GenEx - Exclusive Light Meson Generator

Paula Erland (IFJ PAN)

supervisor: Maciej Trzebiński (IFJ PAN)

 $\label{eq:WE-Heraeus Physics School on "QCD - Old Challenges and New Opportunities"} \\$

24-30 September 2017

GenEx Generator

- Generator for the soft exclusive processes in high energy collisions.
- Based on calculations by P. Lebiedowicz, A. Szczurek, O. Nachtmann.
- Processes implemented so far:
 - $p + p \to p + \pi^- + \pi^+ + p$,
 - $p + p \to p + K^- + K^+ + p$,
 - $\bullet \ p+p \to p+\gamma+p,$
 - and many more.
- Plans to include:
 - resonant production of: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_2(1270)$, $f_2(1520)$, ρ^0 ,
 - vector and tensor Pomeron exchange,
 - absorption effects.
- the description can be found in:
 GenEx: A simple generator structure for exclusive processes in high energy collisions

R. A. Kycia, J. Chwastowski, R. Staszewski, J. Turnau

Exclusive Production: Elastic Scattering

Exclusivity: hard or soft diffractive process in which all stable particles can be measured. $p(p_2,s_2)$ $p(p_3,s_3)$

Elastic scattering:

- the simplest process one can imagine $p + p \rightarrow p + p$,
- exchanged object is a colour singlet: photon or Pomeron,
- very common (around 30% of all collisions in the LHC),

and

 essential for the total cross section measurement.

BUT:

• not very well known.

Tensor Pomeron

- High-energy small-angle hadron-hadron scattering is dominated by the exchange of the soft Pomeron.
- The nature of the soft Pomeron is not very well known.
- For example: what is the spin structure of the soft Pomeron?
- Usual approach Pomeron as a vector.
- New approach Pomeron as a tensor:

Exclusive central diffractive production of scalar and pseudoscalar mesons; tensorial vs. vectorial pomeron

Piotr Lebiedowicz, Otto Nachtmann, Antoni Szczurek

Annals Phys. 344 (2014) 301

Implementaion of Elastic Scattering

Elastic scattering: $pp \rightarrow pp$

$$i < s_3, s_4 | \mathcal{T} | s_1, s_2 > = i\bar{u}(p_3, s_3) \Gamma(\mathbf{p_3}, \mathbf{p_1}) u(p_1, s_1) i \Delta(\mathbf{s}, \mathbf{t}) \times i\bar{u}(p_4, s_4) \Gamma(\mathbf{p_4}, \mathbf{p_2}) u(p_2, s_2),$$

vertex:

$$i\Gamma_{\mu\nu}^{I\!\!P_Tpp}(p',p) = -i3\beta_{I\!\!P NN} F_1[(p'-p)^2] \{ \tfrac{1}{2} [\gamma_\mu (p'+p)_\mu + \gamma_\nu (p'+p)_\nu] - \tfrac{1}{4} g_{\mu\nu} (p\!\!\!/ + p\!\!\!/) \}$$

propagator:

$$i\Delta_{\mu\nu\kappa\lambda}^{(\rlap{\rlap{\rlap{\rlap{\rlap{\rlap{\rlap{\rlap{}}}}}}}}(s,t)} = \frac{1}{4s}(g_{\mu\kappa}g_{\nu\lambda} - \frac{1}{2}g_{\mu\nu}g_{\kappa\lambda})(-i\alpha_{I\!\!P}')^{\alpha_{I\!\!P}(t)-1}$$

Where:

- β_{IPNN} standard coupling constant,
- $F_1[(p'-p)^2]$ form factor,
- γ_{ν} gamma matrices,
- $g_{\mu\nu}$ matrix
- p Feynman slash notation,
- $\alpha'_{I\!\!P}$ Pomeron slope.

Model was described in: Phys. Lett. B 763 (2016) 382

Helicity in Proton-Proton Elastic Scattering and the Spin Structure of the Pomeron

Helicity Amplitudes for Tensor Pomeron

Only five out of the sixteen possible helicity amplitudes are independent:

$$\begin{aligned} \phi_1(s,t) &= \langle ++|\mathcal{T}|++\rangle & \phi_2(s,t) &= \langle ++|\mathcal{T}|--\rangle & \phi_3(s,t) &= \langle +-|\mathcal{T}|+-\rangle \\ \phi_4(s,t) &= \langle +-|\mathcal{T}|-+\rangle & \phi_5(s,t) &= \langle ++|\mathcal{T}|+-\rangle \end{aligned}$$

Real and imaginary part of elastic scattering amplitudes as a function of the four-momentum transfer. Predictions were done using the tensor Pomeron model.

Helicity Amplitudes for Various Models

Example: ϕ_2 amplitude as a function of the four-momentum transfer

Tensor and vector models give the same results. Predictions of scalar model are much higher.

Unpolarized Elastic Cross Section

- Tensor (green line) and vector (blue line) Pomeron models give exactly the same results.
- For the small momentum transfers the predictions of scalar model (red line) predictions are also comparable.
- They start to differ (up to a factor of 10) with the increasing value of the four momentum transfer.

Generation Example

Left: unpolarized protons (LHC).

Right: polarized protons (++ \rightarrow anything; RHIC).

Summary and Outlook

- Elastic scattering process was implemented to GenEx:
 - scalar, vector and tensor models,
 - proton spin.
- Simple exercise, to prepare structures for more difficult processes.
- Results consistent with analytical calculations.
- Constructed framework works correctly.
- Next steps implementation of tensor Pomeron model for:
 - non-resonant
 - resonant

exclusive pion and kaon productions.

This work was supported in part by Polish National Science Centre under grant number UMO-2015/17/D/ST2/03530. Work of P.E was supported in part by Polish Ministry of Science and Higher Education under grant number 0138/DIA/2017/46.

Thank you!