Diffractive dijet production in DIS compared to NNLO QCD predictions

Diffractive Dijet Production in ep

In diffractive events the beam proton stays intact or dissociates into low mass hadronic system Y

At HERA about 10% of low-x events are diffractive

DIS variables:

$$Q^2 = -(k - k')^2 \qquad y = \frac{p \cdot q}{p \cdot k}$$

Dijet mass: M_{12}

Diffractive variables:

$$x_{IP} = 1 - \frac{E_p'}{E_p}$$
 $t = (p - p')^2$

At LO: The momentum fraction entering the hard subprocess with respect to the diffractive exchange $M_{12}^2 + Q^2$

$$z_{IP} = \frac{M_{12}^2 + Q^2}{M_X^2 + Q^2}$$

Collinear QCD factorization theorem in hard diffraction

- For diffractive events with a hard scale (e.g Q² or jets p_T)
- Factorization of the diffractive cross section into process independent DPDFs and partonic cross sections

$$d\sigma(ep \to epX) = \sum_{i} f_i^D(x, Q^2, x_{IP}, t) \otimes d\sigma^{ie}(x, Q^2)$$

• For diffractive processes (including dijets) with Q² high enough factorization proven by Collins within perturbative QCD, for low Q² factorization breaking suggested

Factorization of Hard Processes in QCD

John C. Collins (IIT, Chicago & SUNY, Stony Brook), Davison E. Soper (Oregon U.), George F. Sterman (SUNY, Stony Brook). May 30, 1989. 91 pp. Published in Adv.Ser.Direct.High Energy Phys. 5 (1989) 1-91 ITP-SB-89-31

DOI: <u>10.1142/9789814503266_0001</u> e-Print: <u>hep-ph/0409313</u> | <u>PDF</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service

Detailed record - Cited by 716 records 500+

Proof of factorization for diffractive hard scattering

John C. Collins (Penn State U.). Sep 1997. 12 pp.
Published in Phys.Rev. D57 (1998) 3051-3056, Erratum: Phys.Rev. D61 (2000) 019902

PSU-TH-189

DOI: 10.1103/PhysRevD.61.019902, 10.1103/PhysRevD.57.3051

e-Print: hep-ph/9709499 | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; OSTI Information Bridge Server

Detailed record - Cited by 384 records 250+

NLO DPDFs

- DPDF sets differ mainly in gluon component which is weekly constrain from inclusive diffractive data
- For gluon dominated diffractive dijet production we have sizable DPDF uncertainty
- DPDFs obey standard DGLAP evolution equation

Gluon Densities

—— H1 Fit B - z G(z)

—— H1 Fit Jets - z G(z)

—— ZEUS SJ - z G(z) × 1.2

Fits of **inclusive** data

H1 2006 Fit A H1 2006 Fit B

Combined inclusive + dijets data fits

H1 2007 Fit Jets ZEUS 2009 Fit SJ

Quark Singlet Densities

----- H1 Fit B - $z \Sigma(z)$

----- H1 Fit Jets - $z \Sigma(z)$

ZEUS SJ - z $\Sigma(z) \times 1.2$

70% of diffractive exchange momentum carried by gluons

NNLO QCD Predictions

NNLOJET program based on antenna subtraction

J. Currie, T. Gehrmann, A. Huss and J. Niehues, JHEP 07 (2017) 018, [1703.05977]

A bit of history

- 1973 Asymptotic freedom of QCD
- 1993 NLO studies of DIS jets
- 2016 NNLO corrections for DIS jets

Cookbook

- 1) The matrix element tables precalculated by **NNLOJET** program (~1M CPU hours)
- 2) Then convoluted with DPDFs and α_S using **fastNLO** (<1s)
- ▼ The NLO 2jet and 3jet contributions verified against Sherpa and NLOJET++

virtual-virtual

real-virtual

real-real

[qd]

 $d\sigma/dlog_{10}(x_{lp})$

Factorisation holds in DDIS jets

The DIS dijets measurements

- 5times e+p 27.6 GeV + 920 GeV
 1times e+p 27.5 GeV + 820 GeV
- 4times Large rapidity gap selection (LRG)
 2times Proton spectrometer (FPS, VFPS)

LRG

HERA1

H1 LRG HERA2 Phase Space

$$4 < Q^2 < 100 \text{ GeV}^2$$

$$x_{I\!\!P} < 0.03$$

$$|t| < 1 \text{ GeV}^2$$

$$M_Y < 1.6 \text{ GeV}$$

$$p_{\rm T.1}^* > 5.5 \,{\rm GeV}$$

$$p_{\rm T.2}^* > 4.0~{\rm GeV}$$

$$-1 < \eta_{1,2}^{\text{lab}} < 2$$

All HERA analyses with asymmetric jet pT cuts included

Total Cross Sections - NLO vs NNLO

- For NNLO the inner bar represents the scale uncertainty, the outer includes DPDF uncertainties
- Total cross sections well described by NLO
- NNLO predictions systematically overestimate the data with exception of ZEUS measurement

$$\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{*jets} \rangle^2$$

Total Cross Sections - NLO vs NNLO

- For NNLO the inner bar represents the scale uncertainty, the outer includes DPDF uncertainties
- Total cross sections well described by NLO
- NNLO predictions systematically overestimate the data with exception of ZEUS measurement

$$\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{*jets} \rangle^2$$

Total Cross Sections - Scale dependence

Renormalization scale dependence

- Comparable NLO and LO renormalization scale dependences (characteristic for gluon-dominated processes)
- NNLO has smaller renormalization scale dependence

Factorization scale dependence

 Factorization scale dependence lower with every order

Total Cross Sections - Scale dependence

 Four functional form of scales studied, everytime assumed:

$$\mu^2 = \mu_R^2 = \mu_F^2$$

Alternative parameterizations:

$$\mu^{2} = Q^{2} + \langle p_{T}^{*jets} \rangle^{2}$$

$$\mu^{2} = \frac{Q^{2}}{4} + \langle p_{T}^{*jets} \rangle^{2}$$

$$\mu^{2} = \langle p_{T}^{*jets} \rangle^{2}$$

$$\mu^{2} = Q^{2}$$

The p_T is the dominant term, if removed the cross sections substantially higher

Total Cross Sections - DPDF dependence

- Inner bar represents the DPDF uncertainty, the outer includes scale uncertainties
- Combined fits of inclusive + dijet data H1 Fitj Jets ZEUS SJ perform best
- Inclusive data fits
 H1 Fit A
 H1 Fit B
 very different
 although for inclusive
 data had similar chi2

Studied differential distributions

Histogram	H1	H1	H1	H1	H1	ZEUS
	HERA-II	HERA-II	HERA-II	HERA-I	$820\mathrm{GeV}$	HERA-I
	FPS	VFPS	LRG	LRG	LRG	LRG
Q^2	√	√	√		√	\checkmark
$y [W]^*$	✓	\checkmark	\checkmark	\checkmark	*	*
$p_{\mathrm{T}}^{*,\mathrm{jet}1}$ $[p_{\mathrm{T}}^{*,\mathrm{jet}}]^*$	✓	\checkmark	\checkmark	\checkmark	\checkmark	*
$p_{ m T}^{*,{ m jet}2}$			\checkmark			
$\langle p_{ m T} angle$			\checkmark			
$\langle \eta_{ m lab}^{ m jet} angle \ [\eta_{ m jet}^*]^*$		\checkmark			\checkmark	*
$\Delta\eta_{ m lab}^{ m jet} \ [\Delta\eta^*]^*$	*	\checkmark	*	*	*	
$M_{ m X}^2$		\checkmark				\checkmark
$x_{I\!\!P}$	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$z_{I\!\!P}$	√	\checkmark	\checkmark	\checkmark		\checkmark
$ t \ [eta)]^*$	✓					*
$x_{oldsymbol{\gamma}}$						*
$(Q^2; p_{\mathrm{T}}^{*,\mathrm{jet}1})$			√			
$(Q^2;z_{I\!\!P})$			\checkmark			\checkmark
$(Q^2 + (p_{ m T}^{*,{ m jet}1})^2; z_{I\!\!P})$				\checkmark		
$(p_{\mathrm{T}}^{*,\mathrm{jet}1};z_{I\!\!P})$						\checkmark

- The same or similar distributions from various analyses grouped into one plot, as shown bellow. In total 57 differential distributions analyzed
- For inelasticity y NNLO higher for higher y similar trend in data, note $W = \sqrt{ys}$

- The scale with Q² term only predict steeper Q² distribution
- Only small difference between other scale prescriptions
- No systematic trend in data

- Most sensitive variable to the partonic structure of the diffractive exchange (to DPDFs)
- NNLO predict an increase in the last bin for LRG analyses which is really seen in data

 k_{τ} - jet algorithm (R=1)

 $z_{IP} = \frac{M_{12}^2 + Q^2}{M_X^2 + Q^2}$

- NNLO predicts more jets in the forward (=proton) direction
- The inclusive jet variable η^{*jets} filled for each jet in the event shows the biggest observed difference between NLO and NNLO **factor 2!**

$$\langle \eta^{\rm jets} \rangle = \frac{1}{2} \left(\eta^{\rm jet1} + \eta^{\rm jet2} \right) \qquad \eta^{*\rm jets} = \eta^{*\rm jet1,2}$$

Conclusions

- Dijets in diffractive DIS calculated in NNLO QCD for the first time
- Differential distributions for various observables calculated
- The NNLO cross sections about ~40% higher than NLO
- The NNLO predictions overshoot the data for all H1 measurements and all studied DPDFs

Outlook

Fit the inclusive and dijet diffractive DIS data at NNLO

Backup

Summary of experimental data set

Collab.	Diffr.	\sqrt{s}	L	Studied	DIS	Dijet	Diffractive
	selection	[GeV]	$[\mathrm{pb}^{-1}]$	${\bf observables}$	\mathbf{range}	range	range
H1 [3]	LRG	319	290		$4 < Q^2 < 100 \mathrm{GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$
			$(\sim 15000 \mathrm{ev})$		0.1 < y < 0.7	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 1 \mathrm{GeV^2}$
						$n_{ m jets} \geq 2$	$M_{ m Y} < 1.6{ m GeV}$
						$-1 < \eta_{ m lab}^{ m jet} < 2$	
H1 [4]	VFPS	319	50		$4 < Q^2 < 80 { m GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$	$0.010 < x_{I\!\!P} < 0.024$
			(550ev)		0.2 < y < 0.7	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 0.6\mathrm{GeV^2}$
						$n_{ m jets} \geq 2$	$M_{\rm Y} = m_P$
						$-1 < \eta_{ m lab}^{ m jet} < 2.5$	
H1 [5]	FPS	319	156.6		$4 < Q^2 < 110 \mathrm{GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5\mathrm{GeV}$	$x_{I\!\!P} < 0.1$
			(581ev)		0.05 < y < 0.7	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 1{ m GeV^2}$
						$n_{ m jets} \geq 2$	$M_{\rm Y} = m_P$
						$-1 < \eta_{ m lab}^{ m jet} < 2.5$	
H1 [6]	LRG	319	51.5		$4 < Q^2 < 80 \mathrm{GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$
			(2723ev)		0.1 < y < 0.7	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 1 \mathrm{GeV^2}$
						$n_{ m jets} \geq 2$	$M_{ m Y} < 1.6{ m GeV}$
						$-3 < \eta^{*\mathrm{jets}} < 0$	
H1 [7]	LRG	300	18		$4 < Q^2 < 80 { m GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$
			(322ev)		$165 < W < 242\mathrm{GeV}$	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 1 \mathrm{GeV^2}$
						$n_{ m jets} \geq 2$	$M_{ m Y} < 1.6{ m GeV}$
						$-1 < \eta_{ m lab}^{ m jet} < 2$	
						$-3 < \eta^{*\mathrm{jets}} < 0$	
ZEUS [8]	LRG	319	61		$5 < Q^2 < 100 { m GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$
			(5539ev)		$100 < W < 250\mathrm{GeV}$	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 1 \mathrm{GeV^2}$
						$n_{ m jets} \geq 2$	$M_{\rm Y}=m_P$