $G(t)$ is the triple Pomeron vertex, $G(t)=G e^{\text {at }}$ for simplicity, and $a(t)=a^{0}+a^{\prime}(t)$ is the (linear for the moment) Pameron trijectory.

For an critical Pamerom, $x^{1}=1$, one gan use the formula

$$
\begin{equation*}
\left.\int \frac{d x}{x \ln x}=\ln (\ln x)\right) \tag{2}
\end{equation*}
$$

to get

$$
\begin{equation*}
\left.a^{S D}(x)-\left(2 a^{\prime}\right)^{-1} \ln \left(1+\frac{2 a^{\prime}}{a} \ln s\right)-\ln (\ln a)\right)_{2} \tag{3}
\end{equation*}
$$

while the totall cross wention

$$
\begin{equation*}
g^{\mathrm{tax}}(\mathrm{~s}) \rightarrow \text { conat. } \tag{4}
\end{equation*}
$$

It montrulicts uniturity sinez e.g. for critial Pomeron, $a^{0}-1$, the partinl (SD) aross metion overshoots the totall encess saction $g^{S D}>0^{\text {int }}$.

A trivinl trick to $\begin{gathered}\text { woid violntion of unitwity is to wsume the triple Pomenon vertex } G(t) \text { vinishing }\end{gathered}$ at it D. Huge litenature (Kidalow, Brower, Ganguli, Kopeliovich,...) existe reflecting the efforts doag this direction. The main omelusion is that decoupling (unnishing of the triple Pomeron vertex at $t=0$) is inempentible with the dnth.

To remedy this difieulty, Dino Goulinnoes sugested in renormaliwion procedure, by which the Poneron fux is multiplied by in factor $M(s)$ modernting the rise of inelnstie diffroction starting from a cortnin threbold. The appernome of a threhold, however may violnte nonlytivity.

The function $N(s)$ is the so-called renormalization factor, introduced by K. Goulianos,

$$
N_{s} \equiv \int_{\xi(\min)}^{\xi(\max)} \int_{t=0}^{-\infty} d t f_{P / p}(\xi, t) \sim s^{2 \epsilon},
$$

where $\xi(\min)=1.4 / s$ and $\xi(\max)=0.1$. This factor secures unitarity.

FNAL

$$
\left.\nu \frac{d^{2} \sigma}{d t d M_{x}^{2}}\right|_{\mid t 1=0.035}(p+d \rightarrow X+d) / F_{d}
$$

Similar to the case of elastic scattering, the double differential cross section for the SDD reaction, by Regge factorization, can be written as

$$
\begin{align*}
& \frac{d^{2} \sigma}{d t d M_{X}^{2}}=\frac{9 \beta^{4}\left[F^{p}(t)\right]^{2}}{4 \pi \sin ^{2}\left[\pi \alpha_{P}(t) / 2\right]}\left(s / M_{X}^{2}\right)^{2 \alpha_{P}(t)-2} \times \tag{1}\\
& {\left[\frac{W_{2}}{2 m}\left(1-M_{X}^{2} / s\right)-m W_{1}\left(t+2 m^{2}\right) / s^{2}\right],}
\end{align*}
$$

where $W_{i}, \quad i=1,2$ are related to the structure functions of the nucleon and $W_{2} \gg W_{1}$. For high M_{X}^{2}, the $W_{1,2}$ are Regge-behaved, while for small M_{X}^{2} their behavior is dominated by nucleon resonances. The knowledge of the inelastic form factors (or transition amplitudes) is crucial for the calculation of low-mass diffraction dissociation.

The $p p$ scattering amplitude

$$
\begin{align*}
& A(s, t)_{P}= \\
& -\beta^{2}\left[f^{u}(t)+f^{d}(t)\right]^{2}\left(\frac{s}{s_{0}}\right)^{\alpha_{P}(t)-1} \frac{1+e^{-i \pi \alpha_{P}(t)}}{\sin \pi \alpha_{P}(t)} \tag{1}
\end{align*}
$$

where $f^{u}(t)$ and $f^{d}(t)$ are the amplitudes for the emission of u and d valence quarks by the nucleon, β is the quark-Pomeron coupling, to be determined below; $\alpha_{P}(t)$ is a vacuum Regge trajectory. It is assumed that the Pomeron couples to the proton via quarks like a scalar photon.

A single-Pomeron exchange is valid at the LHC energies, however at lower energies (e.g. those of the ISR or the SPS) the contribution of non-leading Regge exchanges should be accounted for as well.

Thus, the unpolarized elastic $p p$ differential cross section is

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{\left[3 \beta F^{p}(t)\right]^{4}}{4 \pi \sin ^{2}\left[\pi \alpha_{P}(t) / 2\right]}\left(s / s_{0}\right)^{2 \alpha_{P}(t)-2} \tag{2}
\end{equation*}
$$

The final expression for the double differential cross section reads:

$$
\begin{align*}
& \frac{d^{2} \sigma}{d t d M_{X}^{2}}= \\
& A_{0}\left(\frac{s}{M_{X}^{2}}\right)^{2 \alpha_{P}(t)-2} \frac{x(1-x)^{2}\left[F^{p}(t)\right]^{2}}{\left(M_{x}^{2}-m^{2}\right)\left(1+\frac{4 m^{2} x^{2}}{-t}\right)^{3 / 2}} \times \tag{1}\\
& \sum_{n=1,3} \frac{[f(t)]^{2(n+1)} \operatorname{Im} \alpha\left(M_{X}^{2}\right)}{\left(2 n+0.5-\operatorname{Re} \alpha\left(M_{X}^{2}\right)\right)^{2}+\left(\operatorname{Im} \alpha\left(M_{X}^{2}\right)\right)^{2}}
\end{align*}
$$

SD and DD cross sections

$$
\begin{aligned}
& \frac{d^{2} \sigma_{S D}}{d t d M_{x}^{2}}=F_{p}^{2}(t) F\left(x_{B}, t\right) \frac{\sigma_{T}^{P p}\left(M_{x}^{2}, t\right)}{2 m_{p}}\left(\frac{s}{M_{x}^{2}}\right)^{2(\alpha(t)-1)} \ln \left(\frac{s}{M_{x}^{2}}\right) \\
& \frac{d^{3} \sigma_{D D}}{d t d M_{1}^{2} d M_{2}^{2}}=C_{n} F^{2}\left(x_{B}, t\right) \frac{\sigma_{T}^{P p}\left(M_{1}^{2}, t\right)}{2 m_{p}} \frac{\sigma_{T}^{P p}\left(M_{2}^{2}, t\right)}{2 m_{p}} \\
& \times\left(\frac{s}{\left(M_{1}+M_{2}\right)^{2}}\right)^{2(\alpha(t)-1)} \ln \left(\frac{s}{\left(M_{1}+M_{2}\right)^{2}}\right)
\end{aligned}
$$

"Reggeized (dual) Breit-Wigner" formula:

$$
\begin{gathered}
\sigma_{T}^{P p}\left(M_{x}^{2}, t\right)=\operatorname{Im} A\left(M_{x}^{2}, t\right)=\frac{A_{N^{*}}}{\sum_{n} n-\alpha_{N^{*}}\left(M_{x}^{2}\right)}+B g\left(t, M_{x}^{2}\right)= \\
=A_{n} \sum_{n=0,1, \ldots} \frac{[f(t)]^{2(n+1)} \operatorname{Im} \alpha\left(M_{x}^{2}\right)}{\left(2 n+0.5-\operatorname{Re} \alpha\left(M_{x}^{2}\right)\right)^{2}+\left(\operatorname{Im} \alpha\left(M_{x}^{2}\right)\right)^{2}}+B_{n} e^{b_{i n}^{b g} t}\left(M_{x}^{2}-M_{p+\pi}^{2}\right)^{\epsilon} \\
F\left(x_{B}, t\right)=\frac{x_{B}\left(1-x_{B}\right)}{\left(M_{x}^{2}-m_{p}^{2}\right)\left(1+4 m_{p}^{2} x_{B}^{2} /(-t)\right)^{3 / 2}}, \quad x_{B}=\frac{-t}{M_{x}^{2}-m_{p}^{2}-t} \\
F_{p}(t)=\frac{1}{1-\frac{t}{0.71}}, \quad f(t)=e^{b_{i n} t} \\
\alpha(t)=\alpha(0)+\alpha^{\prime} t=1.04+0.25 t
\end{gathered}
$$

SDD cross sections vs. energy.

Approximation of background to reference points ($\mathrm{t}=-0.05$)

DDD cross sections vs. energy.

Integrated DD cross sections

Triple differential DD cross sections

NN \& ep

Basic ideas

Reggeometry=Regge+geometry (play on words, or pun)
How to combine s, t and $\mathbf{Q}^{\wedge} \mathbf{2}$ dependencies in a binary reaction?

1. The t and \tilde{Q}^{2} depedences are combined by "geometry":

A rough estimates (to be fine-tuned!) yields

$$
\beta\left(t, M, Q^{2}\right)=\exp \left[4\left(\frac{1}{M_{V}^{2}+Q^{2}}+\frac{1}{2 m_{N}^{2}}\right) t\right]
$$

2. The s and t behavior are related by the Regge-pole model;
3. There is only one, universal, Pomeron, but it has two components - soft and hard, their relative weights depending on \tilde{Q}^{2}.

$$
\begin{gathered}
A\left(s, t, Q^{2}, M_{v}^{2}\right)=\frac{\tilde{A}_{s}}{\left(1+\frac{\widetilde{Q^{2}}}{\widetilde{Q_{s}^{2}}}\right)^{n_{s}}} e^{-i \frac{\pi}{2} \alpha_{s}(t)}\left(\frac{s}{s_{0 s}}\right)^{\alpha_{s}(t)} e^{2\left(\frac{a_{s}}{Q^{2}}+\frac{b_{s}}{2 m_{p}^{2}}\right) t} \\
+\frac{\tilde{A_{h}}\left(\frac{\widetilde{Q^{2}}}{\widetilde{Q_{h}^{2}}}\right)}{\left(1+\frac{\widetilde{Q^{2}}}{\widetilde{Q_{h}^{2}}}\right)^{n_{h}+1}} e^{-i \frac{\pi}{2} \alpha_{h}(t)}\left(\frac{s}{s_{0 h}}\right)^{\alpha_{h}(t)} e^{2\left(\frac{a_{h}}{\left.\widetilde{Q^{2}}+\frac{b_{h}}{2 m_{p}^{2}}\right) t}\right.} .
\end{gathered}
$$

	A_{s}	$\widetilde{Q_{s}^{2}}$	n_{s}	$\alpha_{0 s}$	α_{s}^{\prime}	a_{s}	b_{s}	$\tilde{\chi}^{2}$
$p p$	5.9 ± 5.7	$* * *$	0.00	1.05 ± 0.14	0.276 ± 0.474	2.877 ± 2.837	0.00	1.52
ρ^{0}	59.5 ± 29.3	1.33	1.35 ± 0.05	1.15 ± 0.06	0.15	-0.22	1.69	6.56
ϕ	31.8 ± 35.3	1.30	1.32 ± 0.10	1.14 ± 0.12	0.15	-0.85 ± 1.60	2.51 ± 2.67	3.81
J / ψ	34.2 ± 19.0	1.4 ± 0.7	1.39 ± 0.13	1.21 ± 0.05	0.09	1.90	1.03	4.50
$\Upsilon(1 S)$	37 ± 101	0.9 ± 1.7	1.53 ± 0.55	1.29 ± 0.26	0.01 ± 0.6	1.90	1.03	1.28
$D V C S$	9.7 ± 9.0	0.45 ± 0.5	0.94 ± 0.24	1.19 ± 0.09	-0.007 ± 0.3	1.94 ± 4.65	1.74 ± 2.28	1.75

Table 1. Fitting results

	δ	$\alpha_{0 s}$	$\alpha_{0 s}($ fit $)$	α_{s}^{\prime}
$p p$		$1.08(\mathrm{DL})$	1.05 ± 0.14	0.276 ± 0.474
ρ^{0}	0.22	1.055	1.15 ± 0.06	0.15
ϕ	0.22	1.055	1.14 ± 0.12	0.15
J / ψ	0.8	1.2	1.21 ± 0.05	0.09
$\Upsilon(1 S)$	1.6	1.4	1.29 ± 0.26	0.01 ± 0.6
$D V C S$	0.54	1.135	1.19 ± 0.09	-0.007 ± 0.3

Table 2. $\alpha(0), \alpha^{\prime}$

Parameter $s_{0 s}$ for simplicity is also fixed $s_{0 s}=1$.

* Parameters that doesn't have errors in table[1] were fixed at fitting stage.

rho0(1)

phi (1)

J/psi (1)

Deeply irtual Compton Scattering

VM ($\rho, \omega, \varphi, \mathrm{J} / \psi, \mathrm{Y})$
DVCS (γ)

Scale: $\mathbf{Q}^{2}+\mathbf{M}^{2}$

DVCS properties:

- Similar to VM production, but γ instead of VM in the final state
- No VM wave-function involved
- Important to determine Generalized Parton Distributions sensible to the correlations in the proton
- GPD ${ }_{\mathrm{s}}$ are an ingredient for estimating diffractive cross sections
 at the LHC

Diffract on: soft -> hard

Vector Meson

production ($\rho, \mathrm{vin} \mathrm{J} / \psi, \mathrm{Y}, \gamma$)

$\sigma(W) \propto W^{\delta} \Rightarrow \delta$ increases from soft (~ 0.2, "soft Pomeron") to hard (~ 0.8, "hard Pomeron")
$\frac{d \sigma}{d t} \propto e^{-b|t|} \Rightarrow \begin{aligned} & b \text { decreases from soft }\left(\sim 10 \mathrm{GeV}^{-2}\right) \text { to hard }(\sim 4-5 \\ & \left.\mathrm{GeV}^{-2}\right)\end{aligned}$
M. Capua, S. F., R. Fiore, L. L. Jenkovszky, and F Paccanoni Published in: Physics Letters B645 (Feb. 2007) 161-166

Applications for the model can be:

- Study of various regimes of the scattering amplitude vs Q2, W, t (perturbative \rightarrow unperturbative QCD)
- Study of GPD ${ }_{s}$

DVCS amplitude: $\quad A\left(s, t, Q^{2}\right)_{\gamma^{*} p \rightarrow p}=-A_{0} V_{1}\left(t, Q^{2}\right) V_{2}(t)\left(-i s / s_{0}\right)^{\alpha(t)}$
the t dependence at the vertex $p I P p$ is introduced by: $\alpha(t)=\alpha(0)-\alpha_{1} \ln \left(1-\alpha_{2} t\right)$
the vertex γ^{*} IP γ is introduced by the trajectory: $\beta(z)=\beta(0)-\beta_{1} \ln \left(1-\beta_{2} z\right)$
indicating witt: $=\ln \left(-i s / s_{0}\right) \quad$ the DVCS amplitude can be written as:

$$
A\left(s, t, Q^{2}\right)_{i p \rightarrow p}=-A_{0} 0^{b \alpha(i)} e^{b \beta())}\left(-i s / s_{0}\right)^{\alpha(t)}=-A_{0} e^{(b+t)(q)(t)+b(z)}
$$

Basic ideas of the Kiev-Calabria-Padova Collab.: M. Capua, R. Fiore, L. J., F. Paccanoni, A.Papa "A DVCS Amplitude'", Phys. Lett. B645 (2007) 161-166; hepph/0605319; S. Fazio, R. Fiore et al., "Unifying "soft" and "hard...", PR D90(2014)016007, arXiv 1312.5683.
Reggeometry=Regge+geometry (play on words = pun)
How to combine s, t and $\mathrm{Q}^{\wedge} 2$ dependencies in a binary reaction?

1. The t and \tilde{Q}^{2} depedences are combined by "geometry":

A rough estimates (to be fine-tuned!) yields

$$
\beta\left(t, M, Q^{2}\right)=\exp \left[4\left(\frac{1}{M_{V}^{2}+Q^{2}}+\frac{1}{2 m_{N}^{2}}\right) t\right]
$$

2. The s and t behavior are related by the Regge-pole model;
3. There is only one, universal, Pomeron, but it has two components - soft and hard, their relative weights depending on \tilde{Q}^{2}.

$b\left(Q^{2}+M^{2}\right)-V M$

Regge-type: $\frac{d \sigma}{d t}(W)=\exp \left(b_{0} t\right) W^{2\left[2 \alpha_{I P}(t)+2\right]}$
First measured in h-h

Linear Pomeron trajectory

$$
\alpha(t)=\alpha(0)+\alpha^{\prime}(t) t
$$

$\alpha(0)$ and α^{\prime} are foundamental parameters to represent the basic features of strong interactions
scattering

$$
\begin{aligned}
& \text { Soft Pomeron values } \\
& \qquad \begin{array}{l}
\alpha(0) \approx 1.09 \\
\alpha^{\prime} \approx 0.25
\end{array}
\end{aligned}
$$

$\alpha(0)$: determines the energy dependence of the diff. Cross section

$$
\frac{d \sigma}{d t} \propto \exp \left(b_{0} t\right) W^{4 \alpha(t)-4}=W^{4 \alpha(0)-4} \cdot \exp (b t) ; \quad b=b_{0}+4 \alpha^{\prime} \ln (W)
$$

α^{\prime} : determines the energy dependence of the transverse extention system

Unique Pomeron with two ("soft" and "hard") components R. Fiore et al. Phys. Rev. PR D90(2014)016007, arXiv 1312.5683

$$
\begin{gathered}
A\left(s, t, Q^{2}, M_{v}^{2}\right)=\frac{\tilde{A}_{s}}{\left(1+\frac{\widetilde{Q^{2}}}{\widetilde{Q_{s}^{2}}}\right)^{n_{s}}} e^{-i \frac{\pi}{2} \alpha_{s}(t)}\left(\frac{s}{s_{0 s}}\right)^{\alpha_{s}(t)} e^{2\left(\frac{a_{s}}{Q^{2}}+\frac{b_{s}}{2 m_{p}^{2}}\right) t} \\
\left.+\frac{\widetilde{A_{h}}\left(\frac{\widetilde{Q^{2}}}{\widetilde{Q}_{h}^{2}}\right.}{\left(1+\frac{\widetilde{Q^{2}}}{\widetilde{Q}_{h}^{2}}\right.}\right)^{n_{h}+1}
\end{gathered} e^{-i \frac{\pi}{2} \alpha_{h}(t)}\left(\frac{s}{s_{0 h}}\right)^{\alpha_{h}(t)} e^{2\left(\frac{a_{h}}{\left.\widetilde{Q^{2}}+\frac{b_{h}}{2 m_{p}^{2}}\right) t}\right.}
$$

$$
\begin{gathered}
\frac{d \sigma_{e l}}{d|t|}=H_{s}^{2} e^{2 L_{s}\left(\alpha_{s}(t)-1\right)+g_{s} t}+H_{h}^{2} e^{2 L_{h}\left(\alpha_{h}(t)-1\right)+g_{h} t} \\
+2 H_{s} H_{h} e^{L_{s}\left(\alpha_{s}(t)-1\right)+L_{h}\left(\alpha_{h}(t)-1\right)+\left(g_{s}+g_{h}\right) t} \cos \left(\frac{\pi}{2}\left(\alpha_{s}(t)-\alpha_{h}(t)\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
H_{s} & =\frac{A_{s}}{\left(1+\frac{\widetilde{Q^{2}}}{\widetilde{Q_{s}^{2}}}\right)^{n s}} \quad H_{h}=\frac{A_{h}\left(\frac{\widetilde{Q^{2}}}{\widetilde{Q_{h}^{2}}}\right)}{\left(1+\frac{\widetilde{Q^{2}}}{\widetilde{Q_{h}^{2}}}\right)^{n} h^{+1}} \\
L_{s} & =\ln \left(\frac{s}{s_{0 s}}\right) \quad g_{s}=2\left(\frac{a_{s}}{\widetilde{Q^{2}}}+\frac{b_{s}}{2 m_{p}^{2}}\right) \quad \alpha_{s}(t)=\alpha_{0 s}+\alpha_{s}^{\prime} t \\
L_{h} & =\ln \left(\frac{s}{s_{0 h}}\right) \quad g_{h}=2\left(\frac{a_{h}}{\widetilde{Q^{2}}}+\frac{b_{h}}{2 m_{p}^{2}}\right) \quad \alpha_{h}(t)=\alpha_{0 h}+\alpha_{h}^{\prime} t
\end{aligned}
$$

	A_{s}	$\widetilde{Q_{s}^{2}}$	n_{s}	$\alpha_{0 s}$	α_{s}^{\prime}	a_{s}	b_{s}	$\tilde{\chi}^{2}$
$p p$	5.9 ± 5.7	$* * *$	0.00	1.05 ± 0.14	0.276 ± 0.474	2.877 ± 2.837	0.00	1.52
ρ^{0}	59.5 ± 29.3	1.33	1.35 ± 0.05	1.15 ± 0.06	0.15	-0.22	1.69	6.56
ϕ	31.8 ± 35.3	1.30	1.32 ± 0.10	1.14 ± 0.12	0.15	-0.85 ± 1.60	2.51 ± 2.67	3.81
J / ψ	34.2 ± 19.0	1.4 ± 0.7	1.39 ± 0.13	1.21 ± 0.05	0.09	1.90	1.03	4.50
$\Upsilon(1 S)$	37 ± 101	0.9 ± 1.7	1.53 ± 0.55	1.29 ± 0.26	0.01 ± 0.6	1.90	1.03	1.28
$D V C S$	9.7 ± 9.0	0.45 ± 0.5	0.94 ± 0.24	1.19 ± 0.09	-0.007 ± 0.3	1.94 ± 4.65	1.74 ± 2.28	1.75

Table 1. Fitting results

	δ	$\alpha_{0 s}$	$\alpha_{0 s}($ fit $)$	α_{s}^{\prime}
$p p$		$1.08(\mathrm{DL})$	1.05 ± 0.14	0.276 ± 0.474
ρ^{0}	0.22	1.055	1.15 ± 0.06	0.15
ϕ	0.22	1.055	1.14 ± 0.12	0.15
J / ψ	0.8	1.2	1.21 ± 0.05	0.09
$\Upsilon(1 S)$	1.6	1.4	1.29 ± 0.26	0.01 ± 0.6
$D V C S$	0.54	1.135	1.19 ± 0.09	-0.007 ± 0.3

Table 2. $\alpha(0), \alpha^{\prime}$

Parameter $s_{0 s}$ for simplicity is also fixed $s_{0 s}=1$.

* Parameters that doesn't have errors in table[1] were fixed at fitting stage.

rho0(1)

phi (1)

J/psi (1)

DVCS (1)

Summary and prospects for ep collisions:
I. Problems:

1) unifying DVCS and VMP (the photon "mass");
2) balancing between "soft" and "hard", QCD?
3) extension to low energies (non-diffractive component, secondary Reggeons) ;
4) saturation effects, unitarity (gap survival);
5) Is BFKL Regge behaved?

Prospects: application to the new ZEUS data.
II. Moving from HERA to the LHC: ultraperipheral pp, pA and AA collisions: R. Fiore, L. J., V. Libov, and M. Machado, arXiv, 2014, to be publ. in: Teor. and Math. Physics.
Predecessors: Joakim Nystrand, A. Szczurek et al, L. Motyka, G. Watt; Brazilian group...). Contrary to ep, no $Q^{\wedge} 2$ or t dependence here.

Thank you !

Two ways of relating SF to hadronic total cross sections:

1) Through sum rules in $Q^{\wedge} 2$ (see also: Jan Kwieciński, Phys. Letters, 120B (1983) 418; L.L. Jenkovszky and B.V. Struminsky, Yad. Fizika, 38 (1983) 1568);
2) Using the additive quark model, the number of active quark-partons being determined by SFs (preliminary results presented by F. Celiberto, L. J. and V. Myronenko at the Quarks2016 (St. Petersburg) and Low-x (Gyöngyös) conferences).

Definitions, notution:

$$
F_{n}\left(x, Q^{2}\right)=\frac{Q^{2}(1-x)}{4 \pi x_{m}\left(1+4 m^{1} x^{1} / Q^{q^{2}}\right.} i_{i}^{7} p, \quad s=W^{2}=Q^{2}(1-x) / x+m^{2} .
$$

We use the norm in which $\sigma_{l} \eta^{2} p=9 A\left(s, Q^{2}\right)$.

VMD:

$$
\begin{gathered}
\int_{Q_{1}^{2}}^{Q_{2}^{2}} F_{2}\left(x, Q^{2}\right) d Q^{2}=\frac{1}{4 \pi} \sum_{V} \frac{\sigma_{V M}}{\gamma_{V}^{2}}\left(m_{V}^{2}\right)^{2} \\
\Gamma\left(V \rightarrow e^{+} e^{-}\right)=\frac{\alpha m_{V}}{2 \gamma_{V}^{2}}
\end{gathered}
$$

Sum rule:

$$
\int_{Q_{1}^{2}}^{Q_{2}^{2}} F_{2}\left(x, Q^{2}\right) d Q^{2}=\int_{Q_{2}^{2}}^{Q_{a s}^{2}} F_{2}^{a s}\left(x, Q^{2}\right) d Q^{2}
$$

By setting $\sigma_{\rho N} \approx \sigma_{\omega N} \approx \sigma_{\pi N}$, one gets (optionally)

$$
\sigma_{\pi N}^{t}=24\left[1+0.1 \ln \left(\frac{s}{Q_{0}^{2}}\right)\right] m b n
$$

Kinematics:

$$
W^{2}=s=(p+q)^{2}=Q^{2}(1-x) / x+m^{2} \approx Q^{2} / s
$$

$$
\int_{0}^{1} d x\left[F_{2}^{V}\left(x, Q^{2}\right)+F_{2}^{S}\left(x, Q^{2}\right)\right],
$$

with typically logarithmic scaling violation parametrizations know at those times, e.g.

$$
F_{2}^{S}(x)=F_{2}(x)\left[1-\epsilon \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right) \ln \left(\frac{x}{x_{0}}\right)\right],
$$

or

$$
F_{2}^{S}(x)=F_{2}(x)\left[1+\epsilon\left(\frac{Q^{2}}{Q_{0}^{2}}\right)^{f(x)}\right], \quad f(x)=x_{0}-x,
$$

with the following values of the parameters: $a=0.25, b=1.35, c=0.2, \epsilon=0.05$ and $q_{0}^{2}=3 \mathrm{GeV}^{2}$,

Sum rules in Q^2: Jan Kwieciński, Phys. Letters, 120B (1983) 418; L.L. Jenkovszky and B.V. Struminsky, Yad. Fizika, 38 (1983) 1568.

VMD:

$$
\begin{gathered}
\int_{Q_{1}^{2}}^{Q_{2}^{2}} F_{2}\left(x, Q^{2}\right) d Q^{2}=\frac{1}{4 \pi} \sum_{V} \frac{\sigma_{V M}}{\gamma_{V}^{2}}\left(m_{V}^{2}\right)^{2}, \\
\Gamma\left(V \rightarrow e^{+} e^{-}\right)=\frac{\alpha m_{V}}{2 \gamma_{V}^{2}} .
\end{gathered}
$$

Sum rule:

$$
\int_{Q_{1}^{2}}^{Q_{2}^{2}} F_{2}\left(x, Q^{2}\right) d Q^{2}=\int_{Q_{2}^{2}}^{Q_{a s}^{2}} F_{2}^{a s}\left(x, Q^{2}\right) d Q^{2} .
$$

By setting $\sigma_{\rho N} \approx \sigma_{\omega N} \approx \sigma_{\pi N}$, one gets (optionally)

$$
\sigma_{\pi N}^{t}=24\left[1+0.1 \ln \left(\frac{s}{Q_{0}^{2}}\right)\right] m b n
$$

Direct, s-channel point of view: additive quark model, single and multiple scattering of partons (Glauber).

Additive quark model relations (Levin-Frankfurt, 70-ies):

$$
\begin{equation*}
\sigma_{p p}^{t}=\sigma_{0} n_{A} n_{B} \tag{1}
\end{equation*}
$$

While this simple rule is confirmed e.g. by the ratio $2 / 3$ of meson-baryon to baryon-baryon scattering in a fairly wide range of intermediate energies, e.g. $\sigma_{\pi p}^{t} / \sigma_{p p}^{t} \approx 0.67$ at $\sqrt{s} \approx 10 \mathrm{GeV}$, it is progressively violated as the energy increases. It was suggested in Ref. [2, 3] that while the constant components of the cross sections, obeying the above quark rule are determined by constituents quarks their rise comes from the increasing number of see quarks.

In Refs. [2, 3] the rise of hadronic total cross sections was related the proliferation of see quarks and gluons in colliding hadron, hence Eq. (1) modifies as

$$
\begin{equation*}
\sigma_{p p}^{t}=\left(n_{v}+n_{s}\right)^{2} \tag{2}
\end{equation*}
$$

where n_{v} and n_{s} is the number of valence and see quarks and gluons in the proton. The number of see quarks and gluons was related to the logarithmic scaling violation, resulting in

The fraction of momenta carried by quarks can be calculated from the integrals

$$
\begin{gathered}
\int_{0}^{1} d x F_{2}^{v}\left(s, Q^{2}\right)=0.423 \\
\int_{0}^{1} d x F_{2}^{s}\left(s, Q^{2}\right)=0.01+0.001 \ln \left(s / Q_{0}^{2}\right)
\end{gathered}
$$

Consequently,

$$
\sigma_{p p}^{\text {tot }} \approx \sigma_{0} n_{v_{1}} n_{v_{2}}\left(1+0.016 \ln \left(s / Q_{0}^{2}\right)\right.
$$

We remind that $x \sim Q^{2} / s$.
P. Desgrolard, L. Jenkovszky and F. Paccanoni: EPJ C 7 (1999) 263; hep-ph/9803286

Interpolating between "soft" (VMD, Pomeron, $\Delta \sim 0.1$) and hard (DGLAP, $\Delta^{\sim} 0.4$) regimes: 1) DGLAP evolution, x fixed, $Q^{\wedge} 2 \rightarrow$ infty; 2) Gauge inv.: x fixed, $\left.Q^{\wedge} 2 \rightarrow 0 ; 3\right) x \rightarrow 0, Q$ fixed (Regge)

$$
F_{2}^{(S, 0)}\left(x, Q^{2}\right)=A\left(\frac{Q^{2}}{Q^{2}+a}\right)^{1+\widetilde{\Delta}\left(Q^{2}\right)} e^{\Delta\left(x, Q^{2}\right)}
$$

with "effective power"

$$
\tilde{\Delta}\left(Q^{2}\right)=\epsilon+\gamma_{1} \ln \left(1+\gamma_{2} \ln \left[1+\frac{Q^{2}}{Q_{0}^{2}}\right]\right),
$$

$$
\begin{aligned}
\Delta\left(x, Q^{2}\right) & =\left(\widetilde{\Delta}\left(Q^{2}\right) \ell n \frac{x_{0}}{x}\right)^{f\left(Q^{2}\right)} \\
f\left(Q^{2}\right) & =\frac{1}{2}\left(1+e^{-Q^{2} / Q_{1}^{2}}\right)
\end{aligned}
$$

At small and moderate values of Q^{2} (to be specified from the fits, see below), the exponent $\tilde{\Delta}\left(Q^{2}\right)(3.2)$ may be interpreted as a Q^{2}-dependent "effective Pomeron intercept".

The function $f\left(Q^{2}\right)$ has been introduced in order to provide for the transition from the Regge behavior, where $f\left(Q^{2}\right)=1$, to the asymptotic solution of the GLAP evolution equation, where $f\left(Q^{2}\right)=1 / 2$.

Large Q^{2}, fixed x :

$$
F_{2}^{(S, 0)}\left(x, Q^{2} \rightarrow \infty\right) \rightarrow A \exp \sqrt{\gamma_{1} \ln \ell n \frac{Q^{2}}{Q_{0}^{2}} \ln \frac{x_{0}}{x}}
$$

h is the asymptotic solution of the GLAP evolution equation (see Sec. 1).
Low Q^{2}, fixed x :

$$
\begin{gathered}
F_{2}^{(S, 0)}\left(x, Q^{2} \rightarrow 0\right) \rightarrow A e^{\Delta\left(x, Q^{2} \rightarrow 0\right)}\left(\frac{Q^{2}}{a}\right)^{1+\widetilde{\Delta}\left(Q^{2} \rightarrow 0\right)} \\
\widetilde{\Delta}\left(Q^{2} \rightarrow 0\right) \rightarrow \epsilon+\gamma_{1} \gamma_{2}\left(\frac{Q^{2}}{Q_{0}^{2}}\right) \rightarrow \epsilon \\
f\left(Q^{2} \rightarrow 0\right) \rightarrow 1
\end{gathered}
$$

1ce

$$
F_{2}^{(S, 0)}\left(x, Q^{2} \rightarrow 0\right) \rightarrow A\left(\frac{x_{0}}{x}\right)^{\epsilon}\left(\frac{Q^{2}}{a}\right)^{1+\epsilon} \propto\left(Q^{2}\right)^{1+\epsilon} \rightarrow 0
$$

quired by gauge invariance.
ired by gauge invariance.
w x, fixed Q^{2} :

$$
F_{2}^{(S, 0)}\left(x \rightarrow 0, Q^{2}\right)=A\left(\frac{Q^{2}}{Q^{2}+a}\right)^{1+\widetilde{\Delta}\left(Q^{2}\right)} e^{\Delta\left(x \rightarrow 0, Q^{2}\right)}
$$

$$
f\left(Q^{2}\right) \sim 1
$$

m $Q^{2} \ll Q_{1}^{2}$, we get the standard (Pomeron-dominated) Regge behavior (with a Q^{2} dependence in 1 in intercept)

$$
F_{2}^{(S, 0)}\left(x \rightarrow 0, Q^{2}\right) \rightarrow A\left(\frac{Q^{2}}{Q^{2}+a}\right)^{1+\tilde{\Delta}\left(Q^{2}\right)}\left(\frac{x_{0}}{x}\right)^{\tilde{\Delta}\left(Q^{2}\right)} \propto x^{-\tilde{\Delta}\left(Q^{2}\right)} .
$$

in this approximation, the total cross-section for (γ, p) scattering as a function of the center of r

$$
\sigma_{\gamma, p}^{t o t,(0)}(W)=4 \pi^{2} \alpha\left[\frac{F_{2}^{(S, 0)}\left(x, Q^{2}\right)}{Q^{2}}\right]_{Q^{2} \rightarrow 0}=4 \pi^{2} \alpha A a^{-1-\epsilon} x_{0}^{\epsilon} W^{2 \epsilon}
$$

[T, we multiply the singlet part of the above structure function $F_{2}^{(S, 0)}$ (c actor to get

$$
\begin{gathered}
F_{2}^{(S)}\left(x, Q^{2}\right)=F_{2}^{(S, 0)}\left(x, Q^{2}\right)(1-x)^{n\left(Q^{2}\right)}, \\
n\left(Q^{2}\right)=\frac{3}{2}\left(1+\frac{Q^{2}}{Q^{2}+c}\right),
\end{gathered}
$$

GeV^{2} [4a].
e nonsinglet $(N S)$ part of the structure function, also borrowed from CKI

$$
F_{2}^{(N S)}\left(x, Q^{2}\right)=B(1-x)^{n\left(Q^{2}\right)} x^{1-\alpha_{r}}\left(\frac{Q^{2}}{Q^{2}+b}\right)^{\alpha_{r}}
$$

ers that appear with this addendum are c, B, b and α_{r}. The final and cor unction thus becomes

$$
F_{0}\left(x \cdot O^{2}\right)=F_{0}^{(S)}\left(x, O^{2}\right)+F_{0}^{(N S)}\left(x, O^{2}\right)
$$

"Saturation" and slopes

Logarithmic derivatives (slopes) B are sensitive measures of the changing trends/regimes (unitarity and saturation):

$$
\begin{aligned}
& B_{Q}\left(x, Q^{2}\right)=\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial\left(\ln Q^{2}\right)}, \\
& B_{x}\left(x, Q^{2}\right)=\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial(\ln 1 / x)},
\end{aligned}
$$

QCD-factorized form of a DVCS scatterigg amplitude

GPDs cannot be measured directly, instead they appear as convolution integrals, difficult to be inverted!

We need clues from phenomenological models -

$$
A(\xi, \eta, t) \sim \int_{-1}^{1} d x \frac{G P D(x, \eta, t)}{x-\xi+i \varepsilon}
$$

Regge behaviour, t factorization etc.

$$
\sigma_{t o t} \sim \mathfrak{I} m A, \quad \frac{d \sigma}{d t} \sim|A|^{2}
$$

