Finite-volume scaling of Polyakov loop susceptibilities

Michał Szymański
Collaborators: P. M. Lo, K. Redlich, C. Sasaki
Institute of Theoretical Physics, University of Wroclaw

QCD - Old Challenges and New Opportunities, 24-30.09.2017 Bad Honnef

Figure: Conjectured phase diagram of QCD.

Polyakov loop \rightarrow probes the free energy of a static quark

$$
|L|=\exp \left(-F_{Q} / T\right)
$$

Pure gauge: deconfinement \rightarrow 1st order
$T<270 \mathrm{MeV} \Rightarrow L=0, F_{Q}=\infty$
$T>270 \mathrm{MeV} \Rightarrow L>0, F_{Q}$ finite
QCD: deconfinement \rightarrow crossover

- Polyakov loop \rightarrow approximate order parameter

Figure: Polyakov loop in pure gauge ${ }^{1}$ (colored points+black line) and in $2+1$ QCD 2 (gray band)

[^0]Polyakov loop susceptibility \rightarrow sensitive to deconfinement and crossover

$$
\left.\left.\chi_{A}=\left.V\langle | L\right|^{2}\right\rangle_{C}=V\left(\left.\langle | L\right|^{2}\right\rangle-\langle | L| \rangle^{2}\right)
$$

$N_{c}=3 \rightarrow$ Polyakov loop complex: $L=L_{L}+i L_{T}$

- Longitudinal (real) susceptibility

$$
\chi_{L}=V\left\langle\left(L_{L}\right)^{2}\right\rangle_{C}=V\left(\left\langle\left(L_{L}\right)^{2}\right\rangle-\left\langle L_{L}\right\rangle^{2}\right)
$$

- Transverse (imaginary) susceptibility

$$
\chi_{T}=V\left\langle\left(L_{T}\right)^{2}\right\rangle_{C}=V\left(\left\langle\left(L_{T}\right)^{2}\right\rangle-\left\langle L_{T}\right\rangle^{2}\right)
$$

Ratios of Polyakov loop susceptibilities \rightarrow alternative probes of deconfinement ${ }^{1}$

$$
R_{A}=\frac{\chi_{A}}{\chi_{L}} \quad R_{T}=\frac{\chi_{T}}{\chi_{L}}
$$

[^1] (2013)

Figure: Lattice data on the R_{T} ratio in pure gauge ${ }^{1}$ (colored points+black line) and $2+1$ QCD ${ }^{2}$ (gray band).

[^2]

Figure: Lattice data on the R_{A} ratio in pure gauge ${ }^{1}$ (colored points) and $2+1 \mathrm{QCD}^{2}$ (gray band).

[^3]Pure $\mathrm{SU}(3): T<270 \mathrm{MeV} \rightarrow R_{A} \approx 0.43$
Can be understood in terms of Gaussian distribution function:

$$
Z=\int d L_{L} d L_{T} e^{-V \mathcal{U} / T}, \quad \mathcal{U}=\alpha T^{4}\left(L_{L}^{2}+L_{T}^{2}\right)
$$

with averages

$$
\langle O\rangle=\frac{1}{Z} \int d L_{L} d L_{T} O\left(L_{L}, L_{T}\right) e^{-V u / T}
$$

With this approximation one finds

$$
\left.\left.\langle | L\right|^{2}\right\rangle_{c}=\left(2-\frac{\pi}{2}\right) \frac{1}{2 \alpha V T^{3}} \quad\left\langle\left(L_{L, T}\right)^{2}\right\rangle_{C}=\frac{1}{2 \alpha V T^{3}}
$$

Which gives $R_{A}=2-\pi / 2 \approx 0.43$ and $R_{T}=1$.
Generalization: to capture details of phase transition

$$
\mathcal{U} \rightarrow \mathcal{U}=\mathcal{U}_{\text {Gluon }}+\mathcal{U}_{\text {lnt }}
$$

$\mathcal{U}_{\text {Gluon }}$: Pure gauge potential

$$
\frac{\mathcal{U}_{G}}{T^{4}}=-\frac{1}{2} a(T) L \bar{L}+b(T) \ln M_{H}(L, \bar{L})+\frac{1}{2} c(T)\left(L^{3}+\bar{L}^{3}\right)+d(T)(L \bar{L})^{2}
$$

- Underlying Z_{3} symmetry
- $M_{H}(L, \bar{L})=1-6 L \bar{L}+4\left(L^{3}+\bar{L}^{3}\right)-3(L \bar{L})^{3}$
- Reproduces pure gauge P, L, χ_{L} and χ_{T}
$\mathcal{U}_{\text {Int }}$: Quark-gluon interaction:

$$
\frac{\mathcal{U}_{1 n t}}{T^{4}}=-\underbrace{\left[2 h\left(T, m_{l}\right)+h\left(T, m_{s}\right)\right]}_{h_{0}} L_{L}, \quad h\left(T, m_{q}\right)=\frac{6 m_{q}^{2}}{(\pi T)^{2}} K_{2}\left(\frac{m_{q}}{T}\right) .
$$

- External breaking field coupled to Polyakov loop
- $m_{l}=6 \mathrm{MeV}, m_{s}=20 m_{l}=120 \mathrm{MeV}$

Figure: Model R_{T} ratio for different values of breaking field versus the lattice one.

Figure: Model R_{A} ratio for different values of volume (left panel) and breaking field (right panel) versus the lattice one.

Figure: R_{A} ratio in function of effective scaling variable. $\mathcal{H}, \mathcal{A}_{L}$ - determined from effective potential.

Conclusions

- Ratios of Polyakov loop are sensitive to deconfinement and size of external symmetry breaking field
- The model discussed here reproduces lattice trends of R_{A} and R_{T} ratios
- Lattice data on ratios can be used to estimate the size of external breaking field
- Useful for constraining effective models
- The scaling properties of R_{A} ratio could be tested on the lattice

Appendix

Effective gluon potential $\mathcal{U}_{\mathbf{G}}$

Parametrization of the effective potential:

- $a(T), c(T)$ and $d(T)$ of the form:

$$
x\left(t \equiv T / T_{c}\right)=\frac{x_{1}+x_{2} / t+x_{3} / t^{2}}{1+x_{4} / t+x_{5} / t^{2}}
$$

- $b(T)$ of the form:

$$
b\left(t \equiv T / T_{c}\right)=x_{1} t^{-x_{4}}\left(1-e^{x_{2} / t^{x_{3}}}\right)
$$

Parameters x_{n} can be found in: P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 074502 (2013)

Effective gluon potential $\mathcal{U}_{\mathbf{G}}$

Figure: Shape of effective potential used in model calculations in confined (left panel) and deconfined (right panel) phases.

Model Polyakov loop

Figure: Model result on Polyakov loop for different values of breaking field versus the lattice one.

Model R_{T} for different quark mass profiles

Figure: Comparison between R_{T} obtained for different temperature profiles of quark mass.

Matching to Gaussian model

The general form of Gaussian distribution function:

$$
Z=\int d L_{L} d L_{T} \exp \left[-\mathcal{A}_{1} L_{L}^{2}-\mathcal{A}_{2} L_{T}^{2}+\mathcal{H} L_{L}\right]
$$

- In this case $R_{A}\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{H}\right)=R_{A}\left(\xi, R_{T}\right)$, with

$$
\xi=\mathcal{H} /\left(2 \sqrt{\mathcal{A}_{1}}\right), \quad R_{T}=\mathcal{A}_{1} / \mathcal{A}_{2}
$$

- The R_{A} ratio \rightarrow exact:

$$
\begin{aligned}
R_{A}\left(\xi, R_{T}\right) & =1+R_{T}+2 \xi^{2}-\frac{2}{\pi^{2}} R_{T} e^{-2 \xi^{2}}\left[\mathcal{I}\left(\xi, R_{T}\right)\right]^{2}, \\
\mathcal{I}\left(\xi, R_{T}\right) & =\int_{-\infty}^{\infty} d x e^{-x^{2}+2 \xi x} \frac{x^{2}}{2 R_{T}}\left[K_{0}\left(\frac{x^{2}}{2 R_{T}}\right)+K_{1}\left(\frac{x^{2}}{2 R_{T}}\right)\right]
\end{aligned}
$$

The effective scaling variable $\xi \rightarrow$ Gaussian matching:

$$
\mathcal{A}_{1,2}=V T^{3}\left[2 \chi_{L, T}(T, h=0)\right]^{-1}, \quad \mathcal{H}=V T^{3}\left[h+\frac{\langle L\rangle(T, h=0)}{\chi_{L, T}(T, h=0)}\right]^{-1}
$$

[^0]: ${ }^{1}$ P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 014506 (2013)
 ${ }^{2}$ A. Bazavov, N. Brambilla, H.-T Ding, P. Petreczky, H. -P. Schadler, A. Vairo and J. H. Weber, Phys. Rev. D 93, 114502 (2016).

[^1]: ${ }^{1}$ P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 014506

[^2]: ${ }^{1}$ P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 014506 (2013)
 ${ }^{2}$ A. Bazavov, N. Brambilla, H.-T Ding, P. Petreczky, H. -P. Schadler, A. Vairo and J. H. Weber, Phys. Rev. D 93, 114502 (2016).

[^3]: ${ }^{1}$ P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 014506 (2013)
 ${ }^{2}$ A. Bazavov, N. Brambilla, H.-T Ding, P. Petreczky, H. -P. Schadler, A. Vairo and J. H. Weber, Phys. Rev. D 93, 114502 (2016).

