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Proton-proton diffraction

Pomeron physics.

You can think also in terms of wee partons, soft color dipoles, pomeron
parton (ladder) structure etc., unfortunately there are yet no truly solid
experimental constraints from the LHC data for inclusive inelastic
diffraction. Basic Regge domain features, however, are observed in data.

Essential fluctuating degrees of freedom: rapidity (predominantly low x),
pt , multiplicity and multidimensional correlations over the full range of
acceptance.

⇒ N-dimensional observables
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Basic questions of soft diffraction

- Unitarity, asymptotic energy behavior of total cross sections
- Transition between "different" Pomerons: soft . . . hard → Pomeron
intercept 1 + ∆P ( s evolution) and slope α′P ∼ "t-cone behavior"
functional behavior
- p → N∗ Good-Walker spectrum of low-mass dissociation, relativistic
wavefunction and "atmosphere" of proton
- Gluonia/glueballs/soft central diffractive production
- Regge/QCD factorization properties
- Pomeron via AdS space . . .

- + Correlations and fluctuations
...

Ultimately, the goal here is have a "unified" approach for interpreting the
data.
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Vector space view to the soft pp
Diffraction
So, usually the experimental definition when talking about soft diffraction
goes through large rapidity gaps ∆y & 3 and

σpp
inel ≡ σSDL + σSDR + σDD + σCD + σND

The decomposition above is experimentally well posed only in limited
phase space.

So, instead, let us start with n = 2N − 1 partial cross sections

σpp
inel ≡ σ1 + σ2 + σ3 + · · ·+ σn, (1)

where each subcomponent corresponds to one particular final state
topology class over rapidity.

"Slice the (pseudo)rapidity space into N intervals"
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Example: Geom.-kinem. ALICE phase-space span at Run 2
Not all subdetectors shown (∼ #20). Very good (η, p⊥) coverage for diffractive physics.
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Vector valued partial cross
sections
Partial cross sections (#2N) ∼

1
2s

∑
M

∫
ΩM

dΠMδ
(4)

(
p1 + p2 −

∑
M

pi

)
|M2→M |2

(
1 −1
0 1

)⊗N

(
1

I{ΠM ; Ξ1}

)
⊗(

1
I{ΠM ; Ξ2}

)
⊗ · · · ⊗

(
1

I{ΠM ; ΞN}

)
,

where the acceptance function I : ΠM → {0, 1}, ΠM is a set of final
state kinematical variables and Ξi is the i-th fiducial acceptance domain
parametrization. The expression above is a 2N -vector.
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Synthetic Monte Carlo example
3 rapidity slices giving us Bernoulli combinations:
〈000〉, 〈001〉, 〈010〉, . . . , 〈111〉

Particles drawn uniformly over rapidity, with fluctuating number of
particles per interval ∼ Poisson(〈Nch/∆η〉) with transverse momentum
pt ∼ pt exp(−bp2

t ) . Varying smoothly the pt cutoff (normalized by 〈pt〉)
for four different particle densities per rapidity interval ∆η.
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A short lesson from above
Without characterizing pT (and η) acceptance → measurements of soft
inclusive diffraction unstable → can easily explain all "discrepancies"
between LHC experiments. Actually, ultimate measurement would be as
a function of pt . . .

Thus open problem: how do you characterize (pt , η) acceptance of
forward scintillators and other low granularity counters without relying on
MC generator ~ GEANT?
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Applications
F A machinery for the (multi)-rapidity gap measurements and
correlation structure

F A framework for generalized studies of Regge factorization at the
LHC. Not just simplified SD,DD type, but more general

F Framework to study AGK type shadowing, and beyond, by comparing
the differential distributions within each vector combination

F An attempt to re-define the soft diffraction observables more precisely,
also introducing a hierachy of vector observables for minbias Monte Carlo
tuning

F A new framework for extracting single diffraction (SD), double
diffraction (DD) . . . type component cross sections using N-dimensional
Monte Carlo model "templates", which can be tuned to data
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With connections to
[E. Onofri, G. Veneziano, J. Wosiek, Commun. Math. Phys. (2007)],
"We show how a recently proposed supersymmetric quantum mechanics
model leads to non-trivial results/conjectures on the combinatorics of
binary necklaces and linear-feedback shift- registers."

[H. Fu, R. Sasaki, J. Math. Phys. 38 (1997)], "Following the relationship
between probability distribution and coherent states, for example the well
known Poisson distribution and the ordinary coherent states and
relatively less known one of the binomial distribution and the su(2)
coherent states."

[D. Spector, Commun. Math. Phys. (1990)], "We show that the Möbius
inversion function of number theory can be interpreted as the operator
(−1)F in quantum field theory."
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https://arxiv.org/abs/math-ph/0603082
https://arxiv.org/abs/quant-ph/9610022
http://link.springer.com/article/10.1007/BF02096755


Algebraic representations
The probability vector p (2N -dim), the components of ordinary moments
mk and the components of central moments δk below are defined using
the Kronecker (tensor) products

p =

〈(
1 −1
0 1

)⊗ N ( 1
XN

)
⊗
(

1
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)
⊗ · · ·

(
1
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)〉
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i

〉
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k
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(Xi - 〈Xi 〉)
ki

〉
=

〈(
1

XN - 〈XN〉
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)
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,

where we use k = 1 +
∑N

i=1 ki2
i−1 (little endian binary expansion),

1 ≤ k ≤ 2N and ki ∈ {0, 1}. The central moments describe the
correlations (# 2N − N − 1) between any 2 or more subspaces (rapidity
slices). Xi are the corresponding random variables.

[Teugels, Jozef L. "Some representations of the multivariate Bernoulli and binomial distributions."
Journal of multivariate analysis 32.2 (1990): 256-268.]
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http://www.sciencedirect.com/science/article/pii/0047259X9090084U
http://www.sciencedirect.com/science/article/pii/0047259X9090084U


Diffraction analysis technique++
To summarize, we utilize different detector combinations over η → vector signals →
partial cross sections + multidimensional model fitting to extract σSD , σDD etc.

This latest vector space combinatorial construction goes beyond
multidimensional fitting, and is compatible with discussion about
multigaps, gap destruction and rescattering and short/long range
y -correlations:

Figure: (a) Multigap event, (b) Gap destruction, (c) Correlation coeff. R2
Figure from: [Khoze, Martin, Ryskin, Shuvaev, J. Phys. G: Nucl. Part. Phys. 36 (2009) 093001]
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http://iopscience.iop.org/article/10.1088/0954-3899/36/9/093001/pdf


AGK Cutting Rules
Field theory Combinatorics

The total cross section for exchange of µ Pomerons, σtotµ , partial

cross section σ(ν)
µ of a final state with a number of ν cut Pomerons

and their ratio

σ
(ν)
µ

σtotµ
= (−1)µ−ν

µ!

ν!(µ− ν)!
(2µ−1 − δ0ν), (2)

[Abramovski, Gribov, Kancheli, Sov. J. Nucl. Phys. 18, 308 (1974)], [E. Levin, hep-ph/9503399]

µ r ν 0 1 2 3 4 5 6
1 0 1 0 0 0 0 0
2 1 -4 2 0 0 0 0
3 -3 12 -12 4 0 0 0
4 7 -32 48 -32 8 0 0
5 -15 80 -160 160 -80 16 0
6 31 -192 480 -640 480 -192 32

Table: AGK factors for µ = 1, 2, . . . , 6 exchanged Pomerons. Summing
over µ requires some explicit (Regge/Eikonal etc.) model in addition to
these.
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http://arxiv.org/pdf/hep-ph/9503399.pdf


"Super-Eikonals"

Combinatorial (de)-compounding or pileup inversion

19 / 36



Poisson ⊗ Multinomial Vector Model

ŷi =
1

1− e−µ

∞∑
k=1

µk

k!
e−µWik , i = 1, . . . , 2N − 1 = n

=
e−µ

1− e−µ

∞∑
k=1

µk

k!

∑
Ωik

k!∏n
j=1 xj !

n∏
j=1

p
xj
j

 (3)

The multinomial term and its values of xj ∈ N are evaluated over all valid
combinations for probabilities yi from the set of n-tuples Ωik , that is,
those which are allowed by poset combinatorics:

Ωik =

(x1, . . . , xj , . . . , xn) | ∨
j

xj cj = ci and
∑
j

xj = k

 , (4)

where
∨

operator takes care of "summing" the binary vectors cj of
multiplicity xj and thus evaluating the "pileup" compositions.

The idea in a nutshell: We measure probabilities y, and want to solve p
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Solution based on the principle of inclusion-exclusion
General math framework: Incidence algebras [Gian-Carlo Rota, MIT, 60’s]

The principle of inclusion-exclusion is the Möbius inversion for
subsets. Now let different rapidity slices and their signals be
represented with subsets D1,D2, . . . ,DN ⊂ D. Then

P(
N⋃
i=1

Di ) =
N∑

k=1

(−1)k−1
∑

I⊂{1,...,N},|I |=k

P(DI )

 . (5)

One can wrap that thing above into a matrix. Notice the (−1)k−1

factor, that gives the essential structure.
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Uniform (max entropy) input p = 1 case, N = 3
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Figure: A solution. On x-axis the Poisson µ and on y-axis the
components of the vector y.

Starting with very elementary definitions, interesting distributions
emerge from combinatorics.
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Alternating sign inverse solution
for N = 3

p =
1
µ



ln(eµ−y1 + 1)
ln(eµ−y2 + 1)

−
∑

c=1,2
ln(eµ−yc + 1) + ln(1 +

∑
c=1,2,3

eµ−yc)

ln(eµ−y4 + 1)
−
∑

c=1,4
ln(eµ−yc + 1) + ln(1 +

∑
c=1,4,5

eµ−yc)

−
∑

c=2,4
ln(eµ−yc + 1) + ln(1 +

∑
c=2,4,6

eµ−yc)

µ+
∑

c=1,2,4
ln(eµ−yc + 1)− ln(1 +

∑
c=1,2,3

eµ−yc) . . .

− ln(1 +
∑

c=1,4,5
eµ−yc)− ln(1 +

∑
c=2,4,6

eµ−yc)


,

where by conservation of probability we chose to fix y7 = 1−
∑6

c=1 yc
and for saving ink we set eµ− ≡ eµ − 1.
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Figure: Poisson model ⊗ Dirichlet distribution drawn probabilities as a
statistical mixing operator (matrix) S : p 7→ y, N = 6. Fractal structure,
due to the Boolean vector space, is the Sierpinski triangle. (Dark blue =
0 . . . Yellow = 1)
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Figure: Hidden polynomial structure, N = 8.
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Conclusions
The vector space measurement model allows a mathematically self
consistent way to do combinatorial analysis of soft diffraction, plus also
to extract σSD , σDD , σND etc. via multidimensional Bayesian/Frequentist
fitting (given the MC model).

AGK cutting rules can be incorporated into the combinatorics inversion
framework. Leading the way to completely new analyses of, e.g., gap
survival S2(Ω) discussion. This framework works directly for pile-up
inversion of gap topologies (multiple pp interactions per bunch crossing).

The vector space itself can be studied in the context of kinematics,
diffraction models and Regge theory, together with tools from
combinatorics and algebraic geometry (technically the structure is
Grassmannian).
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Recursive Inverse of Stochastic
Autoconvolution

The first solution with fully non-linear uncertainty estimation

27 / 36



Recursion, M.C. Escher 28 / 36



The problem?

Think about having a superposition of final state multiplicities
(= autoconvolution1), let’s say, in proton-proton collisions

Main problem is limited statistics in steeply falling tails →
huge oscillations, naive (textbook2) solutions fail miserably

1sum of random variables is equivalent to a convolution of their densities
2inverting stochastic autoconvolution is not usual textbook material
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Forward problem

The autoconvoluted distribution of Y ∼ gY is now written formally as a
Poisson probabilities weighted infinite series3

gY (y) = P1fX (y) + P2[fX ~ fX ](y) + P3[[fX ~ fX ]~ fX ](y) + . . .

=
1

1− e−µ

∞∑
K=1

µK

K !
e−µf ~

K

X (y) (6)

where the convolution power ~K is defined recursively as
f ~

K

= f ~
(K−1)

~ f and f ~1 = f .

We do need not to limit ourself to the Poisson compound sum, but take
that as an example

3We have removed the unobservable case K = 0 which gives Y = 0 and
renormalized the remaining Poisson probabilities PK ,K = 1, 2, 3, . . . to sum to
one.
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A spectral solution to the forward
problem via the characteristic function

In the spectral domain, the characteristic function (CHF) ϕX

is defined as

ϕX (t) = E[e itX ] =
∫
R
e itX fX (x) dx (7)

and for the compound Poisson case you end up with

ϕg (t) ≡ ϕY |K>0(t) =
e−µ

(
eµϕf (t) − 1

)
1− e−µ

=
1

eµ − 1
(eµϕf (t) − 1).

The main thing is that you want to find out ϕf (t).
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Inverse solution in a nutshell

To find out f̂ (x), use recursion. First estimate f̂ 0 = g(x).

Take Fast Fourier Transform (FFT) of f̂ k(x) to get ϕ̂k
f (t), use

the spectral map to get ϕ̂g (t) and construct corresponding AC
operator, take IFFT of AC operator, map g(x)→ f̂ k+1(x) in
original domain with Max Entropy inversion + regularization,
use Efron’s statistical Bootstrap to estimate uncertainty, and
add one so-called bias substraction iteration around it:

"Bias substraction" y
"Daughter Bootstrap" y

Fast Fourier Transform & Max Entropy recursion �
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Figure: Inverse solution with algorithmic uncertainty estimation (blue
band 95CL).

34 / 36



10-2 10-1

101

102

103

104

Figure: Data driven regularization parameter λ selection as an equilibrium
between "backprojection" error χ2

ĝ and smoothness ‖∇x f̂ /f̂ ‖2.
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Work in progress

Algorithms will be available online at:
github.com/mieskolainen
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