Triple Regge exchange mechanisms of four-pion continuum production in the $pp \to pp\pi^+\pi^-\pi^+\pi^-$ reaction (Phys. Rev. D 95 094020 (2017)) @ QCD - Old Challenges and New Opportunities

Radosław A. Kycia¹ kycia.radoslaw@gmail.com Piotr Lebiedowicz² Piotr.Lebiedowicz@ifj.edu.pl Antoni Szczurek² Antoni.Szczurek@ifj.edu.pl Jacek Turnau

 1 The Faculty of Physics, Mathematics and Computer Science T. Kościuszko Cracow University of Technology 2 Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland

September 27, 2017

Outline

- 1 The model $pp \to pp\pi^+\pi^-\pi^+\pi^-$
- 2 Cross section predictions
- 3 Experimental characteristics
- 4 Other characteristics ATLAS
- 6 Bibliography

The model $pp \to pp\pi^+\pi^-\pi^+\pi^-$

The model

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1)$$

$$\frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^{2}}$$

$$A_{\pi \pi}(s_{45}, t_{45})$$

$$\frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^{2}}$$

$$A_{\pi p}(s_{26}, t_{2})$$

The model

$$\mathcal{M}_{\{3456\}} = \ A_{\pi p}(s_{13},t_1) \ rac{F_{\pi}(t_{34})}{t_{34}-m_{\pi}^2} \ A_{\pi\pi}(s_{45},t_{45}) \ rac{F_{\pi}(t_{56})}{t_{56}-m_{\pi}^2} \ A_{\pi p}(s_{26},t_2)$$

The model

$$\mathcal{M}_{\{3456\}} = \ A_{\pi p}(s_{13},t_1) \ rac{F_{\pi}(t_{34})}{t_{34}-m_{\pi}^2} \ A_{\pi\pi}(s_{45},t_{45}) \ rac{F_{\pi}(t_{56})}{t_{56}-m_{\pi}^2} \ A_{\pi p}(s_{26},t_2)$$

$$\mathcal{M} = \frac{1}{2} \left(\mathcal{M}_{\{3456\}} + \mathcal{M}_{\{5436\}} + \mathcal{M}_{\{3654\}} + \mathcal{M}_{\{5634\}} \right)$$

$$+ \frac{1}{2} \left(\mathcal{M}_{\{4356\}} + \mathcal{M}_{\{4536\}} + \mathcal{M}_{\{6354\}} + \mathcal{M}_{\{6534\}} \right)$$

$$+ \frac{1}{2} \left(\mathcal{M}_{\{3465\}} + \mathcal{M}_{\{5463\}} + \mathcal{M}_{\{3645\}} + \mathcal{M}_{\{5643\}} \right)$$

$$+ \frac{1}{2} \left(\mathcal{M}_{\{4365\}} + \mathcal{M}_{\{4563\}} + \mathcal{M}_{\{6345\}} + \mathcal{M}_{\{6543\}} \right) .$$

$$(1)$$

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
 - Q: What is the choice of form factor $F_\pi(t_{ij})$? A: We selected common choice $F_\pi(t) = \exp\left(\frac{t-m_\pi^2}{\Lambda_{off,E}^2}\right)$, where
 - $\Lambda_{off,E} = 1 1.5 GeV^{-2}$ (educated guess from fit functions and upper and lower limits for $\Lambda_{off,E}$).
- Q: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_\pi(t_{ij})$? A: We selected common choice $F_\pi(t) = \exp\left(\frac{t m_\pi^2}{\Lambda_{off,E}^2}\right)$, where $\Lambda_{off,E} = 1 1.5 GeV^{-2}$ (educated guess from fit functions
- Q: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- **Q**: What is the choice of form factor $F_{\pi}(t_{ij})$? **A**: We selected common choice $F_{\pi}(t) = \exp\left(\frac{t-m_{\pi}^2}{\Lambda_{off,E}^2}\right)$, where $\Lambda_{off,E} = 1 1.5 GeV^{-2}$ (educated guess from fit functions and upper and lower limits for $\Lambda_{off,E}$).
- Q: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- **Q**: What is the choice of form factor $F_{\pi}(t_{ij})$? **A**: We selected common choice $F_{\pi}(t) = \exp\left(\frac{t-m_{\pi}^2}{\Lambda_{off,E}^2}\right)$, where $\Lambda_{off,E} = 1 1.5 GeV^{-2}$ (educated guess from fit functions and upper and lower limits for $\Lambda_{off,E}$).
- **Q**: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? **A**: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

We selected the following cuts:

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

ATLAS:

$$|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_{\pi}| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV}, \quad (3)$$

...and technical cut $M_{4\pi} < 30$ GeV.

Results were obtained using 'augmented' GenEx Monte Carlo generator [4].

We selected the following cuts:

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

ATLAS:

$$|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_{\pi}| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV}, \quad (3)$$

...and technical cut $M_{4\pi} < 30$ GeV.

Results were obtained using 'augmented' GenEx Monte Carlo generator [4].

We selected the following cuts:

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

ATLAS:

$$|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_{\pi}| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV}, \quad (3)$$

...and technical cut $M_{4\pi} < 30$ GeV.

Results were obtained using 'augmented' GenEx Monte Carlo generator [4].

Table : The integrated Born level (no absorption effects) cross section for the four-pion continuum production. Results were calculated for two different values of the cut-off parameter $\Lambda_{off,E}$.

	$\Lambda_{off,E}$ [GeV]	$\sigma @ \sqrt{s} = 7 \text{ TeV}$	$\sigma @ \sqrt{s} = 13 \text{ TeV}$
Full PS	1.0	7.21 μ b	8.97 μ b
Full PS	1.5	42.86 μ b	$51.78~\mu$ b
ATLAS	1.0	6.91 nb	7.48 nb
ATLAS	1.5	141.43 nb	154.19 nb

ALICE cuts practically reject detection possibility

Table: The integrated Born level (no absorption effects) cross section for the four-pion continuum production. Results were calculated for two different values of the cut-off parameter $\Lambda_{off,E}$.

	$\Lambda_{off,E}$ [GeV]	$\sigma @ \sqrt{s} = 7 \text{ TeV}$	$\sigma @ \sqrt{s} = 13 \text{ TeV}$
Full PS	1.0	7.21 μ b	8.97 μ b
Full PS	1.5	42.86 μ b	$51.78~\mu$ b
ATLAS	1.0	6.91 nb	7.48 nb
ATLAS	1.5	141.43 nb	154.19 nb

ALICE cuts practically reject detection possibility.

Experimental characteristics

Focus on the pion subsystem and do:

- Order pion system according to rapidity: $y_1 < y_2 < y_3 < y_4$.
- The following classes of ordering are possible:
 - Class A:

$$\pi^+(y_1), \pi^-(y_2), \pi^+(y_3), \pi^-(y_4)$$

$$\pi^-(y_1), \pi^+(y_2), \pi^-(y_3), \pi^+(y_4);$$

Class B:

$$\pi^-(y_1), \pi^+(y_2), \pi^+(y_3), \pi^-(y_4),$$

$$\pi^+(y_1), \pi^-(y_2), \pi^-(y_3), \pi^+(y_4),$$

Class C:

$$\pi^+(y_1), \pi^+(y_2), \pi^-(y_3), \pi^-(y_4),$$

$$\pi^{-}(y_1), \pi^{-}(y_2), \pi^{+}(y_3), \pi^{+}(y_4)$$

Focus on the pion subsystem and do:

- Order pion system according to rapidity: $y_1 < y_2 < y_3 < y_4$.
- The following classes of ordering are possible:
 - Class A:

$$\pi^+(y_1), \pi^-(y_2), \pi^+(y_3), \pi^-(y_4),$$

 $\pi^-(y_1), \pi^+(y_2), \pi^-(y_3), \pi^+(y_4);$

• Class B:

$$\pi^{-}(y_1), \pi^{+}(y_2), \pi^{+}(y_3), \pi^{-}(y_4),$$

 $\pi^{+}(y_1), \pi^{-}(y_2), \pi^{-}(y_3), \pi^{+}(y_4);$

• Class C:

$$\pi^+(y_1), \pi^+(y_2), \pi^-(y_3), \pi^-(y_4),$$

 $\pi^-(y_1), \pi^-(y_2), \pi^+(y_3), \pi^+(y_4).$

Class A:

$$\pi^+(y_1), \pi^-(y_2), \pi^+(y_3), \pi^-(y_4),$$

 $\pi^{-}(y_1), \pi^{+}(y_2), \pi^{-}(y_3), \pi^{+}(y_4);$

Class B:

$$\pi^{-}(y_1), \pi^{+}(y_2), \pi^{+}(y_3), \pi^{-}(y_4),$$

 $\pi^{+}(y_1), \pi^{-}(y_2), \pi^{-}(y_3), \pi^{+}(y_4);$

Class C:

$$\pi^+(y_1), \pi^+(y_2), \pi^-(y_3), \pi^-(y_4),$$

$$\pi^-(y_1), \pi^-(y_2), \pi^+(y_3), \pi^+(y_4);$$

Differences between these classes is visible in $\Delta y := y_3 - y_2$.

Experimental characteristic - comparison with 2σ

Comparison with $pp\to pp\sigma\sigma$ process recently discussed in [3] which gives (via $\sigma\to\pi^+\pi^-$) the same final state.

Figure : Four-pion invariant mass distribution $(M_{4\pi})$ with the ATLAS kinematical cuts (3) for $\sqrt{s}=7$ TeV. The results correspond to the Born level calculations. The dotted line represents the triple Regge exchange mechanism obtained for $\Lambda_{off,E}=1.5$ GeV. The solid line represents the contribution from $\sigma\sigma$ mechanism discussed in [3].

Other characteristics - ATLAS

Other characteristics - p_t

Figure: Distribution in transverse momentum of the four-pion system (P_t) (left panel) and for the transverse momenta of individual particles (protons or pions) (right panel) with the ATLAS cuts (3).

Other characteristics - $M_{4\pi}$

Figure : Four-pion invariant mass distribution $(M_{4\pi})$ with the ATLAS cuts (3) for $\Lambda_{off,E}=1$ GeV (lower curve) and $\Lambda_{off,E}=1.5$ GeV (upper curve).

Other characteristics - y

Figure : Distribution in rapidity of pions and protons for the ATLAS cuts (3).

Other characteristics - $M_{\pi\pi}$

Figure : Dipion invariant mass distribution for the opposite-sign (left panel) and same-sign (right panel) pions with the ATLAS cuts (3) for different values of $\Lambda_{off,E}$.

More details

The model was studied in many aspects. For full details see our paper:

R. Kycia, P. Lebiedowicz, A. Szczurek, and J. Turnau, *Triple Regge exchange mechanisms of four-pion continuum production in the* $pp \rightarrow pp\pi^+\pi^-pi^+\pi^-$ reaction Phys. Rev. D 95, 094020 (2017) https://arxiv.org/abs/1702.07572.

Bibliography

- R. Kycia, P.Lebiedowicz, A. Szczurek, and J. Turnau, Phys. Rev. **D 95**, 094020 (2017) https://arxiv.org/abs/1702.07572.
- P. Lebiedowicz and A. Szczurek, Phys. Rev. **D81** (2010) 036003.
- P. Lebiedowicz, O. Nachtmann, and A. Szczurek, Phys. Rev. **D94** (2016) 034017.
- R. A. Kycia, J. Chwastowski, R. Staszewski, and J. Turnau, arXiv:hep-ph/1411.6035.

Thank You for Your Attention

Backup

Interference effect - Full Phase Space

$$|\mathcal{M}_{\text{no interference}}|^2 = \frac{1}{4} (|\mathcal{M}_{\{3456\}}|^2 + |\mathcal{M}_{\{5436\}}|^2 + \dots) + \dots$$

Pomeron Reggeon influence - Full Phase Space

Figure : Rapidity distribution of pions for $(\mathbb{P}+f_{2\mathbb{R}}) \times (\mathbb{P}+f_{2\mathbb{R}}) \times (\mathbb{P}+f_{2\mathbb{R}}) \times (\mathbb{P}+f_{2\mathbb{R}})$ (upper curve), $\mathbb{P} \times \mathbb{P} \times \mathbb{P}$ (middle curve) and $(\mathbb{P}+f_{2\mathbb{R}}) \times f_{2\mathbb{R}} \times (\mathbb{P}+f_{2\mathbb{R}})$ (lower curve) exchanges for $\Lambda_{off,E}=1.5$ GeV.