

æ

(日) (四) (三) (三) (三)

FNSPE CTU in Prague

Ultra-peripheral collisions at ALICE Heraeus Physics School

Roman Lavička

Sep 25, 2017, Bad Honnef

Supervisor: Guillermo Contreras

Content

1 Introduction

2 Overview

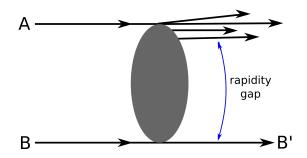
3 Ultra-peripheral collisions at ALICE

4 Measurement

5 Summary

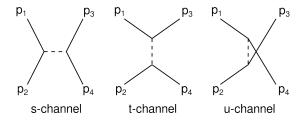
★ 3 > < 3 >

< 行


3

Introduction

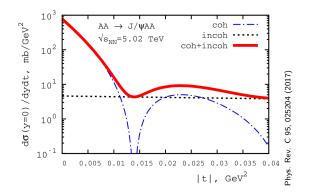
- 一司


3

Diffractive physics - definition

- No quantum number exchange.
- High energy.
- Rapidity gap.

Diffractive physics - kinematics


■ *t* - transferred momentum (Mandentelstam variable).

$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

■ *y* - rapidity.

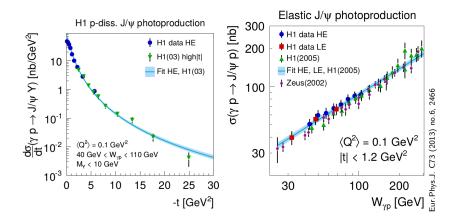
$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

Diffractive physics - what can be studied

Nuclear shadowing effects, gluon saturation, distribution functions...Cross section *t*-dependence.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{t=0} |F(t)|^2$$

6 / 23


Results overview

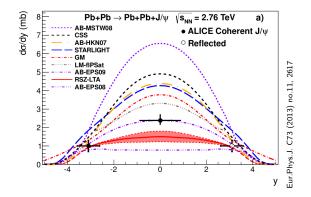
3. 3

★ ∃ >

- 一司

Published results - ep collisions at HERA

 High precision data covering a large part of the phase space is available from HERA.


Published results - p-Pb/Pb-p collisions at ALICE

• Consistency with HERA results and its extention by factor of 2.

Recent collisions at higher energies will allow to reach over 1 TeV.

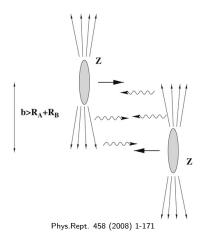
Published results - Pb-Pb collisions at ALICE

• Forward and central rapidity region.

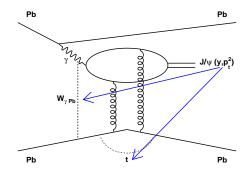
 Large difference between of measurement and no nuclear shadowing models.

Ultra-peripheral collisions at ALICE

Roman Lavička (FNSPE CTU in Prague)


Heraeus Physics School

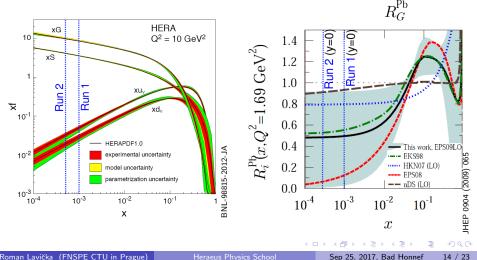
· < @ > < ≧ > < ≧ > ≤ ≧ > ⊇ の Q () Sep 25, 2017, Bad Honnef 11 / 23


Ultra-peripheral collisions

- Collisions with impact parameter $b > R_A + R_B$.
 - Strong interaction suppressed.
 - EM interaction remains.

- EM field of ultra-relativistic electrically charged particle ~ flux of photons.
 - Interaction intensity increasing with Z².

Tool to use light to study gluons


• Coherent photoproduction of J/ψ .

Probe to QCD.

B 🖌 🖌 B 🖒 - B

Where is QCD now

- Proton is mainly gluons at Bjorken $x \sim 10^{-3}$ (HERA).
- LHC provides possibility to study lead nuclei at small Bjorken x.


```
What we are going to study
```

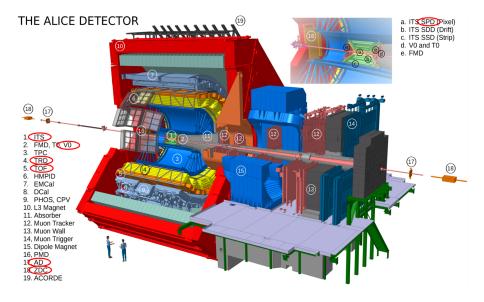
Coherent production of J/ψ in Pb-Pb UPC at mid rapidity at ALICE.
Run 1: x ~ 10⁻³; Run 2: x ~ 0.5 · 10⁻³.

• t-Dependence of the cross section.

 Sensitive to the gluon distribution of the target in the impact parameter plane.

Measurement Experiment

Roman Lavička (FNSPE CTU in Prague)

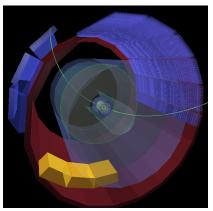

(3) (3) (3) Sep 25, 2017, Bad Honnef

ም.

16 / 23

3

ALICE detector


イロト イポト イヨト イヨト

What we look for in a collision

- Events with exactly two reconstructed tracks:
 - these are leptons,
 - these are back-to-back (TOF/ITS).

VETO:

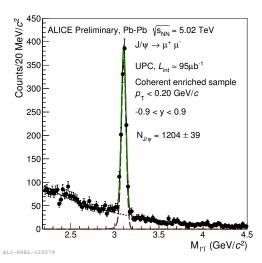
- nothing in forward regions (V0, AD),
- no more than 6 hits in SPD (inner layers of ITS).

Measurement Analysis

Roman Lavička (FNSPE CTU in Prague)

4 3 > 4 3 Sep 25, 2017, Bad Honnef

19 / 23


3

Measurement - theory

$$\frac{\partial^2 \sigma_{\mathrm{J/\psi}}^{\mathrm{coh}}}{\partial y \partial t} = \frac{N_{J/\psi}^{\mathrm{coh}}}{(\mathrm{Acc} \times \epsilon)_{J/\psi}^{\mathrm{coh}} \cdot BR(J/\psi \to l^+l^-) \cdot \mathscr{L}_{int} \cdot \Delta t \cdot \Delta y},$$

- $N_{J/\psi}^{\rm coh}$ number of coherently produced ${\rm J}/\psi$
- $(Acc \times \epsilon)_{J/\psi}^{coh}$ correction on detector effects
- $BR(J/\psi \rightarrow l^+l^-)$ branching ratio
- \mathcal{L}_{int} integrated luminosity of UPC triggers
- Δt bin size
- Δy rapidity region

Yield of coherently produced ${\rm J}/\psi$

 Crystal Ball function fit.
Additional corrections on other processes generating J/ψ.

21 / 23

Work in progress

• Evaluating unfolding of the *t*-spectrum using different methods.

- Regularization method (TUnfold).
- Bayes method (D'Agostiny).
- Singular Value Decomposition (RooUnfold).
- Evaluating with data the trigger efficiencies.
- Evaluation systematic uncertanities.

E 6 4 E 6

22 / 23

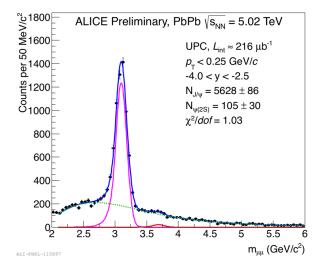
Summary

- ALICE can study the QCD evolution in x-Bjorken of the gluon distribution in Pb for scales of the order of the charm mass using J/ψ coherent photonuclear production.
- Studying the *t*-dependence of this process, we can study the transverse distribution of gluons in Pb at small *x*.
- This is work in progress and we are planning to have final results in a few months.

BACK UP

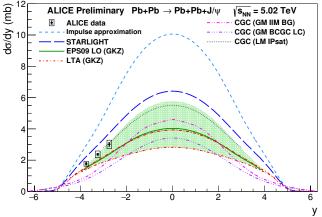
Roman Lavička (FNSPE CTU in Prague)

Heraeus Physics School


Sep 25, 2017, Bad Honnef

<ロ> (日) (日) (日) (日) (日)

24 / 23


3

Preliminary invariant mass of Run 2

Muons and electrons combined.

Preliminary results - Pb-Pb collisions at ALICE of Run 2

ALI-PREL-117502

Forward region.

∃ → < ∃</p>

Template title

Template item.

Roman Lavička (FNSPE CTU in Prague)

4 ∃ > 4 Sep 25, 2017, Bad Honnef

э.

3

27 / 23