## Elastic pp scattering at the LCH: the non-exponential low-|t| diffraction cone and the energy dependence of the slope

István Szanyi
Uzhgorod National University
In collaboration with L. Jenkovszky and N. Bence


WE-Heraeus Physics School, 24-30 September, 2017, Bad Honnef

## Outline

- The non-exponential low- $|\mathrm{t}|$ diffraction cone.
- Analysis of the main forward $p p$ and $p \bar{p}$ observables (elastic, inelastic and total cross sections, $\rho$-parameter and elastic slope) based on a dipole model.
- Unitarization of the dipole Pomeron, its application and predictions for the future forward data.


## Structures of high-energy pp diffraction cone

- "break" - deviation from the purely exponential form of the diffraction cone near $|\mathrm{t}| \approx 0.1 \mathrm{GeV}^{2}$ - i.e. it changes its slope;
- related to the two-pion exchange recquired by t-channel unitarity - corresponds to the nucleon "atmosphere";
- "dip" - diffraction minimum moves slowly (logarithmically) with $s$ towards smaller values of $|t|$;
- related to s-channel unitarity or absorption corrections to the scattering amplitude


Shematic view of the pp elastic differential cross section in $t$ and the impact parameter amplitude in b .
L. Jenkovszky: Phenomenology of Elastic Hadron Diffraction. Fortschritte der Physik, 84 (1986) 791.

$$
\frac{d \sigma(s, t)}{d t}=\frac{\pi}{s^{2}}|A(s, t)|^{2} \leftrightarrow
$$

$$
h(s, b)=\frac{1}{s} \int_{0}^{\infty} A(s, t) J_{0}(b, \sqrt{-t}) \sqrt{-t} d \sqrt{-t}
$$

## The movement of the "dip"



ISR elastic pp differential cross section measurements

$$
\text { ISR: }\left|\mathrm{t}_{\mathrm{dip}}\right| \approx 1.4 \mathrm{GeV}^{2}
$$

arXiv:1306.0452


LHC TOTEM elastic pp differential cross section measurements

$$
\mathrm{LHC}:\left|\mathrm{t}_{\mathrm{dip}}\right| \approx 0.5 \mathrm{GeV}^{2}
$$

T. Sýkora: Total, elastic and inelastic p-p cross sections at the LHC. ICHEP 2016 (2016, Chicago)

## Correlation between the "break" and "dip"



$$
R(t)=\frac{d \sigma(t) / d t-r e f}{r e f}
$$

$$
r e f=A e^{B t}
$$



$\mathrm{R}(\mathrm{t})$ calculated for low- $|\mathrm{t}| \operatorname{ISR} 52,8$ GeV , TOTEM 8 and 13 TeV data.
M. Deile: Elastic and Total Cross-Section Measurements by TOTEM. EDS Blois 2017, (2017, Prague).
L. Jenkovszky, I. Szanyi: Structures in the diffraction cone: the "break" and "dip" in high-energy proton-proton scattering (International Journal of Modern Physics A, Vol. 32, No. 22 (2017) 1750116) - arXiv:1705.04880

## A dipole model

- Scattering amplitude:

$$
A(s, t)_{p p}^{\bar{p} p}=A_{P}(s, t)+A_{f}(s, t) \pm A_{\omega}(s, t)
$$

## Pomeron term:

## Reggeon terms:

$$
\begin{aligned}
A_{P}(s, t)=i \frac{a_{P} S}{b_{P} S_{0 P}}\left[r_{1}^{2}(s) e^{r_{1}^{2}(s)\left[\alpha_{P}-1\right]}-\varepsilon_{P} r_{2}^{2}(s) e^{r_{2}^{2}(s)\left[\alpha_{P}-1\right]}\right] & A_{f}(s, t)
\end{aligned}=a_{f} e^{b_{f} t} e^{-\frac{i \pi \alpha_{f}(t)}{2}}\left(s / s_{0}\right)^{\alpha_{f}(t)} .
$$

$$
\begin{array}{ll}
r_{1}^{2}(s)=b_{P}+L-i \pi / 2 & \\
r_{2}^{2}(s)=L-i \pi / 2 & L \equiv \ln \left(s / s_{0 P}\right)
\end{array}
$$

## Reggeon trajectories:

$$
\begin{aligned}
& \alpha_{f}(t)=0.703+0.84 t \\
& \alpha_{\omega}(t)=0.435+0.93 t
\end{aligned}
$$

$$
\alpha_{P} \equiv \alpha_{P}(t)=1+\delta_{P}+\alpha_{1 P} t-\alpha_{2 P}\left(\sqrt{4 m_{\pi}^{2}-t}-2 m_{\pi}\right)
$$

## Elastic, inelastic and total cross sections



Fitted $p p$ and $p \bar{p}$ total cross sections and calculated elastic and inelastic cross sections.

$$
\sigma_{t o t}(s)=\frac{4 \pi}{s} \operatorname{Im} A(s, t=0)
$$

$$
\sigma_{e l}(s)=\int_{t_{\min }}^{t_{\max }} \frac{d \sigma(s, t)}{d t} d t
$$

$$
\frac{d \sigma}{d t}(s, t)=\frac{\pi}{s^{2}}|A(s, t)|^{2}
$$

$$
\sigma_{i n}(s)=\sigma_{t o t}(s)-\sigma_{e l}(s)
$$

| $a_{P}$ | $306 \pm 0.48$ | $a_{f}$ | $-17 \pm 0.055$ |
| :---: | :---: | :---: | :---: |
| $b_{P}$ | $9.04 \pm 0.021$ | $b_{f}$ | $4.54 \pm 0.061$ |
| $\delta_{P}$ | $0.0451 \pm 0.00011$ | $a_{\omega}$ | $9.79 \pm 0.094$ |
| $\alpha_{1 P}$ | $0.426 \pm 0.0013$ | $b_{\omega}$ | $8.23 \pm 0.57$ |
| $\alpha_{2 P}$ | $0.0082 \pm 0.001$ | $s_{0}$ | 1 (fixed) |
| $\varepsilon_{P}$ | 0 (fixed) | $s_{0 P}$ | 100 (fixed) |

Values of fitted parameters.

## Ratios of $\sigma_{e l} / \sigma_{t o t}, \sigma_{i n} / \sigma_{t o t}$ and $\sigma_{e l} / \sigma_{\text {in }}$



## $\rho$-paramater



Fitted $p p$ and $p \bar{p} \rho$-paramater

## New elastic slope measurements



The elastic slope data with preliminary TOTEM results.


Calculated $p p$ and $p \bar{p}$ elastic slope.
M. Deile: Elastic and Total Cross-Section Measurements by TOTEM. EDS Blois 2017 ( Prague, 2017).

## Unitarization

- Unitarized scattering amplitude:

$$
T(\rho, s)=\frac{u(\rho, s)}{1-i u(\rho, s)} \longrightarrow T(s, t)=q^{2} \int_{0}^{\infty} \frac{u(\rho, s)}{1-i u(\rho, s)} J_{0}(\rho \sqrt{-t}) d \rho^{2}
$$

$$
\text { ( } \rho \text { - impact parameter; } q \text { - momentum in center-of-mass frame) }
$$

- Using $x=\frac{\rho^{2}}{4 \alpha^{\prime} L}$ the unitarized formulas for the forward measurables:

$$
\begin{array}{ccc}
\begin{array}{cc}
\sigma_{t o t}=\frac{4 \pi \alpha^{\prime}}{\lambda} \ln (1+g)(1+\lambda L) & \\
\sigma_{e l}=\frac{4 \pi \alpha^{\prime}}{\lambda} \frac{g}{1+g}(1+\lambda L) & \\
\hline \rho=\frac{\operatorname{Re} T(s, 0)}{\operatorname{ImT}(s, 0)}=\frac{\pi \lambda}{2(1+\lambda L)} & \sigma_{t o t}=\frac{4 \pi \alpha^{\prime}}{\lambda}\left(\ln (1+g)-\frac{g}{1+g}\right)(1+\lambda L) \\
\sigma_{t o t} & 1-\frac{\sigma_{e l}}{(1+g) \ln (1+g)}
\end{array} \quad B=\frac{2 \alpha^{\prime}}{\lambda} \frac{\Sigma}{\ln (1+g)}(1+\lambda L) \\
\lambda=\left(1-\epsilon_{P}\right) / b_{P} & L=\ln \left(s / s_{0 P}\right) & g(s)=g_{01}\left(s / s_{01}\right)^{\varepsilon_{1}}+g_{02}\left(s / s_{02}\right)^{\varepsilon_{2}} \\
& \Sigma=\int_{0}^{\infty} \frac{g e^{-x} x d x}{1+g e^{-x}}
\end{array}
$$

## The energy dependence of the $g$ parameter



| $g(s)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g_{01}$ | 0.348 | $\epsilon_{1}$ | 0.0457 | $s_{01}$ | 1 |
| $g_{02}$ | 0.00135 | $\epsilon_{2}$ | 0.328 | $s_{02}$ | 100 |

Fitted parameters of $g(s)$ using $p p$ and $p \bar{p}$ data.

| $g(s)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g_{01}$ | 0.412 | $\epsilon_{1}$ | 0.0228 | $s_{01}$ | 1 |
| $g_{02}$ | $1.53 \times 10^{-5}$ | $\epsilon_{2}$ | 0.735 | $s_{02}$ | 100 |

Fitted parameters of $g(s)$ using only the $p p$ data.

Energy dependence of the $g$ parameter.

## The unitarized slope



## Application of the unitarized amplitude



Predicted elastic slope at very high energies using the unitarization procedure.


Predicted total, elastic and inelastic cross section at very high energies using the unitarization procedure.

## Predictions

| $\sqrt{s}, \mathrm{TeV}$ | 0.9 | 2.76 | 3 | 4 | 13 | 14 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $g$ | 0.574 | 0.65 | 0.66 | 0.70 | 1.2 | 1.3 | 9 | 11 | 12 |
| $\sigma_{\text {tot }}(\mathrm{mb})$ | 65.2 | 74.4 | 75.6 | 80.0 | 123 | 128 | 376 | 401 | 424 |
| $\sigma e l(\mathrm{mb})$ | 12.7 | 15.9 | 16.3 | 18.0 | 38.2 | 41.0 | 229 | 252 | 272 |
| oin $(\mathrm{mb})$ | 52.4 | 58.5 | 59.3 | 62.0 | 85.0 | 87.3 | 146 | 149 | 151 |
| $\sigma_{\text {el }} / \sigma_{\text {tot }}$ | 0.196 | 0.213 | 0.215 | 0.224 | 0.310 | 0.319 | 0.610 | 0.627 | 0.643 |
| $B\left(\mathrm{GeV}^{-2}\right)$ | 16.4 | 18.3 | 18.5 | 19.1 | 21.3 | 21.6 | 33.9 | 35.2 | 36.5 |

Predicted values of the forward measurables at different energies using the unitarization procedure in case of $g_{1}$.

| $\sqrt{s}, \mathrm{TeV}$ | 0.9 | 2.76 | 3 | 4 | 13 | 14 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $g$ | 0.674 | 0.772 | 0.781 | 0.812 | 0.977 | 0.990 | 1.464 | 1.513 | 1.560 |
| $\sigma_{\text {tot }}(\mathrm{mb})$ | 66.9 | 80.9 | 82.0 | 86.2 | 107 | 108 | 158 | 163 | 167 |
| $\sigma e l(\mathrm{mb})$ | 14.6 | 19.3 | 19.7 | 21.2 | 29.4 | 30.1 | 54.0 | 56.5 | 58.8 |
| Gin $(\mathrm{mb})$ | 52.3 | 61.6 | 62.3 | 65.0 | 77.6 | 78.5 | 104 | 106 | 108 |
| $\sigma_{\text {el }} / \sigma_{\text {tot }}$ | 0.218 | 0.238 | 0.24 | 0.246 | 0.274 | 0.277 | 0.341 | 0.313 | 0.351 |
| $B\left(\mathrm{GeV}^{-2}\right)$ | 16.0 | 17.9 | 18.1 | 18.6 | 20.8 | 20.94 | 24.8 | 25.1 | 25.4 |

Predicted values of the forward measurables at different energies using the unitarization procedure in case of $g_{2}$.

Thank you for your attention!

