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WHAT IS SATURATION?



GLUON BRANCHING

Gluon branching – The number of gluons grows towards 
lower Bjorken-x values.

Gluon recombination – High density of gluons can lead to 
overlapping of their wave                
functions and two gluons can 
merge into one.

• Phase space inside hadron can be filled up. 
• The unitarity of cross section would be violated.



PARTON DISTRIBUTION 
FUNCTIONS

• xS – Sea quark distribution

• xG – Gluon distribution

• xuv –Valence u-quark distribution

• xdv –Valence d-quark distribution
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Fig. 1. Parton distribution functions (PDFs) of a proton at the scale Q2 = 10 GeV2

plotted as functions of Bjorken x. Here xuv and xdv are the valence quark distri-
butions, xS is the sea quark distribution, and xG is the gluon distribution. Note
that the vertical axis is logarithmic.

the saturation scale Q

s

becomes larger than the QCD confinement scale
⇤
QCD

, Q
s

� ⇤
QCD

such that the strong coupling constant becomes small,

↵

s

(Q2
s

) ⌧ 1. (2)

Therefore, in the saturation regime we are dealing with a high density of
gluons and quarks inside the proton or nucleus, while at the same time
having a small coupling constant justifying the use of perturbative expansion
in the powers of ↵

s

.

2. Classical Gluon Fields

The most convenient system to study saturation dynamics appears to
be the small-x wave function of a large nucleus. From now one we will
concentrate on gluons, since they dominate over quarks at small-x as follows
from Fig. 1. The small-x gluons “see” the whole nucleus coherently in the
longitudinal direction, and can be emitted by any of the nucleons at a given
impact parameter. (Note that a gluon with k

T

� ⇤
QCD

is localized in the
transverse coordinate space and does not interact with the nucleons at other
impact parameters.) The small-x gluon can originate in any of the ⇠ A

1/3

nucleons at a given transverse position. If the nucleus is ultrarelativistic

We can see the contribution of gluon branching effects in parton distribution functions.

Do the gluon recombination effects also contribute?



WHERE TO LOOK FOR
SATURATION EFFECTS

• For the observation of saturation effects, we need to reach low values of Bjorken-x.

• With a fixed collision energy, lower Bjorken-x corresponds to lower values of Q2.

• Low Q2 means low kt of the process and therefore difficult detection.

1.1.1 Lorentz-invariant variables

To describe this process we need to define Lorentz-invariant variables as shown in
Eq. 1.2, 1.3, 1.4 and 1.5. In Eq. 1.2, s is the total energy of the collision in the
center-of-mass (CMS) frame, Q2 is the so called scale of the virtual photon, q2 is
squared four-momentum passed from the lepton to the hadron, ⌫ is the total energy
that is passed from the lepton to the target in the target’s rest frame and x is the
so called Bjorken x that (in the infinite momentum frame) gives us the ratio of the
momentum carried by the scattered gluon or quark to the total momentum carried
by the target.

s = (P + l)2 (1.2)

q2 = �Q2 = (l � l0)2 (1.3)

⌫ =
P · q

m
p

=
W 2

�Q2
�m2

p

2m
p

(1.4)

x =
Q2

2P · q
=

Q2

Q2 +W 2
�m2

p

(1.5)

Here m
p

is the mass of the proton. We shall also define the variable W 2, which gives
us the total energy that is given to the hadron in the CMS frame as shown in Eq.
1.6

W 2 = (P + q)2 (1.6)

y =
P · q

P · l
=

Q2

x(s�m2
p

)
(1.7)

and equation 1.7 represents the transferred energy fraction from the lepton onto the
hadron. The scaleQ2 defines the resolution of the scattering process, since the incom-
ing particle can interact with objects with size proportional to 1/Q2. By increasing
the energy, we are able to see softer gluons (with smaller fraction of momenta) that
are emitted by more energetic gluons.

1.1.2 DIS in Bjorken limit

The emission of a photon from a lepton is an understood process and is well described
by Quantum Field Theory. A point-like lepton serves as a source of the virtual
photon that will then interact with the hadron. Scattering of the virtual photon
o↵ the hadron results in breaking the hadron and creating other particles. In this
model, we are working in the infinite momentum frame which supposes very high
momentum of the scattered proton.

If we consider the high energy limit and keep Q2 fixed, the Bjorken x decreases
since s ⇠ Q2/x. Therefore, the observed objects carry lower and lower fraction of
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SATURATION INSIDE NUCLEUS
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this means that the gluon is emitted by the e↵ective color charge density
which is enhanced by a factor of A1/3 compared to that in a single proton.
This is illustrated in Fig. 2.

Boost

Fig. 2. An ultrarelativistic nucleus appears as a “pancake” with the A1/3-enhanced
color charge density.

If we define the saturation scale squared as the gluon density in the
transverse plane, one readily obtainsQ2

s

⇠ A

1/3, such that for a large nucleus
Q

s

� ⇤
QCD

and ↵

s

(Q2
s

) ⌧ 1. At small coupling the leading gluon field is
classical (since one can neglect quantum loop corrections): hence, to find
the gluon field of a nucleus one has to solve classical Yang-Mills equations

D
µ

F

µ⌫ = J

⌫ (3)

with the nucleus providing the source current J⌫ . This is the main concept
behind the McLerran–Venugopalan model [2, 3, 4].

The Yang-Mills equations (3) were solved for a single nucleus source in
[5, 6]. The resulting gluon field could be used to construct the unintegrated
gluon distribution of a nucleus �

A

(x, k2
T

), which counts the number of gluons
at a given values of Bjorken x and transverse momentum k

T

:

�

A

(x, k2
T

) =
C

F

↵

s

2⇡3

Z
d

2
b? d

2
r? e

ik·r 1

r

2
?

h
1� e

� 1
4 r

2
? Q

2
s(~b?) ln(1/r? ⇤)

i
. (4)

Here the gluon saturation scale is given by

Q

2
s

(b) = 4⇡ ↵

2
s

T (b) (5)

with T (b) the nuclear profile function. Transverse vectors are denoted by
x = (x1, x2) and x? = x

T

= |x|. The unintegrated gluon distribution
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Furthermore, if we look at the influence of nuclear effects on saturation , we find out that

Saturation scale 𝑄"# determines the momentum region where saturation effects start to
dominate and suppress the distribution function.

Compared to proton, saturation scale inside a nucleus is higher due to higher
overlapping because of Lorentz contraction.

These effects can be used to determine whether saturation is present in hadrons.



WHAT PROCESSES TO FOCUS ON?



STUDIED PROCESSES

For our computation, we focused on back-to-back jets in the forward region

of rapidity.

Why?



STUDIED PROCESSES

Although p1t, p2t >> Qs

If we focus on back to back jets in the transverse momentum plane, we can get

𝑘% = |�⃗�*% + �⃗�#%|

Furthermore, it is necessary to reach the region where x1 is large a x2 << 1.

x2 << 1 is necessary to detect saturation effects, large x1 is required, because in this region of

Bjorken-x, we can use parton distribution functions that are known with great precision from

previous experiments.This can be achieved by looking into the forward region in rapidity.

a sub-set of o↵-shell matrix elements. The goal of this paper is to provide a numerical
implementation of that new formulation, dubbed improved TMD (ITMD) factorization.

The o↵-shell matrix elements needed to compute the forward di-jet process have all
been calculated in [10], but evaluating all the necessary gluon TMDs is not straightforward.
Very recently, they have been obtained from a numerical simulation of the non-linear QCD
evolution in the leading ln(1/x) approximation [23], that is from the Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) [24–28] equation. However, further work is
required before those TMDs can be incorporated into a cross section calculation. Therefore,
in the present work, we shall stick to a mean-field type approach in which all the gluon
distributions needed can be related to each other, and obtained from the simpler Balitsky-
Kovchegov (BK) equation [29, 30]. A detailed comparative study using solutions of the
di↵erent extensions of the original BK equation is left for future work. The version that we
shall use in this work is known as the KS gluon distribution [31]. It incorporates the running
of the QCD coupling, non-singular pieces (at low x) of the DGLAP splitting function, a
sea-quark contribution, and resums dominant corrections from higher orders via a kinematic
constraint [32,33].

By comparing the forward di-jet production cross sections in proton-lead and proton-
proton collisions, we can clearly see the onset of parton saturation e↵ects, as we go from
a kinematical regime in which k

t

⇠ P

t

towards one where k

t

⇠ Q

s

, and we obtain a good
estimation of the size of those e↵ects where they are the biggest, which is for nearly back-to-
back jets. We note that probing non-linear e↵ects of similar strength with single-inclusive
observables requires to make the only transverse momentum involved in those processes
of the order of the saturation scale, which may not be easy experimentally. With di-jets,
assuming P

t

⇠ 20 GeV and k

t

⇠ Q

s

⇠ 2 GeV, we can reach R

pPb

⇠ 0.5.
The paper is organized as follows. In section 2, we recall the essence and the ingredients

of the ITMD factorization formula for forward di-jets in dilute-dense collisions. In section
3, we introduce the mean-field approximation that allows us to express the various gluon
TMDs in terms of the solution of the BK equation. In section IV, we present numerical
results for the proton and lead gluon TMDs obtained with the KS gluons, and compared
them with analytical expressions obtained in the GBW model. In section V, we present
our results for forward di-jet production in p+p and p+Pb collisions at the LHC, as well as
nuclear modification factors R

pPb

. Finally, section VI is devoted to conclusions and outlook.

2 The ITMD factorization formula for forward di-jets
in dilute-dense collisions

We consider the process of inclusive forward di-jet production in hadronic collisions

p(p
p

) +A(p
A

) ! j

1

(p
1

) + j

2

(p
2

) +X , (2.1)

where the four-momenta of the projectile and the target are massless and purely longitudinal.
The longitudinal momentum fractions of the incoming parton from the projectile, x

1

, and the
gluon from the target, x

2

, can be expressed in terms of the rapidities (y
1

, y

2

) and transverse
momenta (p

t1

, p

t2

) of the produced jets as

x

1

=
p

+

1

+ p

+

2

p

+

p

=
1p
s

(|p
1t

|ey1 + |p
2t

|ey2) , x

2

=
p

�
1

+ p

�
2

p

�
A

=
1p
s

�|p
1t

|e�y1 + |p
2t

|e�y2
�
.

(2.2)
By looking at jets produced in the forward direction, we e↵ectively select those fractions to
be x

1

⇠ 1 and x

2

⌧ 1. Since the target A is probed at low x

2

, the dominant contributions
come from the subprocesses in which the incoming parton on the target side is a gluon

qg ! qg , gg ! qq̄ , gg ! gg . (2.3)

Moreover, the large-x partons of the dilute projectile are described in terms of the usual
parton distribution functions of collinear factorization f

a/p

(x
1

) while the small-x gluons of

3

i 1 2

K
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⇣
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2Nc
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2N3
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �
g/A

(x
2

, k

t

) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

k

t

= |p
1t

+ p

2t

| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2
t

= |p
1t

|2+ |p
2t

|2+
2|p

1t

||p
2t

| cos��. The validity domain of ITMD factorization is

Q

s

(x
2

) ⌧ P

t

(2.5)

where P

t

is the hard scale of the process, related to the individual jet momenta P

t

⇠
|p

1t

|, |p
2t

|. By contrast, the value of k
t

can be arbitrary.
The ITMD factorization formula reads [10]

d�

pA!dijets+X

d

2

P

t

d

2

k

t

dy

1

dy

2

=
↵

2

s

(x
1

x

2

s)2

X

a,c,d

x

1

f

a/p
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1
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1 + �

cd

2X

i=1

K
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ag

⇤!cd

(P
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, k

t

)�(i)

ag!cd

(x
2

, k

t

) . (2.6)

It involves several gluon TMDs �(i)

ag!cd

(2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K

(i)

ag

⇤!cd

. Those where computed in [10]
using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of P

t

only. The gluon TMDs are
normalized such that Z

d

2

k

t

�(i)

ag!cd

(x
2

, k

t

) = x

2

f

g/A

(x
2

) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Q

s

⇠ k

t

⌧ P

t

and to the HEF formula when Q

s

⌧ k

t

⇠ P

t

:

• The TMD factorization formula with k

t

dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K

(i)

ag

⇤!cd

(P
t

, k

t

) into

K
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⇤!cd

(P
t

, 0) ⌘ K

(i)

ag!cd

(P
t
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=
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2

s)2
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x

1
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a/p
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1

)

1 + �

cd

2X
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K
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(P
t

)�(i)
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) . (2.8)
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HOW DO WE DETERMINE WHETHER 
SATURATION EFFECTS ARE PRESENT?



USE OF NUCLEAR EFFECTS

We use the fact that in nuclei, saturation scale reaches higher values than in protons.

For the detection of saturation effects we use:
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Figure 4: Left plot: di↵erential cross section as a function of the azimuthal angle between the jets
for p+p and p+Pb collisions (rescaled by the number of nucleons). The distributions are identical
everywhere expect near �� ' ⇡, where saturation are the strongest. Right plot: nuclear
modification factors for two values of the nuclear saturation scale, providing an uncertainty
band.

For the various observables O shown below, we also consider the nuclear modification
factors defined as

R

pPb

=

d�

p+Pb

dO
A

d�

p+p

dO
. (5.1)

with A = 208 for Pb. In our approach, in the absence of saturation e↵ects, or in the case in
which they are equally strong in the nucleus and in the proton, this ratio is equal to unity.
If, however, the non-linear evolution plays a more important role in the case of the nucleus,
the R

pPb

ratio will be suppressed below 1.
We start by investigating the azimuthal correlations, with the azimuthal angle between

the jets �� defined to lie within 0 < �� < ⇡. First we compare the new ITMD approach
with previously obtained HEF results in Fig. 3. For the �� distribution in p+p collisions,
we see that at small angles where ideally they should match, there remains a small di↵erence
between the ITMD and HEF curves. As we anticipated, this is due to the initial condition
used to obtain the KS gluons. By contrast, near �� ' ⇡, we observe a large di↵erence, as
expected: the ITMD result is about a factor 3 bigger than the HEF one. The ITMD/HEF
ratio is very similar in the case of p+Pb collisions, resulting in almost identical R

pPb

for
both approaches, as also shown on the figure. For that comparison, we have parametrized
the strength of the non-linear term in the evolution equation for the Pb gluon distributions
(see (4.13)) with c = 0.5.

Next, we compare the �� distribution in p+p and p+Pb collisions in Fig. 4. After
rescaling the p+Pb cross section by the number of nucleons, we obtain identical distributions
almost everywhere. It is only for nearly back-to-back jets, around �� ' ⇡, that saturation
e↵ects induce a di↵erence. This di↵erence is better appreciated on the nuclear modification
factor, which goes from unity to 0.6, as �� varies from ⇠ 2.7 to ⇡. Two values of the
parameter c have been considered, which makes up an uncertainty band that turns out to
be rather small. This means that the uncertainty related to the value of the saturation scale
of the lead nucleus does not strongly influence the predicted R

pPb

suppression.
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When we take a look at the nuclear modification

factor with respect to the angle between the two

jets, we can see the non-linear effects as a decrease

at about ~180° when k1t~k2t.



HOW DO WE PREDICT THESE 
CROSS SECTIONS?



CROSS SECTION CALCULATION

Cross section is calculated as:

i 1 2

K

(i)
gg⇤!gg 2

⇣
s

4 + t

4 + u

4
⌘ �
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uû+ tt̂

�

sŝt̂û
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �
g/A

(x
2

, k

t

) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

k

t

= |p
1t

+ p

2t

| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2
t

= |p
1t

|2+ |p
2t

|2+
2|p

1t

||p
2t

| cos��. The validity domain of ITMD factorization is

Q

s

(x
2

) ⌧ P

t

(2.5)

where P

t

is the hard scale of the process, related to the individual jet momenta P

t

⇠
|p

1t

|, |p
2t

|. By contrast, the value of k
t

can be arbitrary.
The ITMD factorization formula reads [10]

d�

pA!dijets+X

d

2

P

t

d

2

k

t

dy

1

dy

2

=
↵

2

s

(x
1

x

2

s)2

X

a,c,d

x

1

f

a/p

(x
1

)

1 + �

cd

2X

i=1

K

(i)

ag

⇤!cd

(P
t

, k

t

)�(i)

ag!cd

(x
2

, k

t

) . (2.6)

It involves several gluon TMDs �(i)

ag!cd

(2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K

(i)

ag

⇤!cd

. Those where computed in [10]
using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of P

t

only. The gluon TMDs are
normalized such that Z

d

2

k

t

�(i)

ag!cd

(x
2

, k

t

) = x

2

f

g/A

(x
2

) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Q

s

⇠ k

t

⌧ P

t

and to the HEF formula when Q

s

⌧ k

t

⇠ P

t

:

• The TMD factorization formula with k

t

dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K

(i)

ag

⇤!cd

(P
t

, k

t

) into

K

(i)

ag

⇤!cd

(P
t

, 0) ⌘ K

(i)

ag!cd

(P
t

):

d�

pA!dijets+X

d

2

P

t

d

2

k

t

dy

1

dy

2

=
↵

2

s

(x
1

x

2

s)2

X

a,c,d

x

1

f

a/p

(x
1

)

1 + �

cd

2X

i=1

K

(i)

ag!cd

(P
t

)�(i)

ag!cd

(x
2

, k

t

) . (2.8)

4



CROSS SECTION CALCULATION

i 1 2

K

(i)
gg⇤!gg 2

⇣
s

4 + t

4 + u

4
⌘ �
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• Running coupling – fixed at 1 for our computation
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• x1 corresponds to the projectile particle, x2 to the target particle and s is the energy

of the collision
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1) Projectile gluon distribution

Is obtained from data from previous experiments.
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1) Projectile gluon distribution

Is obtained from data from previous experiments.
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K

(i)
gg⇤!qq

1

2Nc

⇣
t

2 + u

2
⌘ �
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Fig. 1. Parton distribution functions (PDFs) of a proton at the scale Q2 = 10 GeV2

plotted as functions of Bjorken x. Here xuv and xdv are the valence quark distri-
butions, xS is the sea quark distribution, and xG is the gluon distribution. Note
that the vertical axis is logarithmic.

the saturation scale Q

s

becomes larger than the QCD confinement scale
⇤
QCD

, Q
s

� ⇤
QCD

such that the strong coupling constant becomes small,

↵

s

(Q2
s

) ⌧ 1. (2)

Therefore, in the saturation regime we are dealing with a high density of
gluons and quarks inside the proton or nucleus, while at the same time
having a small coupling constant justifying the use of perturbative expansion
in the powers of ↵

s

.

2. Classical Gluon Fields

The most convenient system to study saturation dynamics appears to
be the small-x wave function of a large nucleus. From now one we will
concentrate on gluons, since they dominate over quarks at small-x as follows
from Fig. 1. The small-x gluons “see” the whole nucleus coherently in the
longitudinal direction, and can be emitted by any of the nucleons at a given
impact parameter. (Note that a gluon with k

T

� ⇤
QCD

is localized in the
transverse coordinate space and does not interact with the nucleons at other
impact parameters.) The small-x gluon can originate in any of the ⇠ A

1/3

nucleons at a given transverse position. If the nucleus is ultrarelativistic
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2) Matrix elements
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� s

�
s

2 + u

2
�

2tt̂û

Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �
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) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude
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where P
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|. By contrast, the value of k
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It involves several gluon TMDs �(i)
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(2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K
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. Those where computed in [10]
using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
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and their precise operator definitions can be found in [10].
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2) Matrix elements
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finite Nc expressions can be found in [10].
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(2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K

(i)

ag

⇤!cd

. Those where computed in [10]
using either Feynman diagram techniques, or color-ordered amplitude methods, and they
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�

t̄t̂ūûs̄ŝ
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3) Transverse momentum distributions

For these, we need to undergo several substeps.
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K

(i)
gg⇤!qq

1

2Nc

⇣
t

2 + u

2
⌘ �
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a) Scattering amplitude.

• Scattering amplitude corresponds to the cross section of the interaction of a color dipole

with proton. It is a solution of the Balitsky-Kovchegov equation.

b) Fourier transform

• We transform the scattering amplitude from the coordinate space to the momentum space

with the Fourier transform.

The derivation of this expression from the CGC framework was done in [22] the in
large-N

c

limit, and in [23] for the finite N
c

case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.

• Obtaining the HEF formula with a single gluon TMD and o↵-shell matrix elements from
Eq. 2.6 relies on the fact that up to power corrections, all the gluon TMDs coincide in
the large k

t

limit:
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the HEF formula is
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This expression is also obtained from the CGC framework in the dilute target limit [10],
and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted F

g/A

= ⇡�
g/A

due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Q

s

⌧ P

t

regardless of the value
of k

t

, any additional term compared to 2.6 should vanish in both limits Q
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and
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.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)
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, also called the dipole gluon distribution and often denoted
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(2). In the small-x
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limit, it can be related to the Fourier transform of the fundamental
dipole amplitude N
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The amplitude N

F

is defined through the CGC expectation value of the S-matrix, S

F

,
of a quark-antiquark dipole scattering o↵ the dense target: N
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and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x

2

G

(2),
should be obtained in the small-x

2
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The derivation of this expression from the CGC framework was done in [22] the in
large-N
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limit, and in [23] for the finite N
c

case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.

• Obtaining the HEF formula with a single gluon TMD and o↵-shell matrix elements from
Eq. 2.6 relies on the fact that up to power corrections, all the gluon TMDs coincide in
the large k
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This expression is also obtained from the CGC framework in the dilute target limit [10],
and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted F

g/A

= ⇡�
g/A

due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Q
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regardless of the value
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, any additional term compared to 2.6 should vanish in both limits Q
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3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)

qg!qg

, also called the dipole gluon distribution and often denoted
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F

,
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and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x
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(2),
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limit from the quadrupole operator hTr [A(x)A(y)]i
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a) Scattering amplitude.

• Scattering amplitude corresponds to the cross section of the interaction of a color dipole
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case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.
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3 The gluon TMDs in the Gaussian approximation
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c) Compute the dipole gluon distribution and Weiszacker Williams gluon distribution.

where A(x) = U

†(x)@
x

U(x), and in general is not related to F (x
2

, k

t

). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)i

x

/µ

2(x,x � y). In addition, for simplicity,
we shall work in the large-N
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limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:
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where now, S
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(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F (2)
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x
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t

), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x

2

, k

t

), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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The derivation of this expression from the CGC framework was done in [22] the in
large-N

c

limit, and in [23] for the finite N
c

case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.

• Obtaining the HEF formula with a single gluon TMD and o↵-shell matrix elements from
Eq. 2.6 relies on the fact that up to power corrections, all the gluon TMDs coincide in
the large k

t

limit:
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This expression is also obtained from the CGC framework in the dilute target limit [10],
and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted F

g/A

= ⇡�
g/A

due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Q

s

⌧ P

t

regardless of the value
of k

t

, any additional term compared to 2.6 should vanish in both limits Q

s

⇠ k

t

⌧ P
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and
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s

⌧ k

t

⇠ P

t

.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)

qg!qg

, also called the dipole gluon distribution and often denoted
x

2

G

(2). In the small-x
2

limit, it can be related to the Fourier transform of the fundamental
dipole amplitude N

F
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2

, r) where r denote the transverse size of the dipole [22, 23]:
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The amplitude N

F

is defined through the CGC expectation value of the S-matrix, S

F

,
of a quark-antiquark dipole scattering o↵ the dense target: N
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(x, r) with
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distribution can then be written in a compact form as:
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where F (x
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) is a Fourier transform of the fundamental dipole
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and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x

2

G

(2),
should be obtained in the small-x

2

limit from the quadrupole operator hTr [A(x)A(y)]i
x2

5
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c) Compute the dipole gluon distribution and Weiszacker Williams gluon distribution.

where A(x) = U

†(x)@
x

U(x), and in general is not related to F (x
2

, k

t

). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)i

x

/µ

2(x,x � y). In addition, for simplicity,
we shall work in the large-N

c

limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:
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where now, S
A

(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write S
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, where C
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and C
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are the Casimirs of the fundamental and adjoint representations of
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), respectively, and with S
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In the large N
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F (2)
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, F (1)

gg
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, and F (6)
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. The WW distribution is
not directly one of them, but in the Gaussian approximation coupled to the large-N
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limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x

2

, k

t

), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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U(x), and in general is not related to F (x
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). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)i
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2(x,x � y). In addition, for simplicity,
we shall work in the large-N
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and C
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F (2)
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, F (1)

gg

, F (2)
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, and F (6)

gg

. The WW distribution is
not directly one of them, but in the Gaussian approximation coupled to the large-N
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limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x

2

, k

t

), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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The derivation of this expression from the CGC framework was done in [22] the in
large-N

c

limit, and in [23] for the finite N
c

case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.

• Obtaining the HEF formula with a single gluon TMD and o↵-shell matrix elements from
Eq. 2.6 relies on the fact that up to power corrections, all the gluon TMDs coincide in
the large k

t

limit:
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This expression is also obtained from the CGC framework in the dilute target limit [10],
and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted F

g/A

= ⇡�
g/A

due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Q

s

⌧ P

t

regardless of the value
of k

t

, any additional term compared to 2.6 should vanish in both limits Q
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and
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.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)

qg!qg

, also called the dipole gluon distribution and often denoted
x

2

G

(2). In the small-x
2

limit, it can be related to the Fourier transform of the fundamental
dipole amplitude N

F

(x
2

, r) where r denote the transverse size of the dipole [22, 23]:
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The amplitude N

F

is defined through the CGC expectation value of the S-matrix, S

F

,
of a quark-antiquark dipole scattering o↵ the dense target: N
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(x, r) with
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distribution can then be written in a compact form as:
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where F (x
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) is a Fourier transform of the fundamental dipole
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and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x

2

G

(2),
should be obtained in the small-x

2

limit from the quadrupole operator hTr [A(x)A(y)]i
x2

5

𝑌 = 0, where 𝑌 = 𝑙𝑛 *
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d) Compute the transverse momentum distributions as a convolution of the Fourier

transform and the gluon distributions.

where A(x) = U

†(x)@
x

U(x), and in general is not related to F (x
2

, k

t

). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)i
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2(x,x � y). In addition, for simplicity,
we shall work in the large-N
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limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:

x

2

G

(1)(x
2

, k

t

) =
C

F

2↵
s

⇡

4

Z
d

2

b

Z
d

2

r

r

2

e

�ikt·r [1� S

A

(x
2

, r)] , (3.4)

where now, S
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(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write S
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In the large N

c

limit, the six gluon distributions �(i)

ag!cd

reduce to [10]:
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F (2)

qg

, F (1)

gg

, F (2)

gg

, and F (6)

gg

. The WW distribution is
not directly one of them, but in the Gaussian approximation coupled to the large-N

c

limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x

2

, k

t

), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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CROSS SECTION CALCULATION

d) Compute the transverse momentum distributions as a convolution of the Fourier

transform and the gluon distributions.

where A(x) = U

†(x)@
x

U(x), and in general is not related to F (x
2

, k

t

). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)i
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2(x,x � y). In addition, for simplicity,
we shall work in the large-N
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limit. This Gaussian approximation allows to write, among
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where now, S
A

(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write S
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gluon distribution, and four others: F (2)
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, F (1)
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, and F (6)
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. The WW distribution is
not directly one of them, but in the Gaussian approximation coupled to the large-N
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which ensures the factorization of CGC expectation values into single trace expectation
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
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, k
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), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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CROSS SECTION CALCULATION

Now we can compute the cross-section and from that the nuclear modification factor.

i 1 2

K
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⇣
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4 + t

4 + u

4
⌘ �

uû+ tt̂

�

t̄t̂ūûs̄ŝ
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �
g/A

(x
2

, k

t

) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

k

t

= |p
1t

+ p

2t

| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2
t

= |p
1t

|2+ |p
2t

|2+
2|p

1t

||p
2t

| cos��. The validity domain of ITMD factorization is

Q

s

(x
2

) ⌧ P

t

(2.5)

where P

t

is the hard scale of the process, related to the individual jet momenta P

t

⇠
|p

1t

|, |p
2t

|. By contrast, the value of k
t

can be arbitrary.
The ITMD factorization formula reads [10]
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It involves several gluon TMDs �(i)

ag!cd

(2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K

(i)

ag

⇤!cd

. Those where computed in [10]
using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of P

t

only. The gluon TMDs are
normalized such that Z
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and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Q

s
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t

and to the HEF formula when Q
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t

:

• The TMD factorization formula with k

t

dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K
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CONCLUSIONS

• The existence of saturation effects can be studied with the use of
nuclear modification factor.

• That is caused by the fact that the transverse momentum of the
outgoing back-to-back jet is similar to the nuclear saturation scale.

• These studies are all impact parameter independent. Future
incorporation of non-trivial impact parameter dependence is highly
desired, because it can have a major influence on the studied
phenomena.
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CROSS SECTION CALCULATION

e) Redefine the transverse momentum distributions in the limit of high number of

colors as:

where A(x) = U

†(x)@
x

U(x), and in general is not related to F (x
2

, k

t

). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)i

x

/µ

2(x,x � y). In addition, for simplicity,
we shall work in the large-N

c

limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:
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where now, S
A

(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write S

F

= S

2CF /CA

BK

and S
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=
S

2

BK

, where C

F

and C

A

are the Casimirs of the fundamental and adjoint representations of
SU(N
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), respectively, and with S
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denoting the solution of the BK equation. At large N
c

,
S
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(x, r)]2, and one can write:
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Then the Laplacian can be inverted as:
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In the large N

c

limit, the six gluon distributions �(i)

ag!cd

reduce to [10]:
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F (2)

qg

, F (1)

gg

, F (2)

gg

, and F (6)

gg

. The WW distribution is
not directly one of them, but in the Gaussian approximation coupled to the large-N

c

limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x

2
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x

2

, k

t

), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).

6



STUDIED PROCESSES

For x1 and x2 holds:

Therefore for y1, y2 >> 1 we obtain x1 ~ 1 a x2 << 1.

That is why we shall focus on studying back-to-back jets in the forward region in

rapidity to detect saturation effects.

a sub-set of o↵-shell matrix elements. The goal of this paper is to provide a numerical
implementation of that new formulation, dubbed improved TMD (ITMD) factorization.

The o↵-shell matrix elements needed to compute the forward di-jet process have all
been calculated in [10], but evaluating all the necessary gluon TMDs is not straightforward.
Very recently, they have been obtained from a numerical simulation of the non-linear QCD
evolution in the leading ln(1/x) approximation [23], that is from the Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) [24–28] equation. However, further work is
required before those TMDs can be incorporated into a cross section calculation. Therefore,
in the present work, we shall stick to a mean-field type approach in which all the gluon
distributions needed can be related to each other, and obtained from the simpler Balitsky-
Kovchegov (BK) equation [29, 30]. A detailed comparative study using solutions of the
di↵erent extensions of the original BK equation is left for future work. The version that we
shall use in this work is known as the KS gluon distribution [31]. It incorporates the running
of the QCD coupling, non-singular pieces (at low x) of the DGLAP splitting function, a
sea-quark contribution, and resums dominant corrections from higher orders via a kinematic
constraint [32,33].

By comparing the forward di-jet production cross sections in proton-lead and proton-
proton collisions, we can clearly see the onset of parton saturation e↵ects, as we go from
a kinematical regime in which k

t

⇠ P

t

towards one where k

t

⇠ Q

s

, and we obtain a good
estimation of the size of those e↵ects where they are the biggest, which is for nearly back-to-
back jets. We note that probing non-linear e↵ects of similar strength with single-inclusive
observables requires to make the only transverse momentum involved in those processes
of the order of the saturation scale, which may not be easy experimentally. With di-jets,
assuming P

t

⇠ 20 GeV and k

t

⇠ Q

s

⇠ 2 GeV, we can reach R

pPb

⇠ 0.5.
The paper is organized as follows. In section 2, we recall the essence and the ingredients

of the ITMD factorization formula for forward di-jets in dilute-dense collisions. In section
3, we introduce the mean-field approximation that allows us to express the various gluon
TMDs in terms of the solution of the BK equation. In section IV, we present numerical
results for the proton and lead gluon TMDs obtained with the KS gluons, and compared
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