Investigation into the particle identification potential of the CBM Silicon Tracking System @FAIR

Hanna Malygina ${ }^{1,2,3}$, Maksym Teklishyn ${ }^{3,4}$
${ }^{1}$ GSI (Darmstadt), ${ }^{2}$ Goete University (Frankfurt), ${ }^{3}$ KINR (Kyiv), ${ }^{4}$ FAIR (Darmstadt),

QCD WE-Heraus Physics School
September 2017, Bad Honnef, Germany

Compressed Baryonic Matter experiment @ FAIR

- QCD-diagram at moderate temperature and high density: bulk and rare probes;
- Au + Au SIS100: $2-11 \mathrm{AGeV}, 10^{5}-10^{7}$ interactions/s;
- up to 700 charged particles per central collision;
- no trigger;
- first beam in ≈ 2022.

Silicon Tracking System (STS)

$\mathrm{Au}+\mathrm{Au}$ central collision at 25 AGeV

Design:

Task:

- reconstruct tracks:
high efficiency > 95%,
high momentum resolution $<2 \%$;
- cope with hit rates $20 \mathrm{MHz} / \mathrm{cm}^{2}$.

Requirements:

- low material budget $\sim 1 \% \mathrm{X}_{0}$ /layer;
- high granularity;
- radiation hard: $10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$.
- 8 tracking stations in a 1 T dipole magnet;
- double-sided micro-strip Si sensor: $\sim 300 \mu \mathrm{~m}$ thickness, $58 \mu \mathrm{~m}$ strip pitch, 7.5° stereo-angle;
- self-triggered fast read-out electronics placed outside of acceptance.

$\Delta E / E$ technique

- $\Delta E / E$: well-known technique used in nuclear/particle physics.
- Widely implemented as $\Delta E / E$: thin reference + thick absorber.
- Can be naturally implemented in tracking system as $\frac{d E / d x}{p / q}$:
- Sensitive to the charge ($\propto Z^{2}$) unlike Time-Of-Flight:
- allows to separate particles with $m / Z=$ const: $d,(\Lambda){ }^{4} \mathrm{He},(\Lambda){ }^{6} \mathrm{Li}$.
- Good separation for low momenta.

Implementation $\Delta E / p$ in other experiments

ALICE

$\Delta E / p$ inner tracking system, time projection chamber; ≤ 4 layers per track.
M. Ivanov, 2013; P. Braun-Munzinger, 2016

CMS

$\Delta E / p$ in silicon tracker;
≤ 20 layers per track.
L. Quertenmont, 2011

ATLAS

$\Delta E / p$ in silicon tracker, pixels; ≤ 4 layers per track.

ATLAS Note, 2011

Motivation for the STS PID

Several PID sub-systems are planned in CBM:

- Ring Image Čerenkov detector: for electron separation mainly;
- Transition Radiation Detector: $e^{ \pm} / \pi^{ \pm}$discrimination;
- Time-of-Flight: separation of heavy hadrons and (hyper-)nuclei.

Advantages of the STS PID:

- works at highest CBM interaction rates: 10 MHz ;
- largest acceptance (after MVD): the only chance for low momentum particles with $0.1 \mathrm{GeV} / c<p<0.5 \mathrm{GeV} / c$;
- closest to the target after MVD (first station at $\approx 10 \mathrm{~cm}$): the only chance for the short-lived particles $\gamma c \tau \sim 1 . .100 \mathrm{~cm}$.
Some constraints expected for the STS:
- 5-bit ADC per r/o channel;
- limited dynamic range per channel ($15 \mathrm{fC}=93.6 \mathrm{ke}^{-}$).

$\Delta E / \Delta x$ measurement in the STS

- Crossing angle affects $\Delta x=300 \mu \mathrm{~m} / \cos (\theta)$ - is taken from reconstructed track parameters.
- ΔE in each station is measured but distorted by several effects (noise, threshold, ...).

Realistic detector response model to simulate the measured energy loss:

- non-uniform energy loss of particle within sensor thickness (the Urban method);
- diffusion of the created charge carriers;
- influence of the magnetic field (the Lorentz shift);
- cross-talk via interstrip capacitances;
- noise (150% of simulated ENC for chip + routing lines + sensor) and threshold (3ENC).

$\Delta E / \Delta x$ measurement in the STS

Charged particle crosses from 3 to 8 stations to be registered: several measurements of $\Delta E / \Delta x$ for one particle equivalent number, "mean" value, to compare vectors $\Delta E / \Delta x$ measurements for different particles is required.

Energy loss in $300 \mu \mathrm{~m}$ of Si $p(\Delta E)$:

- can be partially expressed as the Landau distribution;
- mean is not equal to most probable value $\langle\Delta E\rangle \neq \Delta_{p}$;
- $\Delta_{p} / \Delta x=f(\Delta x)$;
- long tail towards higher ΔE.

Properties of mean values of distributions

Arithmetic mean

$\bar{x}_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
diverges for the Landau distribution.

For a set $x_{1} \ldots \leq x_{i} \ldots \leq x_{n}$, median

$$
\bar{x}_{\mathrm{M}}= \begin{cases}x_{(n-1) / 2} & n \text { is even } \\ 1 / 2 \cdot\left(x_{n / 2}+x_{n / 2+1}\right) & n \text { is odd }\end{cases}
$$

Mean estimation chosen for the STS

As a first approach:

- double-sided sensors - two clusters for each hit two measurements of $\Delta E / \Delta x$ for each hit;
- strips with the charge $>15 \mathrm{fC}$ (dynamic range of ADC) go to the last ADC channel - cluster with overflow;
- clusters with overflow do not give precise measurement of ΔE excluded from analysis;
- average over two clusters in a hit;
- median over all hits in a track.

Test of the method

10^{5} of each particle generated for $\mathrm{Au}+\mathrm{Au} @ 10 \mathrm{AGeV}$:

- perfect separation between single- and double-charged particles for the whole momentum range;
- separation between $\mathrm{p} / \mathrm{d} / \mathrm{t}$ up to $2.5 \mathrm{GeV} / \mathrm{c}$.

Separation $\mathrm{m} / \mathrm{q}=$ const, 10 AGeV

Integral over the whole momentum range

Separation of other particles, 10 AGeV
$\mathrm{dE} / \mathrm{dx}$ for momentum range: 1.4..1.6 GeV/c

Kaon separation, 10 AGeV

$\mathrm{dE} / \mathrm{dx}$ for momentum range: $0.4 . .0 .6 \mathrm{GeV} / \mathrm{c}$

- Kaon separation works up to $0.5 \mathrm{GeV} / \mathrm{c}$.

Efficiency of $\mathrm{dE} / \mathrm{dx}$ calculation for fragments, 10 AGeV

- Reason for inefficiency: high fraction of clusters with overflow for low-momentum fragments.
- Efficiency for lighter particles 100.0 \%.

Using $\mathrm{dE} / \mathrm{dx}$ technique for hypernuclei reconstruction

5 M central $\mathrm{Au}+\mathrm{Au}$ events at 10 AGeV .

Time-Of-Flight

Time-Of-Flight + STS

Maksym Zyzak, louri Vassiliev

Summary and outlook

- STS is promising tool for PID of single- and double charged particles: perfect separation for the whole momentum range.
- Efficiency of the $\mathrm{dE} / \mathrm{dx}$ calculation is 96.6% for He 4 and 99.99% for t and lighter particles.
- STS involving into PID increase S / B for ${ }_{\Lambda}^{3} H$ in 50 times(!) in comparison with TOF only;
- STS can be involved in PID for $\mathrm{K} / \mathrm{p} / \mathrm{d} / \mathrm{t}$ for low momenta up to 2.5 .. $3 \mathrm{GeV} / c$.
- other estimation for "mean" to be studied;
- develop treatment for clusters with overflow to increase efficiency for low-momentum fragments;
- test for low-momentum particles ($<1 \mathrm{GeV} / c$) and for short-lived particles.

Back-up slides

Other experiments explore QCD diagramm

After upgrade in 2018, $\mathrm{Pb}+\mathrm{Pb}$:
ALICE and CMS max rate: 50 kHz .
Mostly limited by readout electronics.

Particle identification with PID detectors

Central event: 40 (TF) + 7 (PF) ms/core with MVD!
(2 faster w/o MVD)

Particle yields in CBM

Expected particle yields Au+Au @ 6, 10 AGeV

$\begin{aligned} & \text { Particle } \\ & \text { (mass } \\ & {\mathrm{MeV} / \mathrm{c}^{2} \text {) }}^{\text {and }} \end{aligned}$	$\begin{gathered} \text { Multi- } \\ \text { plicity } \\ 6 \mathrm{AGeV} \end{gathered}$		decay mode	BR	ε (\%)	$\begin{gathered} \text { yield } \\ \left(\mathrm{S}^{-1}\right) \\ 6 \mathrm{AGeV} \end{gathered}$	$\left.\begin{array}{\|c} \text { yield } \\ \left(\mathrm{s}^{-1}\right) \\ 10 \mathrm{AGeV} \end{array} \right\rvert\,$	yield in 10 weeks 6 AGeV	yield in 10 weeks 10 AGeV	$\begin{gathered} \text { IR } \\ \mathrm{MHz} \end{gathered}$
$\bar{\Lambda}$ (1115)	4.6-10-4	0.034	$\overline{\mathrm{p}} \mathrm{m}^{+}$	0.64	11	1.1	81.3	6.6.10 ${ }^{6}$	2.2.108	10
三- (1321)	0.054	0.222	$\wedge \pi$	1	6	3.2.10 ${ }^{3}$	1.3.104	$1.9 \cdot 10^{10}$	7.8.1010	10
$\Xi^{+}(1321)$	3.0-10-5	$5.4 \cdot 10^{-4}$	$\bar{\wedge} \pi^{+}$	1	3.3	$9.9 \cdot 10^{-1}$	17.8	$5.9 \cdot 10^{6}$	$1.1 \cdot 10^{8}$	10
Ω (1672)	$5.8 \cdot 10^{-4}$	$5.6 \cdot 10^{-3}$	へK	0.68	5	17	164	$1.0 \cdot 10^{8}$	$9.6 \cdot 10^{8}$	10
Ω^{+}(1672)	-	$7 \cdot 10^{-5}$	$\bar{\wedge} \mathrm{K}^{+}$	0.68	3	-	0.86	0	$5.2 \cdot 10^{6}$	10
${ }^{3}{ }_{\wedge} \mathrm{H}(2993)$	4.2.10-2	3.8.10-2	${ }^{3} \mathrm{He} \mathrm{\pi}$	0.25	19.2	$2 \cdot 10^{3}$	1.8.10 ${ }^{3}$	1.2.10 ${ }^{10}$	$1.1 \cdot 10^{10}$	10
${ }_{\wedge}^{4} \mathrm{He}$ (3930)	$2.4 \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$	${ }^{3} \mathrm{Hep} \mathrm{\pi}{ }^{-}$	0.32	14.7	110	87	$6.6 \cdot 10^{8}$	$5.2 \cdot 10^{8}$	10
${ }^{5}{ }_{\text {s }} \mathrm{He}(5047)$		$5.0 \cdot 10^{-6}$	${ }^{3} \mathrm{He} 2 \mathrm{p} 2 \pi$	0.01	1		$5 \cdot 10^{-3}$		$3 \cdot 10^{4}$	10
${ }_{{ }_{\text {As }}} \mathrm{He}(5986)$		$1.0 \cdot 10^{-7}$	${ }^{4} \mathrm{He} 2 \mathrm{p} 2 \pi$	0.01	1		$1 \cdot 10^{-4}$		600	10

PDF of the energy losses

- Energy losses obey Landau-Vavilov distribution:

$$
p \propto \varphi\left(\Delta E, \Delta_{p}, \xi\right) \otimes e^{-\frac{\Delta E^{2}}{2 \delta_{2}}}
$$

where

$$
\begin{aligned}
& \Delta_{p}=\xi \times\left(\ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{I}+\ln \frac{\xi}{I}+0.2-\beta^{2}\right), \\
& \xi=17.8 \times Z^{2} x[\mu \mathrm{~m}] / \beta^{2} \mathrm{eV}, \\
& \delta_{2}=\frac{8}{3} \xi \sum_{i} I_{i} f_{i} \ln \frac{2 m_{e} \beta}{I_{i}}, \text { for thin sensors }(\lesssim 300 \mu \mathrm{~m}) \sqrt{\delta_{2}} \sim \xi
\end{aligned}
$$

- The Landau distribution:

$$
\varphi(x)=\frac{1}{\pi} \int_{0}^{\infty} e^{-t \log t-x t} \sin (\pi t) d t, \quad x=\frac{\Delta E-\Delta_{p}}{\xi}
$$

S. Meroli, D. Passeri and L. Servoli, JINST 6 (2011) P06013.
S. Hancock, F. James, J. Movchet, P. G. Rancoita and L. Van Rossum, Phys. Rev. A 28 (1983) 615 K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38 (2014) 090001
H. Bichsel, Rev. Mod. Phys. 60 (1988) 663.

Generalised mean

- Power mean or Hödler mean:

$$
\bar{x}(m)=\left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{m}\right)^{\frac{1}{m}}
$$

- various of mean can be obtained:

$$
m \rightarrow \infty \text { maximum of } x_{i}
$$

$$
m=2 \text { quadratic mean }
$$

$$
m=1 \text { arithmetic mean }
$$

$$
m \rightarrow 0 \text { geometric mean }
$$

$$
m=-1 \text { harmonic mean }
$$

$$
m \rightarrow-\infty \text { minimum of } x_{i}
$$

- f-mean as more general approach:

$$
\bar{x}=f^{-1}\left(\frac{1}{n} \cdot \sum_{i=1}^{n} f\left(x_{i}\right)\right)
$$

- Weighted mean

$$
\bar{x}=\frac{\sum_{i=1}^{n} w_{i} \cdot x_{i}}{\sum_{i=1}^{n} w_{i}}
$$

- Truncated mean uses a part of a sub set

$$
x_{1}, \cdots x_{k}, x_{k+1}, \cdots x_{k+l}, \cdots x_{n}
$$

- robust against outliers
- largest and smallest values are ignored
- Interquartile mean
- Median

$$
\bar{x}=\frac{2}{n} \sum_{i=(n / 4)+1}^{3 n / 4} x_{i}
$$

Mean and median estimation

number of measurements $n=8$

Landau

Gaussian

Landau \& Gaussian

- 10^{7} randomly generated numbers
- Position parameters $\mu=5$, scale parameters $\sigma=\xi=1$
- $p_{\bar{x}, n}(\bar{x})$ differs a lot for Gaussian and Landau
- higher orders m of $p_{\bar{x}, m}(\bar{x})$ are more sensitive to larger values of x_{i}
- median and harmonic mean appear to be universally reliable
- minimal value gives the sharpest PDF for Landau

Mean and median estimation

Landau \& Gaussian

2 entries

8 entries

64 entries

- 10^{7} randomly generated numbers, $n=2,8,64$
- Landau most probable value $\mu=5$, scale parameters $\sigma=\xi=1$
- $p_{\bar{x}, m}(\bar{x})$ highly depend on the number of measurement n
- there may be an optimum for m depending on n
- median and harmonic mean still are universally reliable
- minimal value shifts and smears on higher n

Mean estimation in other silicon trackers

ALICE inner tracker:

4 measurements per track.
Truncated mean for each track:

- 4 measurements: average of lowest 2 points;

CMS inner tracker:

- 3 measurements: a weighted sum of the lowest ($w=1$) and the second-lowest points ($w=1 / 2$).
G. Contin, 2011

ATLAS inner tracker:

≤ 7 measurements per track, mostly 3 .
Truncated mean for each track:

- 1-2 measurements: average over all points;
≤ 20 measurements per track.
Several methods:
- 60\% of lowest measurements;
- (favourite one) Harmonic-2:

$$
\bar{x}=\left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{-2}\right)^{-\frac{1}{2}} .
$$

L. Quertenmont, 2011

- 3-4 measurements: 1 highest point excluded;
- 5-... measurements: 2 highest excluded.

Input

- From thermal distribution of $\mathrm{Au}+\mathrm{Au}$ at 2 AGeV and 10 AGeV generated:
- particles: protons, pions, kaons, positrons, muons;
- fragments: deuterons, tritons, He3, He4.
- The realistic digitizer for STS with: 1500 e noise and 4500 e threshold (STS-XYTER team promises <1000 e noise).
- Only STS in recostruction.

Limitation from STS-XYTER:

- dynamic range of the STS-XYTER chip is $\sim 15 \mathrm{fC}=93750 \mathrm{e} \approx 4-5$ MIPs: digis with the charge $>15 \mathrm{fC}$ go to ADC channel \#31;
- charge resolution: 5-bit ADC corresponds to $3000 \mathrm{e} / \mathrm{ADC}$.

$\mathrm{dE} / \mathrm{dx}$ calculation in STS

1. reconstruct a track;
2. remove clusters, which have an overflow: at least one digi in a cluster has an amplitude 31 ADC ;
3. for each remaining cluster dE is defined as a total cluster charge;
4. to estimate dx :
4.1 track is assumed to be a straight line between the current hit and the hit in the next station;
4.2 track inclination is calculated;
4.3 dx is calculated from the track inclination.
5. take median value of $\mathrm{dE} / \mathrm{dx}$ over remaining clusters.

Deutrons

Average over all clusters in track

Deutrons

All particle and fragments in the same amount, 2 AGeV

All particle and fragments in the same amount, 2 AGeV

- perfect separation between single- and double-charged particles for the whole momentum range;
- separation between $\mathrm{p} / \mathrm{d} / \mathrm{t}$ up to $2.5 / \mathrm{c}$ GeV.

Separation m/q=const, 2 AGeV

Integral over the whole momentum range

Separation p/d/t, 2 AGeV

$\mathrm{dE} / \mathrm{dx}$ for momentum range: $2.0 . .2 .2 \mathrm{GeV} / \mathrm{c}$

Efficiency of dE/dx calculation for fragments, 2 AGeV

- Efficiency $\stackrel{\text { def }}{=}$ (tracks with calculated $\mathrm{dE} / \mathrm{dx}$) / (reconstructed tracks).
- Inefficiency due to clusters with overflow for heavy low-momentum particles.
- For lighter particles, efficiency $=1$.

Fraction of clusters with overflow: pions vs $\mathrm{He} 4,2 \mathrm{AGeV}$

Pions

He4

All particle and fragments in the same amount, 10 AGeV

Using $\mathrm{dE} / \mathrm{dx}$ technique for hypernuclei reconstruction

Background: 5×10^{6} central $\mathrm{Au}+\mathrm{Au}$ events at 10 AGeV generated with UrQMD.
Signal: ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He} \pi^{-}$with the thermal momentum distribution from $\mathrm{Au}+\mathrm{Au}$ collisions at 10 AGeV normalised to 5×10^{6} central $\mathrm{Au}+\mathrm{Au}$ events. $c \tau$ of ${ }_{\Lambda}^{3} H$ is 5 cm ;
Signal - Gaussian, background - parabola;
S / B is calculating in $\pm 2 \sigma$;
Background mainly p misidentified as He 3 .

Using $\mathrm{dE} / \mathrm{dx}$ technique for hypernuclei reconstruction

Background: 5×10^{6} central $\mathrm{Au}+\mathrm{Au}$ events at 10 AGeV generated with UrQMD.
Signal: ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He} \pi^{-}$with the thermal momentum distribution from $\mathrm{Au}+\mathrm{Au}$ collisions at 10 AGeV normalised to 5×10^{6} central $\mathrm{Au}+\mathrm{Au}$ events.

Using $\mathrm{dE} / \mathrm{dx}$ technique for hypernuclei reconstruction

Background: 5×10^{6} central $\mathrm{Au}+\mathrm{Au}$ events at 10 AGeV generated with UrQMD.
Signal: ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He} \pi^{-}$with the thermal momentum distribution from $\mathrm{Au}+\mathrm{Au}$ collisions at 10 AGeV normalised to 5×10^{6} central $\mathrm{Au}+\mathrm{Au}$ events.

