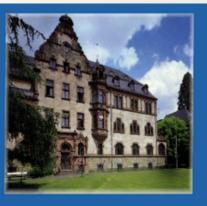


Study of charmonium production using decays to hadrons with the LHCb

Andrii Usachov


Université Paris-Sud / Laboratoire de l'Accélérateur Linéaire Orsay, France

WE-Heraeus Physics School

QCD – Old Challenges and New Opportunities

Bad Honnef, Sept 24-30, 2017

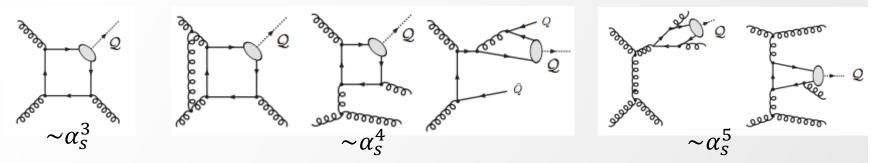
Charmonia production in the NRQCD

- 1. prompt hadroproduction
- 2. from b-decays, inclusive
- 3. exclusive production
- NRQCD. Major assumptions:
 - 1. Factorization.
 - Charmonia production includes two **independent** processes:
 - $c\bar{c}$ pair creation -> short distance process
 - treated **perturbatively**
 - *independent* hadronisation -> long distance matrix elements (LDME)

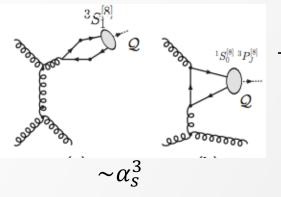
- non-perturbative

2. Universality.

LDME are the same for both prompt production and production in bdecays


- 3. Heavy quark spin symmetry (HQSS)
- Other theoretical approaches:
 - **Color evaporation model (CEM)**
 - Fragmentation
 - **kt factorization**

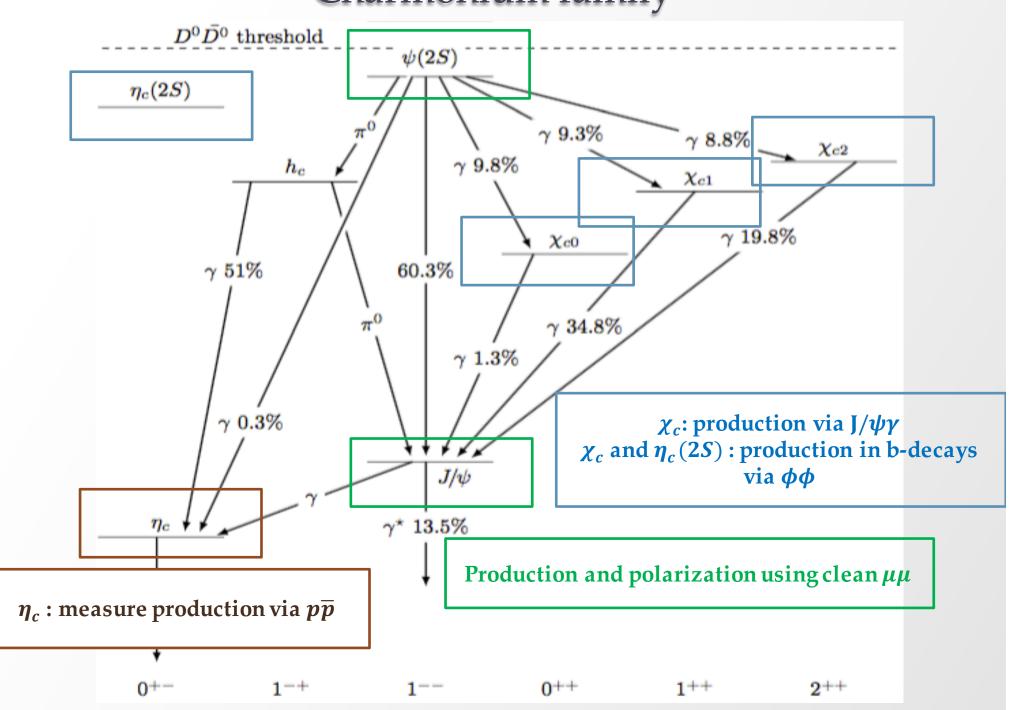
NRQCD is the most powerful tool to predict charmonia production²


Experimentally can be separated by pseudo- decay time $t_z = \frac{z_{SV} - z_{PV}}{c}$

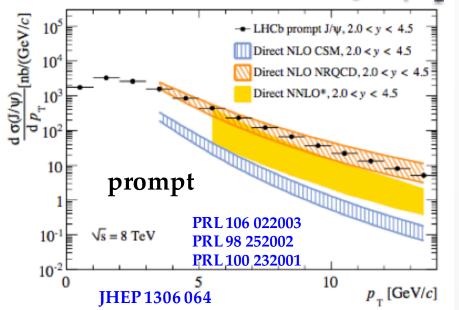
Charmonia production in the NRQCD

- Cross section factorizes: $d\sigma_{A+B\to H+X} = \sum_n d\sigma_{A+B\to Q\overline{Q}(n)+X} \times \langle \mathcal{O}^H(n) \rangle$
- 2 production mechanisms:
 - Color Singlet (CS)

- Color Octet (CO)



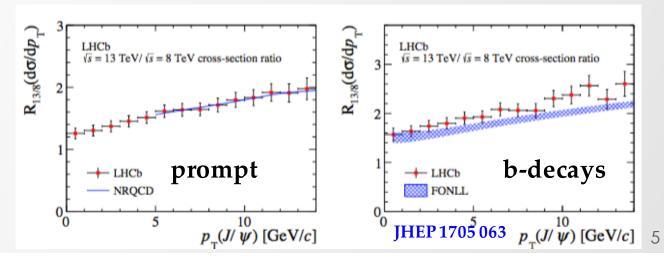
 $\xrightarrow{P_T} P_T - behavior (from perturbative part)$ respective to each LDME

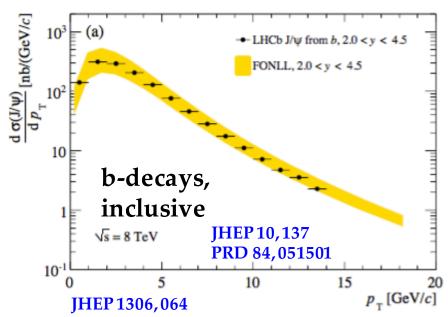

- Spin-symmetry for LDMEs: links between the CS and CO matrix elements of different charmonia states
- $$\begin{split} \langle O_1^{\eta_c}({}^{1}S_0) \rangle &= \frac{1}{3} \langle O_1^{J/\psi}({}^{3}S_1) \rangle, \\ \langle O_8^{\eta_c}({}^{1}S_0) \rangle &= \frac{1}{3} \langle O_8^{J/\psi}({}^{3}S_1) \rangle, \\ \langle O_8^{\eta_c}({}^{3}S_1) \rangle &= \langle O_8^{J/\psi}({}^{1}S_0) \rangle, \\ \langle O_8^{\eta_c}({}^{1}P_1) \rangle &= 3 \langle O_8^{J/\psi}({}^{3}P_0) \rangle. \end{split}$$

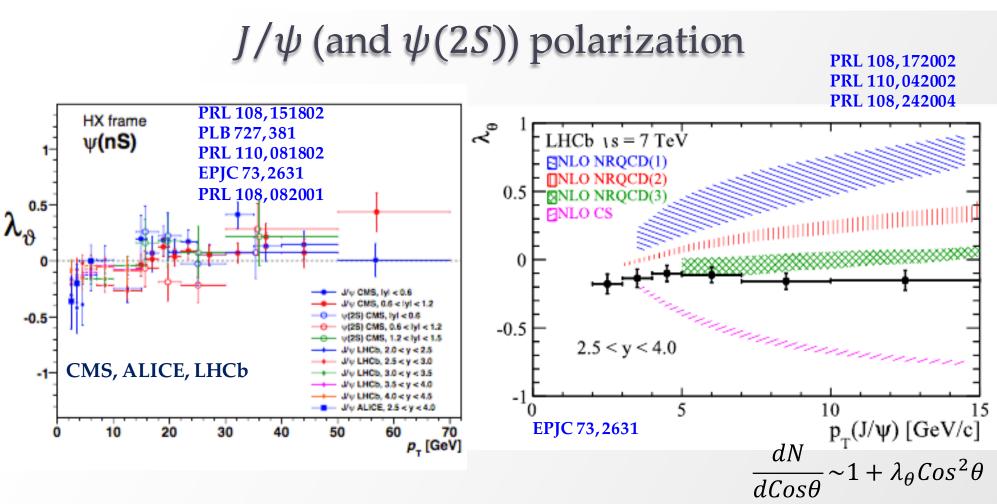
3

Charmonium family

J/ψ production

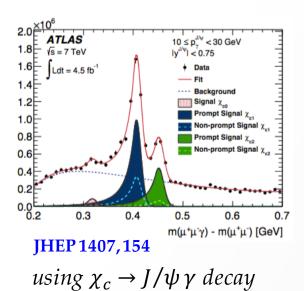


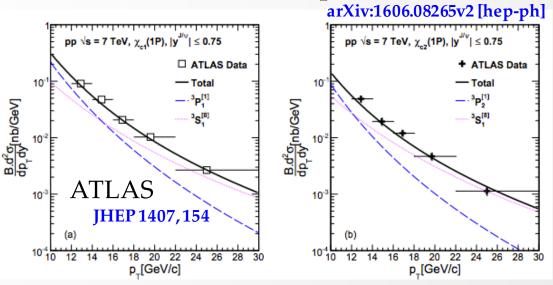

- Measurements of Tevatron and LHC (CDF, CMS, ATLAS, LHCb) experiments are in agreement
- Could not be described by CS NLO and NNLO -> motivation to investigate CO
- Described by NRQCD NLO, dominated by CO contributions


Ratio of 13 TeV/ 8 TeV production:

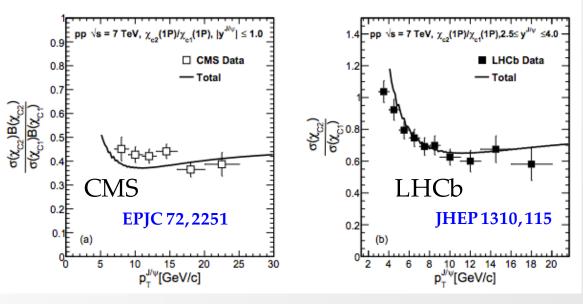
- Systematic uncertainties cancelled

- b-decays : theory prediction is slightly below than what was measured



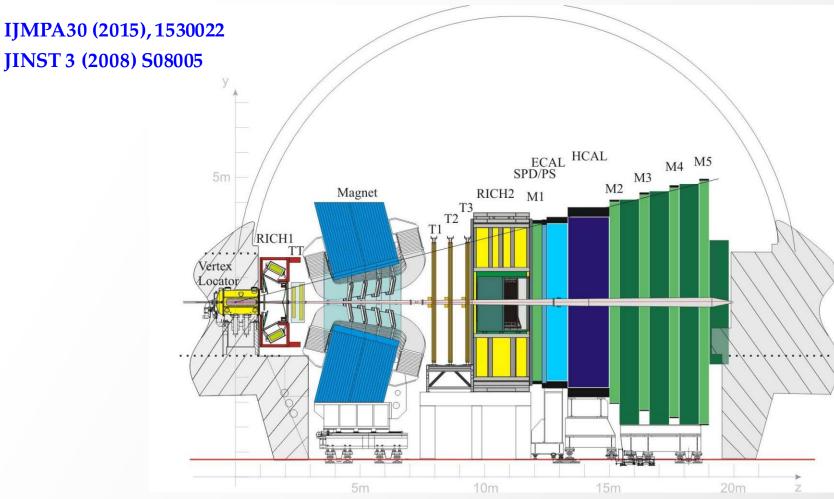

J/ψ polarization:

- Measurements of Tevatron and LHC experiment are in agreement between
- CO predicts strong polarization
- Large CS contribution is needed



χ_c prompt production

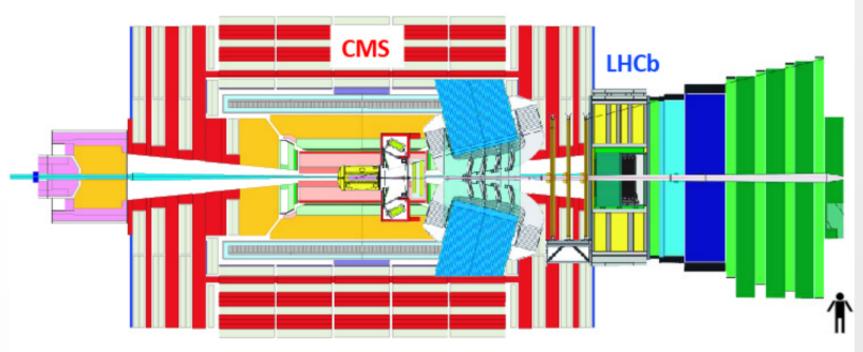
NRQCD fit for absolute production:


More precise when looking for ratio:

Andrii Usachov

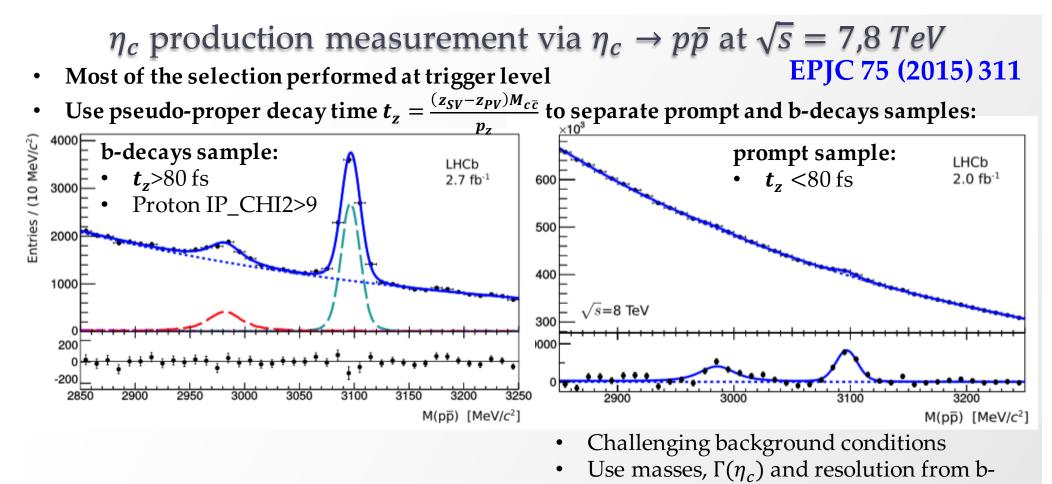
-> CO LDME extracted from fit

LHCb detector



Important for **charmonia production studies via their decays to hadrons**:

- Precise vertex reconstruction with VELO
- Powerful charge particle ID by RICH detectors
- Robust trigger

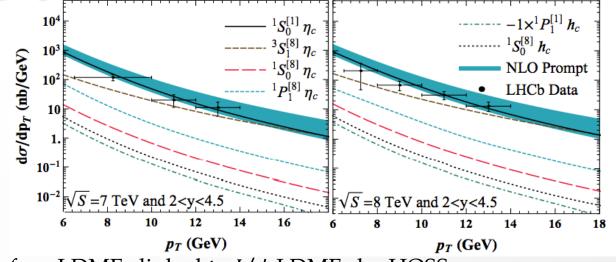

LHCb detector

IJMPA30 (2015), 1530022 JINST 3 (2008) S08005

Important for charmonia production studies via their decays to hadrons:

- Precise vertex reconstruction with VELO
- Powerful charge particle ID by RICH detectors
- Robust trigger
 - Covers complementary to ATLAS and CMS p_t and η range

• Measurement of
$$M(\eta_c)$$
, $\Gamma(\eta_c)$

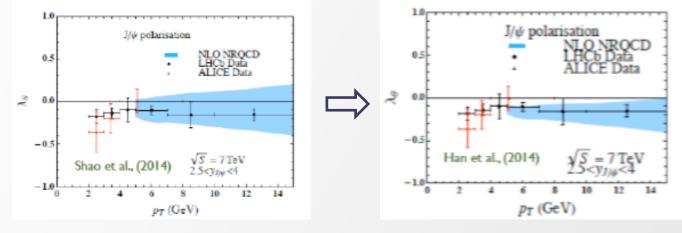

• First measurement of $BR(b \rightarrow \eta_c X)$

• First measurement of η_c hadroproduction

decays sample

	$\sqrt{s} = 7 \text{TeV}$	$\sqrt{s} = 8 \text{TeV}$		
$\sigma_{\eta_c}/\sigma_{J/\psi}$ (prompt, PT>6.5 GeV)	$1.74 \pm 0.29_{stat} \pm 0.28_{syst} \pm 0.18$	$1.60 \pm 0.29_{stat} \pm 0.25_{syst} \pm 0.17$		
$\frac{BR(b \to \eta_c X)}{BR(b \to J/\psi X)}$	0.421 ± 0.055 =	$\pm 0.022 \pm 0.045$		

 η_c prompt production measurement: differential cross-section

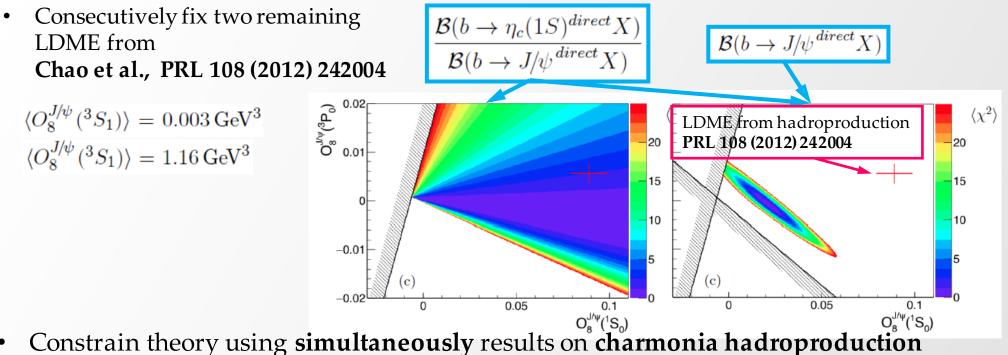


EPJC 75, 311 PRL 114 (2015) 092005

- Described by four LDMEs linked to J/ψ LDMEs by HQSS
- The only successful fit of theoretical prediction to p_t -differential production measurement by Han, Ma, Meng, Shao, Chao PRL 114 (2015) 092005
- CS contribution already saturates the yields \rightarrow constrain CO LDME:

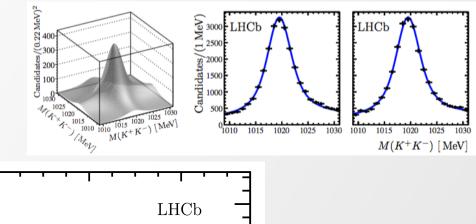
 $\begin{array}{c} 0 \leq \langle \mathcal{O}^{\eta_c} ({}^3S_1^{[8]}) \rangle \leq 1.46 \times 10^{-2} \ \mathrm{GeV}^3 \\ & \checkmark \\ 0 \leq \langle \mathcal{O}^{J/\psi} ({}^1S_0^{[8]}) \rangle \leq 1.46 \times 10^{-2} \ \mathrm{GeV}^3 \end{array}$

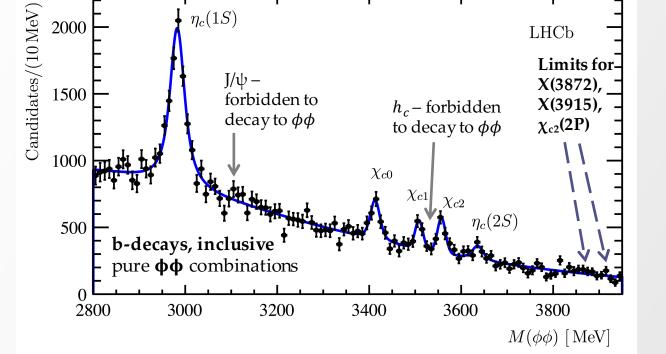
→Reduce the uncertainty from CO LDMEs :


More precise measurement is needed

J/ψ and η_c production in inclusive b-decays Barsuk, Kou, Usachov LAL-17-051

- From **EPJC 75 (2015) 311** and **PDG**:
- Relation between LDME from HQSS:
- Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003
- Fit two LDMEs to measurements


 $\frac{\mathcal{B}(b \to \eta_c(1S)^{direct}X)}{\mathcal{B}(b \to J/\psi^{direct}X)} = 0.691 \pm 0.090 \pm 0.024 \pm 0.103.$


$$\langle O_1^{\eta_c}({}^1S_0)\rangle = \frac{1}{3} \langle O_1^{J/\psi}({}^3S_1)\rangle,$$

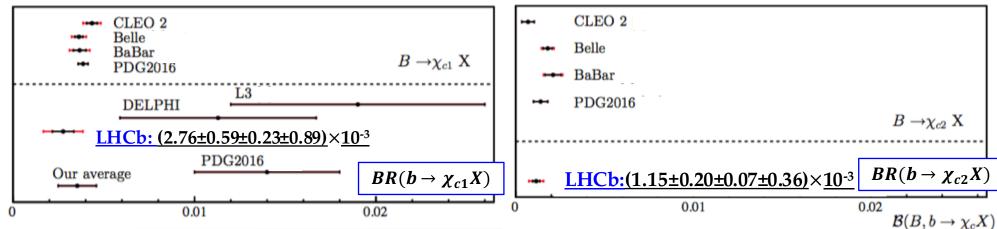
$$\langle O_8^{\eta_c}({}^1S_0)\rangle = \frac{1}{3} \langle O_8^{J/\psi}({}^3S_1)\rangle,$$

$$\langle O_8^{\eta_c}({}^3S_1)\rangle = \langle O_8^{J/\psi}({}^1S_0)\rangle,$$

$$\langle O_8^{\eta_c}({}^1P_1)\rangle = 3 \langle O_8^{J/\psi}({}^3P_0)\rangle.$$

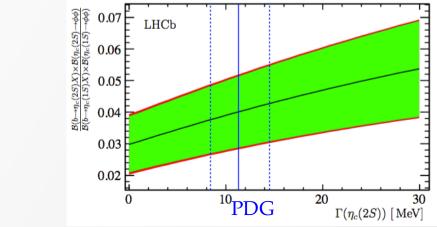
 Constrain theory using simultaneously results on charmonia hadroprodu and on charmonia from b-inclusive decays χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi \phi$ at $\sqrt{s} = 7,8 TeV$ EPJC 77 (2017), 609

- Powerful test of NRQCD factorization, universality of LDME and heavy quark spin symmetry assumptions
- Aiming at constraining LDMEs simultaneously by prompt and b-decays measurements
- 2D fit of $M(K^+K^-_1) \times M(K^+K^-_2)$ in bins of M(KKKK) to select true $\phi\phi$ combinations



• χ_c and $\eta_c(2S)$ production rates measured using previously measured BR($b \rightarrow \eta_c(1S)X$) ¹³

 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s} = 7,8 TeV$


- First measurement of χ_{c0} production in inclusive b-decays $BR(b \rightarrow \chi_{c0}X) = (3.02\pm0.47\pm0.23\pm0.94)\times10^{-3}$ EPJC 77 (2017), 609
- The most precise measurements of $BR(b \rightarrow \chi_{c1}X)$ and $BR(b \rightarrow \chi_{c2}X)$
- $BR(b \rightarrow \chi_{c1}X)$ and $BR(b \rightarrow \chi_{c2}X)$ are in agreement with measurements at B-factories

• First measurement of $\eta_c(2S)$ production in inclusive b-decays; first evidence of $\eta_c(2S) \rightarrow \phi \phi$

 $\frac{BR(b \to \eta_c(2S)X)}{BR(b \to \eta_c(1S)X)} \frac{BR(\eta_c(2S) \to \phi\phi)}{BR(\eta_c(1S) \to \phi\phi)} = 0.040 \pm 0.011 \pm 0.004 \quad (3.7\sigma \text{ significance})$

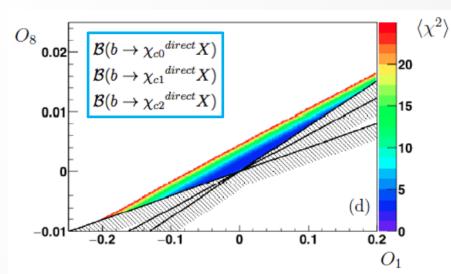
 $\eta_c(2S)$ production as a function of assumed $\Gamma[\eta_c(2S)]$

 \Rightarrow first step to measure $\eta_c(2S)$ hadroproduction

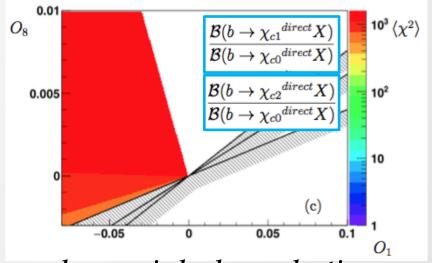
 χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi \phi$ at $\sqrt{s} = 7,8 TeV$ Barsuk, Kou, Usachov LAL-17-051

• From EPJC 77 (2017), 609 and PDG: $\mathcal{B}(b \to \chi_{c0}^{direct}X) =$

 $\mathcal{B}(b \to \chi_{c0}{}^{direct}X) = (2.74 \pm 0.47 \pm 0.23 \pm 0.94_{\mathcal{B}}) \times 10^{-3}$ $\mathcal{B}(b \to \chi_{c1}{}^{direct}X) = (2.49 \pm 0.59 \pm 0.23 \pm 0.89_{\mathcal{B}}) \times 10^{-3}$ $\mathcal{B}(b \to \chi_{c2}{}^{direct}X) = (0.89 \pm 0.20 \pm 0.07 \pm 0.36_{\mathcal{B}}) \times 10^{-3}$


 $O_1 \equiv \langle O_1^{\chi_{c0}}({}^3P_0) \rangle / m_c^2,$

 $\langle O_1^{\chi_{cJ}}({}^3P_J)\rangle/m_c^2 = (2J+1)O_1,$


 $\langle O_8^{\chi_{cJ}}({}^3S_1) \rangle = (2J+1)O_8.$

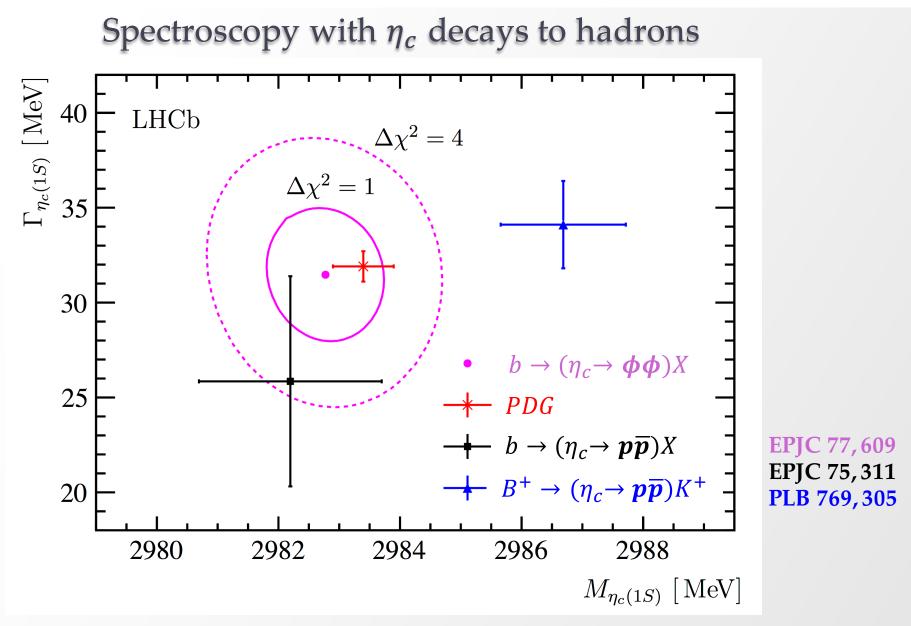
 $O_8 \equiv \langle O_8^{\chi_{c0}}({}^3S_1) \rangle,$

- Relation between LDME from HQSS:
- Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003
- **1. Fit two LDMEs to three measurements:**

2. Discrepancy when fitting two LDMEs to two relative production measurements:

 to constrain theory using simultaneously results on charmonia hadroproduction and on charmonia from b-inclusive decays

Status of charmonia production measurements

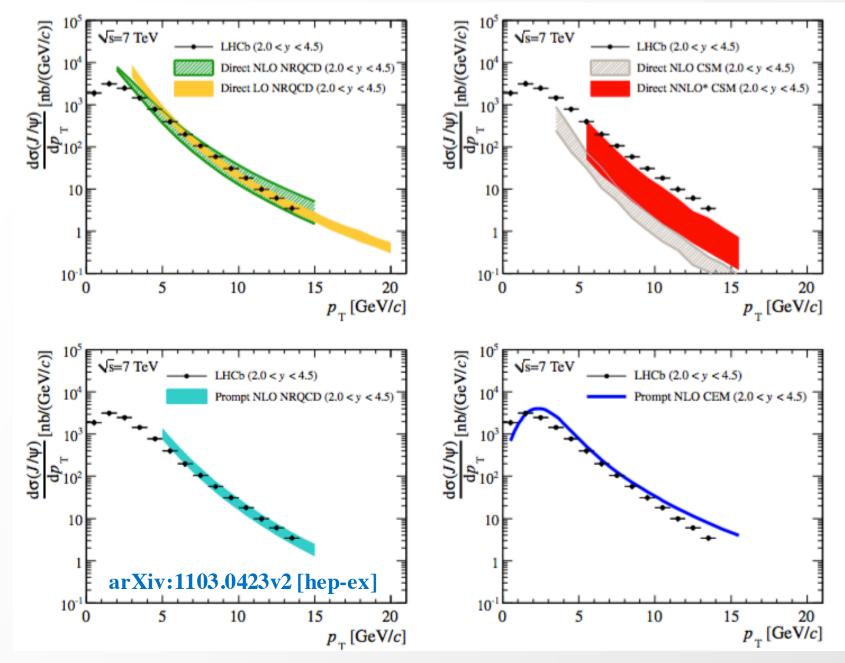

	Prompt hadroproduction	$BR(B^0 B^{\pm} b - baryons \rightarrow (c\overline{c})X)$	$BR(B^0 B^{\pm} \to (c\overline{c})X)$
η _c (1S)	LHCb - p p	(4.88 ± 0.96)×10 ^{−3} LHCb - pp ̄	-
J/ψ	LHCb, ATLAS, CMS -μμ	(1.16 ± 0.10)×10 ^{−3} LEP - ll	$(1.094 \pm 0.032) \times 10^{-2}$ direct : (7.8 ± 0.4)×10 ⁻³ BABAR, CLEO - <i>ll</i>
χ _{c0}	-	$(1.66 \pm 0.26 \pm 0.13 \pm 0.40B) \times 10^{-3}$ LHCb -$\phi\phi$	-
X _{c1}	ATLAS, LHCb, CMS - J/ψγ	$(1.4 \pm 0.4) \times 10^{-2}$ LEP - J/ $\psi \gamma$ $(1.41 \pm 0.30 \pm 0.12 \pm 0.36B) \times 10^{-3}$ LHCb - $\phi \phi$	$(3.86 \pm 0.27) \times 10^{-3}$ direct: $(3.24 \pm 0.25) \times 10^{-3}$ BABAR, Belle, CLEO -J/$\psi \gamma$
h _c	-	-	-
Χ _{c2}	ATLAS, LHCb, CMS -J/ψγ	$(0.63 \pm 0.11 \pm 0.05 \pm 0.15B) \times 10^{-3}$ LHCb -$\phi \phi$	$(1.4 \pm 0.4) \times 10^{-3}$ direct: $(1.65 \pm 0.31) \times 10^{-3}$ BABAR, Belle -J/$\psi \gamma$
η _c (2S)	-	LHCb $-\phi\phi$ BR $(\eta_c(2S) \rightarrow \phi\phi)$ was not measured	-
ψ (2S)	LHCb, ATLAS, CMS -μμ	(2.83 ± 0.29)×10 ⁻³ LHCb, CMS - μμ	$(3.07 \pm 0.21) \times 10^{-3}$ BABAR, CLEO - <i>ll</i>

Conclusions and prospects

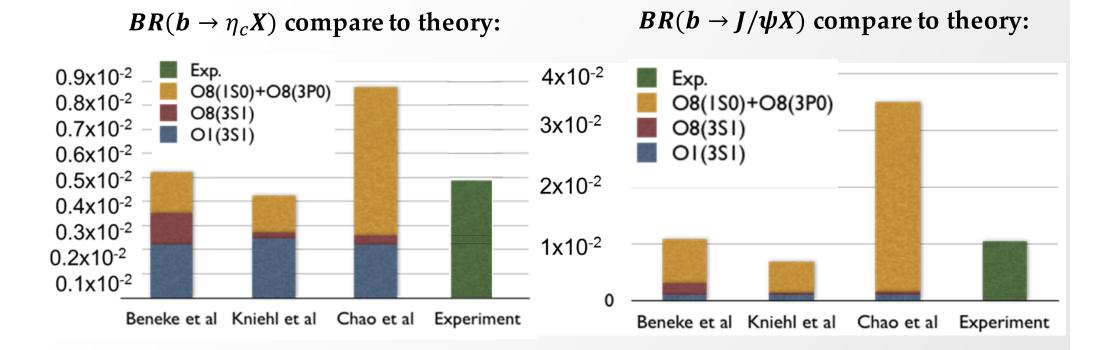
- J/ψ and $\psi(2S)$ prompt and b-decays production and polarization were measured using clean $\mu\mu$ channel at LHC
- $\chi_{c1,2}$ prompt production was measured using $J/\psi\gamma$

 \rightarrow Other charmonium states production have to be investigated using hadronic channels

- η_c production was measured for the first time using $\eta_c o p\overline{p}$
- CS contribution saturates η_c prompt production => limit for CO LDME
- $\chi_{c0,1,2}$ production in b-decays was measured at LHCb using $\phi\phi$. \rightarrow Current theoretical prediction does not match to measured relative χ_c production
- → To constrain theory using **simultaneously** results on **charmonia hadroproduction and** on **charmonia from b-inclusive decays**
- $\eta_c(2S)$ production in b-decays was measured at LHCb using $\phi\phi$ for the first time
- No measurements for h_c and $\eta_c(2S)$ prompt production
- Other promising final states to investigate: $p\overline{p}\pi^+\pi^-$, $\Lambda\Lambda$, $\Xi\Xi$, $\Sigma\Sigma$

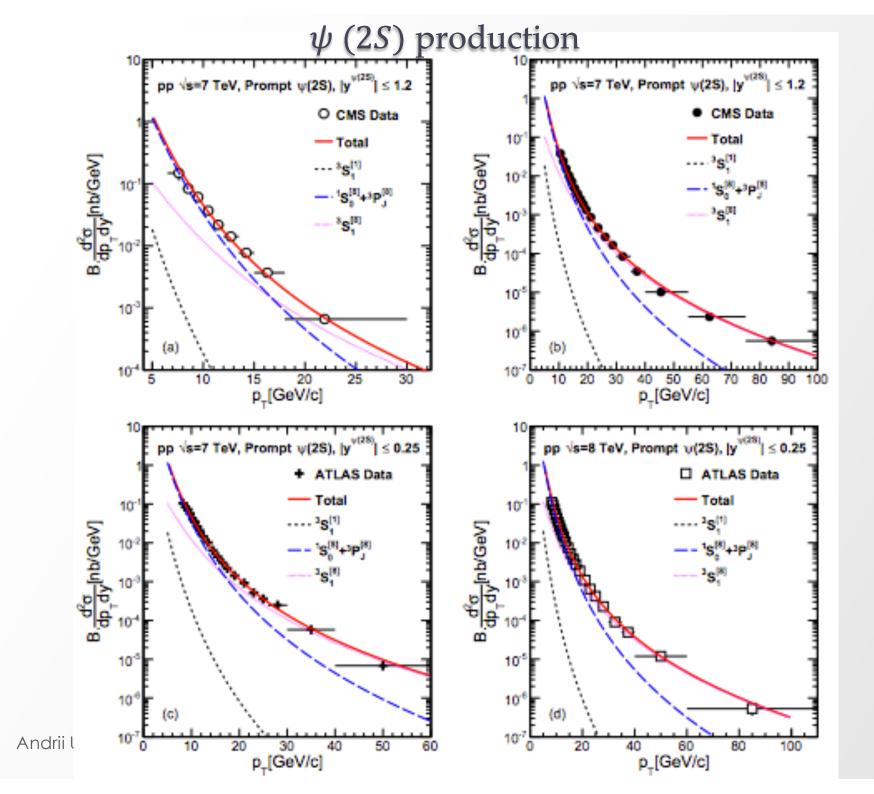


- General agreement with world average
- Similar to PDG precision expected for η_c mass with Run II data


Decays of charmonia											
	μμ	J/ψγ	pp	φφ	$p\overline{p}\pi^{+}\pi^{-}$	φφ π +π ⁻	φf ₀ (980)	$\phi f_2(1545)$	baryons		
η _c (1S)	forb.	-	0.15%	<u>0.18%</u>	0.5%				~0.1%		
J/ψ	6%	-	<u>0.2%</u>	forb.	0.6%		0.03%	~0.1%	~0.1%		
X _{c0}	forb.	1.3%	0.02%	0.08%					~0.04%		
X _{c1}	forb.	34%	0.01%	0.04%	0.05%				~0.01%		
h _c	forb.		?	forb.	?				?		
X _{c2}	forb.	19%	0.1%	0.01%	0.1%				~0.01%		
η _c (2S)	forb.		?	?	?	?			?		
ψ(2S)	0.8%		0.03%	forb.	0.06%				~0.02%		

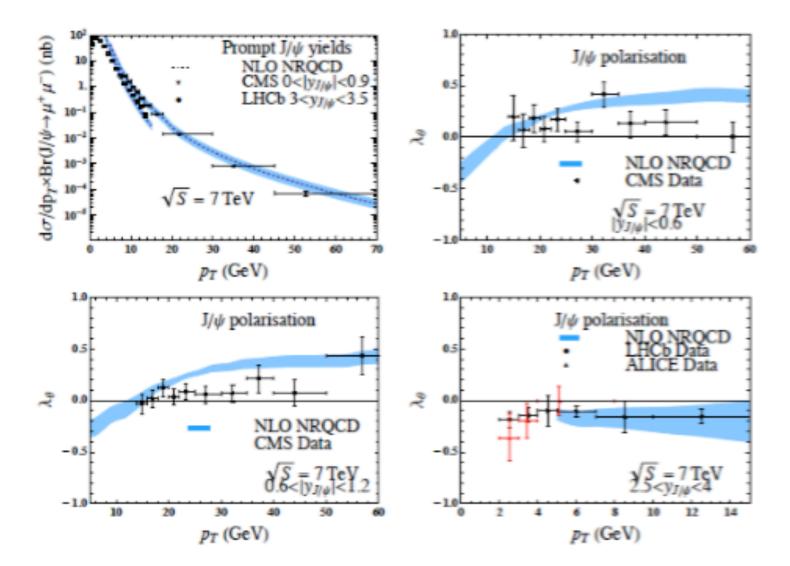
ΛΛ ΞΞ ΣΣ

J/ψ prompt production vs different theory models


$BR(b \rightarrow \eta_c X)$ compare to theory

 $BR(b \rightarrow (c\bar{c})X)$ from theory including HQSS relations

$$\begin{split} \mathcal{B}(B \to J/\psi X) &= 7.54 \cdot 10^{-4} \langle O_1^{J/\psi} ({}^{3}S_1) \rangle + 0.195 \langle O_8^{J/\psi} ({}^{3}S_1) \rangle + \\ & 0.342 \Big[\langle O_8^{J/\psi} ({}^{1}S_0) \rangle + \frac{3.10}{m_c^2} \langle O_8^{J/\psi} ({}^{3}P_0) \rangle \Big], \\ \mathcal{B}(B \to \eta_c(1S)X) &= 8.33 \cdot 10^{-4} \langle O_1^{J/\psi} ({}^{3}S_1) \rangle + 0.114 \langle O_8^{J/\psi} ({}^{3}S_1) \rangle + \\ & 0.195 \Big[\langle O_8^{J/\psi} ({}^{1}S_0) \rangle - \frac{0.720}{m_c^2} \langle O_8^{J/\psi} ({}^{3}P_0) \rangle \Big]. \end{split}$$


$$\begin{aligned} \mathcal{B}(B \to \chi_{c0} X) &= -0.0148 \ O_1 + 0.195 \ O_8, \\ \mathcal{B}(B \to \chi_{c1} X) &= -0.0234 \ O_1 + 0.585 \ O_8, \\ \mathcal{B}(B \to \chi_{c2} X) &= -0.0600 \ O_1 + 0.975 \ O_8. \end{aligned}$$

INCLUSIVE CHARMONIUM PRODUCTION

• Test the consistence in J/ψ production

