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Introduction
‘Old’ problem (ISR, SPS,Tevatron, HERA, RHIC, LHC):
pp-scattering, energy dependence of scattering amplitude, total cross section 

• Total cross section grows with energy (Pomeron exchange)
 
• t-dependence of elastic cross section shows 
  difference between pp and ppbar (evidence for existence of Odderon)  
  
• transverse extension of hadronic size -> nonperturbative physics
   in impact parameter exponential fall-off 
   Pomeron slope = nonperturbative length scale 
   (recent LHC data: evidence for slightly stronger growth)
        

R(s)

p
p

R2(s) = 2(B0 + 2↵0 ln s) ↵0
P ⇡ 0.25 GeV �2

Geometry at high energies:  
separation between longitudinal and transverse degrees of 
freedom

P,O(?)

Note: we are not yet in the asymptotic region!

t in asympt
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geometric models: �
tot

⇠ (ln s)2, R(s) ⇠ lns

How to find a solution in QCD to this nonperturbative problem?

Successful models:

Regge pole + cuts (DL): �
tot

⇠ s↵(0)�1, ↵(0)� 1 ⇡ 0.1 ”Soft Pomeron”

Kaidalov: bare Pomeron with intercept above one + Reggeon field theory

Durham, Tel Aviv models: BFKL + Reggeon field theory

Models based upon AdS/CFT

Perturbative region (small projectiles): BFKL, not applicable to pp-scattering

-> talk of Chung-I Tan

->talk of O.Nachtmann

-> talk of L.Jenkovsky
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On the other hand: perturbative QCD - the BFKL 

Applicability:
small (transverse direction) projectiles, since strong coupling depends 
upon transverse momenta            :
• virtual photon
• heavy onium states
• jets with large transverse momenta

↵s(k
2
T )

Gross features are different from soft Pomeron:
• high intercept 0.25...0.3
• small t-slope
• infinite radius

In the following: 
• explain BFKL,
• mention where it can be tested
• most recent development: discrete BFKL
• Novel attempt to connect with soft Pomeron
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The BFKL Pomeron
1. Basics

Where does the BFKL come from: 
perturbation theory (in momentum space) , leading log approximation 

+ + =

reggeization Lipatov production vertex

�(k1, k2)

(Alternative: perturbation theory in configuration space, color dipole picture)

Balitsky, Fadin, Kuraev, Lipatov, 

Mueller,Balitsky

s
1

k2
! s

s!(k2)

k2
, !(k2) = � g2

(2⇡)3
q2

Z
d2k

1

k2(q � k)2
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Use unitarity, take square of production amplitudes:

important self consistency condition

−−>

color singlet: BFKL color octet: bootstrap

=

reggeeized gluonBFKL kernel

A(s, t) = is

Z
d!

2⇡i
(�s)!�!(q

2)

�!(q
2) =

Z
d2kd2k0

(2⇡)6
�1(k, q)�!(k, k

0, q)�2(k
0, q)

!�!(k, k
0, q) =

�(2)(k � k0)

k2k02
+KBFKL ⌦ �!(k, k

0)� (�(k2) + �((q � k)2)�!(k, k
0, q)

K(k, k0, q) = g2
 
q2 � k2(q � k02) + k02(q � k)2

(k � k0)2

!
k k ’

q−k q−k’

= − −
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Some important features of BFKL ladders:

2) Scale (Moebius) invariance:
• in QCD only leading order, in NLO broken (running coupling)
• in N=4 SYM also beyond

3) Spectrum of eigenvalues :

1) Infrared finiteness:  cancellation between real and virtual contributions
    In NLO: running coupling 

e⌫,n(k) = 2⇡
p
2(k2)�i⌫� 3

2 e�in'

�(⌫, n) = ↵s�1(⌫, n) + ↵2
s�2(⌫, n) + ...

�1(⌫, n) =
Nc

⇡

✓
2 (1)�  (

1 + |n|
2

+ i⌫)�  (
1 + |n|

2
� i⌫)

◆

Continuous spectrum,  cut in the angular momentum plane with tip at 

�1(0, 0) =
Nc↵s

⇡
4 ln 2 ⇡ 0.25...0.3

(forward direction)

4) BFKL contains DGLAP (in double log )
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4) N=4 SYM:  connection with graviton

Conjecture of AdS/CFT correspondence:
N=4 SYM is dual to string theory in Anti-de Sitter space; contains graviton
BFKL appears in remainder function (BDS conjecture)

Weak coupling:
BFKL

Strong coupling 
graviton

⟷

Brower et al
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5) Integrability: BFKL (and its generalization, BKP) is first example 
of integrable system in quantum field theory

BFKL BKP

Integrable spin chain

B,Kwiecinski, Praszalowicz

HBFKL = H12 + H̄12 HN =
NX

k=1

(Hkk+1(zk, zk+1) + H̄kk+1(z̄k, z̄k+1))

Odderon
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6) Back to QCD: BFKL is the beginning of a QCD reggeon field theory

Triple Regge region: 
 pp -> X+p

nonlocal triple Pomeron vertex   

in configuration space: BK kernel 
JB, Wüsthoff, Ewerz,

Balitsky,Kovchegov

Field theory, e.g.
corrections to BFKL
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2. BFKL tests
1) LEP: 
2) HERA:  structure function at small x
3) HERA:  forward jets
4) LHC:  Mueller-Navelet jets
5) BFKL Monte Carlo (Sabio-Vera, Chachamis)

6) HERA fit: the discrete Pomeron  
                         . . .                             

�⇤�⇤ scattering

ad 4):

k 1

k 2

k 1 k 2

x 1

x 2

see Celiberto’s talk

ad 5):  BFKL at large but finite energies!

k 1

k 2

k 1 k 2

x 2
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3.The discrete Pomeron
In NLO:  QCD coupling becomes running
• scale invariance is lost 
• BFKL kernel is modified   

First a simplified qualitative argument -  
one-dimensional Schrödinger equation:

⇤QCD

QCD

V

IR boundary turning point k c

exponential falloff from DGLAP 

DGLAP

Lipatov 1986
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!f!(t) =

Z
dt0

p
↵̄(t)K(t, t0)

p
↵̄(t0)f!(t

0) t =
k2

⇤2
QCD

, ↵̄(t) =
1

�0t

f!(t) =

r
t

2⇡!

Z
d⌫g!(⌫)e

it⌫

Ansatz:

Obtain:

Eigenvalue condition, turning point:

! = ↵̄(t)�1(⌫(t)) ! = ↵̄(tc)�1(0) :
t < tc : ⌫(t) = real, oscillatory behaviour

t > tc : ⌫(t) = imaginary, exponential fallo↵

Near turning point:  Airy functions (similar to 1-dim S-equation)

BFKL equation (for n=0 only, forward direction ):

In more detail: t

t ’

t

t ’

For small t oscillatory behavior,
unknown phase

i!�0
@g!(⌫)

@⌫
= �1(⌫)g!(⌫), g!(⌫) = exp

h
1

i!�0

Z ⌫

0
d⌫0�1(⌫

0
)

i
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Numerical evaluation: fit to HERA data Kowalski, Lipatov, Ross

x < 0.001, Q2
> 6 GeV

2

accumulation at zero
0

...

123

Fit needs 10 poles

!n =
A

n+B
,with A = 0.52, B = 1.62

G(t, t0;!) =
X

n=1

f!n(t)f
⇤
!n

(t0)

! � !n
+

Z 0

�1
d!0 f�|!0|(t)f

⇤
�|!0|(t

0)

! � !0

t

t ’

t

t ’

ladder
BFKL
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Eigenfunctions:

kc(4) = 2100TeV

kc(3) = 260TeV

kc(2) = 3.3TeV

kc(1) = 50GeV

1 GeV

wave function

kk c (1) k c (2)

1

2

qualitatively:

rapid growth of k_c

Quantum mechanics: connection between small and large momenta
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Pecularities:

• leading pole decouples 
• there should be a ground state, not seen in the fit

Possible picture:

1 GeV

wave function

kk c (1) k c (2)

1

2

k 0 (0)

0
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What do we learn from this first numerical application
of the discrete Pomeron:

• BFKL needs IR cutoff : spectrum becomes quite different: 
   infinite sum of discrete poles 
• details of the discrete spectrum are sensitive to large momentum region
• leading eigenvalue close to nonperturbative region 
      (still needs ‘unitarization’ )
• open questions: nonforward direction, dependence on IR cutoff,...    

Maybe:  “BFKL is not so far from nonperturbative Pomeron” 
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3. An attempt to interpolate between
           BFKL and soft Pomeron 

How to connect between BFKL and soft Pomeron?

On the BFKL side:
• without running coupling: 
   scale invariance, far from nonperturbative QCD
• with a cutoff: 
   a sequence of poles with high intercepts, need unitarization
   start from BFKL+screening = QCD reggeon field theory 

On the soft pomeron side:
•   DL Pomeron with smaller intercept,  but still above one
•   need Pomeron cuts, beginning of reggeon field theory
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Steps:
1) Formulate BFKL (and QCD RFT) in terms of flow equations,   
    compute energy behavior as function of cutoff k
2) Fixpoint analysis in IR reggeon field theory
3) match steps 1) and 2) 

BFKL

dilute

confinement

ln Q 2

sa
tur

ati
on

2
QCD

?

1
2

small distancelarge distance  

y=ln 1/x

transverse momentum

transverse distance 

nonperturbative Pomeron
pp scattering BFKL

virtual photon scattering

IR UV

cutoff k

What this suggests:
1) find common framework 
    which fits for BFKL and for soft Pomeron: 2+1 dim: field theory = RFT
2) interpolate between short distance QCD  (BFKL) 
    and long distances (soft Pomeron): RG equation (flow equations)  

JB,  Contreras, Vacca,
JHEP 1603 (2016) 201 
PRD 95 (2017) 014013
work in progress
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On functional renormalization, flow equations

Reminder:  Wilson approach

Z
[d']⇤e�S⇤['] =

Z
[d']⇤

0
e�S⇤0

[']

The  standard Wilsonian action is defined by an iterative change in the UV-cutoff 
induced by a partial integration of quantum fluctuations:

⇤ ! ⇤0 < ⇤

Alternatively:    ERG-approach (Wetterich), sequence of theories, IR cutoff
                                (successful use in statistical mechanics, low energy QCD, and in gravity)   
define a bare theory at scale    . , introduce IR cutoff k.  
The integration of the modes in the interval          defines a k-dependent 
average functional. 
Letting k flowing down to 0 defines a flow for the functional 
which leads to full theory.  k-dependent effective action:

⇤
[k,⇤]

e��
k

[�] =

Z
[d']µke

�S[']+
R
x

('��)
x

��
k

[�]
��

x

��S
k

['��]

regulator

--> flow of couplings constants etc

Wetterich;Gies:
Berges;Pawlowski,...
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e��
k

[�] =

Z
[d']µke

�S[']+
R
x

('��)
x

��
k

[�]
��

x

��S
k

['��]

@t�k =
1

2
Tr

⇣
�(2)
k +Rk

⌘�1
@tRk

�
� µ̇k

µk

R = regulator operator

UV and IR finite.  All parameters (couplings etc) are k-dependent.
Quantum fluctuations          coupled differential equations →

@t�k =
1

2
Gk;AB @tRk;BA

@t�
(1)
k;A1

= �1

2
Gk;AB�

(3)
k;A1BCGk;CD @tRk;DA

@t�
(2)
k;A1A2

=
1

2
Gk;AB�

(3)
k;A1BCGk;CD�(3)

k;A2DEGk;EF @tRk;FA

+
1

2
Gk;AB�

(3)
k;A2BCGk;AB�

(3)
k;A1BCGk;CD @tRk;DA

�1

2
Gk;AB�

(4)
k;A1A2BCGk;CD @tRk;DA

Taking a derivative with respect the RG time                           one obtainst = ln k/k0
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A. The UV limit - setup
In the UV region (large momenta, short distances):  need to begin with 
the (LO) BFKL Pomeron = bound state of two reggeized gluons:

= + + + . . .

composite state: sum of ladder diagrams

= reggeized gluon

This equation contains:

• nontrival high energy behavior
 
• DGLAP evolution equation

• saturation

T (s, t) ⇠ s1+!BFKL , !BFKL = 0.2 . . . 0.3

non-local kernel,
problem with LPA
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= − − =

elementary gluon complex scalar field

Consistency beteen BFKL kernel and trajectory (bootstrap) 

=

reggeized gluon = composite field of two elementary gluons 

nonlocal kernel can be built by introduction of a complex scalar field  

Field content:
• elementary gluon (for gluon) complex field for kernels 
  (does not propagate in rapidity) 
• reggeized gluon as composite state of elementary gluons
• Pomeron as bound state of reggeized gluons
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Triple vertex:  highly nonlocal

= +. . .  .   =

elementary gluons complex field

+. . .  .   =

• complex field which does not  
   propagate in rapidity  
• elementary gluon for trajectory
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RG-Equations:

1) start from elementary gluons
2) introduce reggeized gluon as a composite field 

k  d /dk = X

3) introduce nonpropagating gluon field for BFKL kernel 

= +
X

X

XX
X+ +

X

+

Tuesday, 26. September 17



q’ q’’

q−q’ q−q’’

k  d /dk =

X

+

X X+

X

++

X

X +

Expect discrete poles, work on the solution is in progress

4) For the BFKL 4-point function:
use feature of fields and derive a closed nonlinear equation, valid for for 
LO BFKL Greens function (with running coupling):  

(Same structure as IR evolution equations)
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Use reggeon field theory (2+1-dim field theory) and renormalization group,
construct a flow from UV scale to IR scale 

L = ( 12 
†
$
@y � ↵0 †r2 ) + V ( , †)

V ( , †) = �µ † + i� †( † +  ) 

+ g( † )2 + g0 †( †2 +  2) + · · ·

S =

Z
dyd

2
xL( , †)

Study the flow as function of IR cutoff k in transverse momentum, 
all fields and parameters become k-dependent.

Local  approximation (LPA, strong assumption):

The IR region: search for fixed points 
IR limit: region of small transverse momenta (large transverse distances) 

 = Pomeron field

In a second step: include as second field for the Odderon
(important restrictions on the couplings) 

Same universality class as Directed Percolation (Cardy, Sugar)
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Derivative with respect the RG time t=log (k/k_0) leads to the 
Wetterich flow equation:

which is UV and IR finite
From this derive coupled differential equations for Green’s and vertex 
functions (see below)

q 2

2

q 2

2

k 2

’regulator mass’

Rk = regulator operator, e.g.

Rk(q) = (k2 � q2)⇥(k2 � q2)

@t�k =
1

2
STr

⇣
�(2)
k +Rk

⌘�1
@tRk

�
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V̇k = NDAD(⌘k, ⇣k)↵
0
kk

2+D
1 + Ṽ

k ̃ ̃†
q

1 + 2Ṽ
k ̃ ̃† + Ṽ 2

k ̃ ̃† � Ṽk ̃ ̃Ṽk ̃† ̃†

.

˙̃Vk[ ̃
†,  ̃] = (�(D + 2) + ⇣k)Ṽk[ ̃

†,  ̃] + (D/2 + ⌘k/2)( ̃
@Ṽk

@ ̃
|t +  ̃† @Ṽk

@ ̃†
|t) +

V̇k

↵0kD+2
.

Possible approximations to solve for fixed points (for constant fields):

• polynomial expansion in fields around zero (beta-functions)
• polynomial expansion in fields around nonzero stationary point
• solve differential equations in the region of large fields

Search for fixed points:

�[ †
, ] =

Z
d2x d⌧

✓
Z(

1

2
 

†
@

$
⌧  � ↵

0
 

†r2
 ) + V [ †

, ]

◆
,

V [ †, ] = �µ † + i� †( † +  ) + g( † )2 + g0 †( †2 +  2) 

+i�5 
†2 � † +  

�
 2 + i�05 

†
⇣
 †3 +  3

⌘
 + ...

Different truncations (up to order16)
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Results of the fixed point analysis
1) Existence of a fixed point with one relevant direction (independent of truncation)   

one relevant direction

critical surfaceg

Flow in the space of  parameters of the potential (couplings) :
reggeon mass (intercept)                    , triple coupling          
fixed point IR attractive inside critical surface (red), 
repulsive along one-dimensional relevant direction (green) 

�̃↵(0)� 1 = µ̃/Z
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Convergence for higher truncations (expansion around nonzero stationary point) : 

truncation 3 4 5 6 7 8

exponent ⌫ 0.74 0.75 0.73 0.73 0.73 0.73

mass µ̃eff 0.33 0.362 0.384 0.383 0.397 0.397

i 0,diag 0.058 0.072 0.074 0.074 0.0.074 0.074

iu0 0.173 0.213 0.218 0.218 0.218 0.218

⌫ = 0.73
Compare with Monte Carlo result for Directed Percolation
(same universality class):
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Shape of the effective potential (in the subspace of imaginary fields):

Extrema, location at lowest truncation:

( ̃0,  ̃
†
0) = (0, 0), (

µ̃

i�̃
, 0), (0,

µ̃

i�̃
), (

µ̃

3i�̃
,
µ̃

3i�̃
).

No further structure for larger fields
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Main result of this part:

• found a candidate for fixed point (IR stable except for one relevant direction)
 which is robust when changing truncations

• know the effective potential 

• Include Odderon: IR stable fixed point with two (three) relevant directions
  at the fixed point: 
  new symmetry ‘’Pomeron does not feel the Odderon, whereas Odderon has   
  strong absorption’’.      

From this: 
derive possible solutions for the behavior at very high energies  
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Need to find out:  on which trajectory is real physics?

Look at flow of physical physical observable: Pomeron intercept                        :  

So far: fixed point analysis was done in terms of dimensionless variables: 
reggeon energy and momentum have different dimensions 

S =

Z
d

2
x d⌧

✓
Z(

1

2
 

†
@

$
⌧  � ↵

0
 

†r2
 ) + V [ †

, ]

◆
,

µ̃k =
µk

Zk↵0
kk

2

�̃k =
�k

Z
3
2
k ↵

0
kk

2
kD/2

[ ] = [ †] = kD/2, [↵0] = Ek�2.

Evolution of physical (=dimensionful) parameters              looks quite 
different from dimensionless ones  µ̃k, �̃k, ...

µk,�k, ...

↵(0)� 1 = µ/Z

First glimpse at physics
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Critical subspace (red): Near critical subspace (blue):
several possibilities, e.g.

dimensionless
parameters 

physical parameters :

↵(0) ! 1 �triple ! 0
↵k(0) ! ↵k=0 < 1

But: theory not free!
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Main resuIt: theory allows for different possibilities:

1) inside critical subspace: infrared stable fixed point with intercept one.
    But: need constraint at starting point in UV region  
2) near critical surface:  falling or rising total cross section. Need further 
    study 

  
In the following: consider a scenario inside the critical subspace
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A simple model: 
single Pomeron exchange - a scaling law

p

p

Tel(s, t) = is

Z
d!

2⇡
si!�p(t)

1

Zk(i! + ↵0
kq

2)� µk
�p(t)

= is�p(t)Z
�1
k sµk/Z�↵0

kq
2

�p(t).

For small k:

⌘ ⇡ �0.331 (�0.6), ⇣ ⇡ 0.172 (0.28).

↵0
kk

2 ⇠ 1

ln s
Assume: for very large energies

anomalous dimensions : directed percolation

Tel(s, t) ⇠ isk⌘sk
(2�⇣)µ̃kf(ln s q2k�⇣)

Tel(s, t) ⇠ is(ln s)�⌘/(2�⇣)s(ln s)�1µ̃fpf(t(ln s)2/(2�⇣))

R2(s) = 2(B0 + 2↵0
k ln s) ⇠ 1/k2
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Triple Pomeron cross section:

p

p p

d�

dtdM2
=

1

16⇡M2

Z
d!

2⇡i

Z
d!1

2⇡i

Z
d!2

2⇡i

⇣ s

M2

⌘!1+!2
✓
M2

M2
0

◆!

�(0)
1

Zki! � µk
�k

1

Zk(i!1 + ↵0
kq

2)� µk

1

Zk(i!2 + ↵0
kq

2)� µk
�(t)2.

�k/Z
3
k ⇠ (ln s)�1+ 1�3/2⌘

2�⇣

Additional energy dependence:
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Comparison with previous work: 
2 x Gribov, Migdal
Abarbanel, Bronzan
Migdal, Polyakov,Ter-Martirosyan

→

RG analysis of RFT with triple coupling near D=4,  impose the condition:

⌘O = �⌘

z
, z = 2� ⇣, zO =

2

z= is(ln s)�⌘/(2�⇣)F (t(ln s)2/(2�⇣))

For comparison: we did not impose conditions on intercept

Difference in intercept at finite enegies 
￪

Tel(s, t) ⇠ is(ln s)�⌘/(2�⇣)s(ln s)�1µ̃fpf(t(ln s)2/(2�⇣))

Qualitative agreement with real physics!

 Cannot apply to present data

Tel(s, t) ⇠ is(ln s)⌘OF (t(ln s)zO ), ⌘0 ⇡ 0.35, z0 ⇡ 1.165

↵(0) = 1

In the (mathematical) limit of infinite energies agrees with CFRT.
At present we are not at infinite energies:  

R2(s) = 2(B0 + 2↵0 ln s), B0 ⇠ 2↵0 ln s ⇡ 9GeV�2
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A comment on other possible scenarios: 
if the evolution misses the fixed point 
(i.e. lies outside the critical surface, very sensitive to the starting point):

• subcritical solution

• supercritical Pomeron:
   eikonalization, most likely leads to    

↵(0) < 1, falling cross section, �
tot

! 0

Froissart type cross section �
tot

! (ln s)2
↵(0) > 1

A comment on the Odderon:
• experimentally the existence is still under discussion
• in pQCD there exist an Odderon (as bound state of three gluons)
• our fixed point analysis indicates: Odderon with intercept one should 
exist 
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Conclusions
BFKL is the most promising starting point for 
a theory of high energy scattering 

still some way to go, before we understand 
the transition to nonperturbative physics:
ongoing attempt with first results 

BFKL has broader relevance in the high 
energy limit of quantum field theory:  
N=4 SYM, EW-theory, gravity 
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Backup slides
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Small: strong rise    ----    large: slow rise

p

* *

*

p p

HERA tot

tot

tot

s BFKL

(W 2 )

s 0.08LHC

LEP
HERA forward jets

Energy dependence of total cross sections varies with transverse size: 

calculable in pQCD

Partly calculable in pQD

nonperturbative
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