## Triple Regge exchange mechanisms of four-pion continuum production in the $p p \rightarrow p p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ reaction (Phys. Rev. D 95094020 (2017)) <br> @ QCD - Old Challenges and New Opportunities

# Radosław A. Kycia ${ }^{1}$ kycia.radoslaw@gmail.com 

 Piotr Lebiedowicz ${ }^{2}$ Piotr.Lebiedowicz@ifj.edu.pl Antoni Szczurek² Antoni.Szczurek@ifj.edu.pl Jacek Turnau${ }^{1}$ The Faculty of Physics, Mathematics and Computer Science T. Kościuszko Cracow University of Technology<br>${ }^{2}$ Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland

September 27, 2017

## Outline

(1) The model $p p \rightarrow p p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
(2) Cross section-predictions
(3) Experimental characteristics

4 Other characteristics - ATLAS
(5) Bibliography

The model $p p \rightarrow p p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

The model


$$
\begin{aligned}
& \mathcal{M}_{\{3456\}}= \\
& A_{\pi p}\left(s_{13}, t_{1}\right) \\
& \frac{F_{\pi}\left(t_{34}\right)}{t_{34}-m_{\pi}^{2}} \\
& A_{\pi \pi}\left(s_{45}, t_{45}\right) \\
& \frac{F_{\pi}\left(t_{56}\right)}{t_{56}-m_{\pi}^{2}} \\
& A_{\pi p}\left(s_{26}, t_{2}\right)
\end{aligned}
$$



+ symmetrization of pions.

$$
\begin{align*}
\mathcal{M} & =\frac{1}{2}\left(\mathcal{M}_{\{3456\}}+\mathcal{M}_{\{5436\}}+\mathcal{M}_{\{3654\}}+\mathcal{M}_{\{5634\}}\right) \\
& +\frac{1}{2}\left(\mathcal{M}_{\{4356\}}+\mathcal{M}_{\{4536\}}+\mathcal{M}_{\{6354\}}+\mathcal{M}_{\{6534\}}\right)  \tag{1}\\
& +\frac{1}{2}\left(\mathcal{M}_{\{3465\}}+\mathcal{M}_{\{5463\}}+\mathcal{M}_{\{3645\}}+\mathcal{M}_{\{5643\}}\right) \\
& +\frac{1}{2}\left(\mathcal{M}_{\{4365\}}+\mathcal{M}_{\{4563\}}+\mathcal{M}_{\{6345\}}+\mathcal{M}_{\{6543\}}\right) .
\end{align*}
$$

$$
\mathcal{M}_{\{3456\}}=A_{\pi p}\left(s_{13}, t_{1}\right) \frac{F_{\pi}\left(t_{34}\right)}{t_{34}-m_{\pi}^{2}} A_{\pi \pi}\left(s_{45}, t_{45}\right) \frac{F_{\pi}\left(t_{56}\right)}{t_{56}-m_{\pi}^{2}} A_{\pi p}\left(s_{26}, t_{2}\right) .
$$

For such a complicated model many choices have to be made, e.g.,: parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?)

- Q: What is the choice of form factor $F_{\pi}\left(t_{i j}\right)$ ? $\mathbf{A}:$ We selected common choice $F_{\pi}(t)=\exp \left(\frac{t-m_{\pi}^{2}}{\Lambda_{o f f, E}^{2}}\right)$, where $\Lambda_{o f f, E}=1-1.5 \mathrm{GeV}^{-2}$ (educated guess from fit functions and upper and lower limits for $\Lambda_{o f f, E}$ ).
- Q: How remove regions where the Regge theory does not apply $\left(s_{i j}<2 \mathrm{GeV}^{2}\right)$ ? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to
include non-Regge region?)

$$
\mathcal{M}_{\{3456\}}=A_{\pi p}\left(s_{13}, t_{1}\right) \frac{F_{\pi}\left(t_{34}\right)}{t_{34}-m_{\pi}^{2}} A_{\pi \pi}\left(s_{45}, t_{45}\right) \frac{F_{\pi}\left(t_{56}\right)}{t_{56}-m_{\pi}^{2}} A_{\pi p}\left(s_{26}, t_{2}\right) .
$$

For such a complicated model many choices have to be made, e.g.,:

- Q: What is exact form of $A_{p \pi}$ and $A_{\pi \pi}$ amplitudes? A: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).

where

and upper and lower limits for $\left.\Lambda_{o f f, E}\right)$.
- Q: How remove regions where the Regge theory does not apply $\left(s_{i j}<2 G e V^{2}\right)$ ? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?). 4 a 4

$$
\mathcal{M}_{\{3456\}}=A_{\pi p}\left(s_{13}, t_{1}\right) \frac{F_{\pi}\left(t_{34}\right)}{t_{34}-m_{\pi}^{2}} A_{\pi \pi}\left(s_{45}, t_{45}\right) \frac{F_{\pi}\left(t_{56}\right)}{t_{56}-m_{\pi}^{2}} A_{\pi p}\left(s_{26}, t_{2}\right)
$$

For such a complicated model many choices have to be made, e.g.,:

- Q: What is exact form of $A_{p \pi}$ and $A_{\pi \pi}$ amplitudes? A: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_{\pi}\left(t_{i j}\right)$ ? A: We selected common choice $F_{\pi}(t)=\exp \left(\frac{t-m_{\pi}^{2}}{\Lambda_{o f f, E}^{2}}\right)$, where $\Lambda_{o f f, E}=1-1.5 \mathrm{GeV}^{-2}$ (educated guess from fit functions and upper and lower limits for $\Lambda_{o f f, E}$ ).

$$
\mathcal{M}_{\{3456\}}=A_{\pi p}\left(s_{13}, t_{1}\right) \frac{F_{\pi}\left(t_{34}\right)}{t_{34}-m_{\pi}^{2}} A_{\pi \pi}\left(s_{45}, t_{45}\right) \frac{F_{\pi}\left(t_{56}\right)}{t_{56}-m_{\pi}^{2}} A_{\pi p}\left(s_{26}, t_{2}\right) .
$$

For such a complicated model many choices have to be made, e.g.,:

- Q: What is exact form of $A_{p \pi}$ and $A_{\pi \pi}$ amplitudes? A: Take parametrization by Lebiedowicz and Sczurek [2], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_{\pi}\left(t_{i j}\right)$ ? A: We selected common choice $F_{\pi}(t)=\exp \left(\frac{t-m_{\pi}^{2}}{\Lambda_{o f f, E}^{2}}\right)$, where
$\Lambda_{o f f, E}=1-1.5 \mathrm{GeV}^{-2}$ (educated guess from fit functions and upper and lower limits for $\Lambda_{o f f, E}$ ).
- Q: How remove regions where the Regge theory does not apply $\left(s_{i j}<2 \mathrm{GeV}^{2}\right)$ ? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

Cross section

## Cross section

We selected the following cuts:

- Full Phase Space:

$$
\begin{equation*}
p_{t, p}<2 \mathrm{GeV}, \quad\left|y_{4 \pi}\right|<6, \tag{2}
\end{equation*}
$$

...and technical cut $M_{4 \pi}<30 \mathrm{GeV}$.
Results were obtained using 'augmented' GenEx Monte Carlo generator [4]

We selected the following cuts:

- Full Phase Space:

$$
\begin{equation*}
p_{t, p}<2 \mathrm{GeV}, \quad\left|y_{4 \pi}\right|<6 \tag{2}
\end{equation*}
$$

- ATLAS:

$$
\begin{equation*}
\left|t_{1}\right|,\left|t_{2}\right|<1 \mathrm{GeV}^{2}, \quad\left|y_{\pi}\right|<2.5, \quad p_{t, \pi}>0.5 \mathrm{GeV} \tag{3}
\end{equation*}
$$

...and technical cut $M_{4 \pi}<30 \mathrm{GeV}$.
Results were obtained using 'augmented' GenEx Monte Carlo generator [4].

We selected the following cuts:

- Full Phase Space:

$$
\begin{equation*}
p_{t, p}<2 \mathrm{GeV}, \quad\left|y_{4 \pi}\right|<6, \tag{2}
\end{equation*}
$$

- ATLAS:

$$
\begin{equation*}
\left|t_{1}\right|,\left|t_{2}\right|<1 \mathrm{GeV}^{2}, \quad\left|y_{\pi}\right|<2.5, \quad p_{t, \pi}>0.5 \mathrm{GeV} \tag{3}
\end{equation*}
$$

...and technical cut $M_{4 \pi}<30 \mathrm{GeV}$.
Results were obtained using 'augmented' GenEx Monte Carlo generator [4].

## Cross sections

Table: The integrated Born level (no absorption effects) cross section for the four-pion continuum production. Results were calculated for two different values of the cut-off parameter $\Lambda_{o f f, E}$.

|  | $\Lambda_{o f f, E}[\mathrm{GeV}]$ | $\sigma @ \sqrt{s}=7 \mathrm{TeV}$ | $\sigma @ \sqrt{s}=13 \mathrm{TeV}$ |
| :--- | :---: | :---: | :---: |
| Full PS | 1.0 | $7.21 \mu \mathrm{~b}$ | $8.97 \mu \mathrm{~b}$ |
| Full PS | 1.5 | $42.86 \mu \mathrm{~b}$ | $51.78 \mu \mathrm{~b}$ |
| ATLAS | 1.0 | 6.91 nb | 7.48 nb |
| ATLAS | 1.5 | 141.43 nb | 154.19 nb |

## Cross sections

Table: The integrated Born level (no absorption effects) cross section for the four-pion continuum production. Results were calculated for two different values of the cut-off parameter $\Lambda_{o f f, E}$.

|  | $\Lambda_{o f f, E}[\mathrm{GeV}]$ | $\sigma @ \sqrt{s}=7 \mathrm{TeV}$ | $\sigma @ \sqrt{s}=13 \mathrm{TeV}$ |
| :--- | :---: | :---: | :---: |
| Full PS | 1.0 | $7.21 \mu \mathrm{~b}$ | $8.97 \mu \mathrm{~b}$ |
| Full PS | 1.5 | $42.86 \mu \mathrm{~b}$ | $51.78 \mu \mathrm{~b}$ |
| ATLAS | 1.0 | 6.91 nb | 7.48 nb |
| ATLAS | 1.5 | 141.43 nb | 154.19 nb |

ALICE cuts practically reject detection possibility.

## Experimental characteristics

## Experimental characteristics - rapidity gap

Focus on the pion subsystem and do:

- Order pion system according to rapidity: $y_{1}<y_{2}<y_{3}<y_{4}$.
- The following classes of ordering are possible:


## Experimental characteristics - rapidity gap

Focus on the pion subsystem and do:

- Order pion system according to rapidity: $y_{1}<y_{2}<y_{3}<y_{4}$.
- The following classes of ordering are possible:
- Class A:

$$
\begin{aligned}
& \pi^{+}\left(y_{1}\right), \pi^{-}\left(y_{2}\right), \pi^{+}\left(y_{3}\right), \pi^{-}\left(y_{4}\right), \\
& \pi^{-}\left(y_{1}\right), \pi^{+}\left(y_{2}\right), \pi^{-}\left(y_{3}\right), \pi^{+}\left(y_{4}\right) ;
\end{aligned}
$$

- Class B:

$$
\begin{aligned}
& \pi^{-}\left(y_{1}\right), \pi^{+}\left(y_{2}\right), \pi^{+}\left(y_{3}\right), \pi^{-}\left(y_{4}\right) \\
& \pi^{+}\left(y_{1}\right), \pi^{-}\left(y_{2}\right), \pi^{-}\left(y_{3}\right), \pi^{+}\left(y_{4}\right)
\end{aligned}
$$

- Class C:

$$
\begin{aligned}
& \pi^{+}\left(y_{1}\right), \pi^{+}\left(y_{2}\right), \pi^{-}\left(y_{3}\right), \pi^{-}\left(y_{4}\right) \\
& \pi^{-}\left(y_{1}\right), \pi^{-}\left(y_{2}\right), \pi^{+}\left(y_{3}\right), \pi^{+}\left(y_{4}\right)
\end{aligned}
$$

## Experimental characteristics - rapidity gap

- Class A:


$$
\begin{aligned}
& \pi^{+}\left(y_{1}\right), \pi^{-}\left(y_{2}\right), \pi^{+}\left(y_{3}\right), \pi^{-}\left(y_{4}\right), \\
& \pi^{-}\left(y_{1}\right), \pi^{+}\left(y_{2}\right), \pi^{-}\left(y_{3}\right), \pi^{+}\left(y_{4}\right)
\end{aligned}
$$

- Class B:

$$
\begin{aligned}
& \pi^{-}\left(y_{1}\right), \pi^{+}\left(y_{2}\right), \pi^{+}\left(y_{3}\right), \pi^{-}\left(y_{4}\right), \\
& \pi^{+}\left(y_{1}\right), \pi^{-}\left(y_{2}\right), \pi^{-}\left(y_{3}\right), \pi^{+}\left(y_{4}\right)
\end{aligned}
$$

- Class C:

$$
\begin{aligned}
& \pi^{+}\left(y_{1}\right), \pi^{+}\left(y_{2}\right), \pi^{-}\left(y_{3}\right), \pi^{-}\left(y_{4}\right), \\
& \pi^{-}\left(y_{1}\right), \pi^{-}\left(y_{2}\right), \pi^{+}\left(y_{3}\right), \pi^{+}\left(y_{4}\right)
\end{aligned}
$$

+ symmetrization


## Experimental characteristics - rapidity gap

Differences between these classes is visible in $\Delta y:=y_{3}-y_{2}$.



## Experimental characteristic - comparison with $2 \sigma$

Comparison with $p p \rightarrow p p \sigma \sigma$ process recently discussed in [3] which gives (via $\sigma \rightarrow \pi^{+} \pi^{-}$) the same final state.


Figure : Four-pion invariant mass distribution $\left(M_{4 \pi}\right)$ with the ATLAS kinematical cuts (3) for $\sqrt{s}=7 \mathrm{TeV}$. The results correspond to the Born level calculations. The dotted line represents the triple Regge exchange mechanism obtained for $\Lambda_{o f f, E}=1.5 \mathrm{GeV}$. The solid line represents the contribution from $\sigma \sigma$ mechanism discussed in [3].

Other characteristics - ATLAS

## Other characteristics - $p_{t}$




Figure: Distribution in transverse momentum of the four-pion system $\left(P_{t}\right)$ (left panel) and for the transverse momenta of individual particles (protons or pions) (right panel) with the ATLAS cuts (3).

## Other characteristics - $M_{4 \pi}$



Figure : Four-pion invariant mass distribution $\left(M_{4 \pi}\right)$ with the ATLAS cuts (3) for $\Lambda_{o f f, E}=1 \mathrm{GeV}$ (lower curve) and $\Lambda_{o f f, E}=1.5 \mathrm{GeV}$ (upper curve).

## Other characteristics - $y$



Figure: Distribution in rapidity of pions and protons for the ATLAS cuts (3).

## Other characteristics $-M_{\pi \pi}$




Figure : Dipion invariant mass distribution for the opposite-sign (left panel) and same-sign (right panel) pions with the ATLAS cuts (3) for different values of $\Lambda_{o f f, E}$.

The model was studied in many aspects. For full details see our paper:
R. Kycia, P. Lebiedowicz, A. Szczurek, and J. Turnau, Triple Regge exchange mechanisms of four-pion continuum production in the $p p \rightarrow p p \pi^{+} \pi^{-} p i^{+} \pi^{-}$reaction Phys. Rev. D 95, 094020 (2017) https://arxiv.org/abs/1702.07572.
R. Kycia, P.Lebiedowicz, A. Szczurek, and J. Turnau, Phys. Rev. D 95, 094020 (2017) https://arxiv.org/abs/1702.07572.
R P. Lebiedowicz and A. Szczurek, Phys. Rev. D81 (2010) 036003.

䍰 P. Lebiedowicz, O. Nachtmann, and A. Szczurek, Phys. Rev. D94 (2016) 034017.

囯 R. A. Kycia, J. Chwastowski, R. Staszewski, and J. Turnau, arXiv:hep-ph/1411.6035.

Thank You for Your Attention

## Backup

## Interference effect - Full Phase Space

$$
\left|\mathcal{M}_{\text {no interference }}\right|^{2}=\frac{1}{4}\left(\left|\mathcal{M}_{\{3456\}}\right|^{2}+\left|\mathcal{M}_{\{5436\}}\right|^{2}+\ldots\right)+\ldots
$$




Figure: Rapidity distribution of pions for $\left(\mathbb{P}+f_{2 \mathbb{R}}\right) \times\left(\mathbb{P}+f_{2 \mathbb{R}}\right) \times\left(\mathbb{P}+f_{2 \mathbb{R}}\right)$ (upper curve), $\mathbb{P} \times \mathbb{P} \times \mathbb{P}($ middle curve) and $\left(\mathbb{P}+f_{2 \mathbb{R}}\right) \times f_{2 \mathbb{R}} \times\left(\mathbb{P}+f_{2 \mathbb{R}}\right)$ (lower curve) exchanges for $\Lambda_{o f f, E}=1.5 \mathrm{GeV}$.

