# FORWARD DI-JET PRODUCTION AS A PROBE OF SATURATION EFFECTS

### WHAT IS SATURATION?

#### **GLUON BRANCHING**

Gluon branching – The number of gluons grows towards lower Bjorken-x values.

- Phase space inside hadron can be filled up.
- The unitarity of cross section would be violated.

Gluon recombination – High density of gluons can lead to overlapping of their wave functions and two gluons can merge into one.





# PARTON DISTRIBUTION FUNCTIONS

- xS Sea quark distribution
- xG Gluon distribution
- xu<sub>v</sub> Valence u-quark distribution
- xd<sub>v</sub> Valence d-quark distribution



We can see the contribution of gluon branching effects in parton distribution functions.

Do the gluon recombination effects also contribute?

# WHERE TO LOOK FOR SATURATION EFFECTS

- For the observation of saturation effects, we need to reach low values of Bjorken-x.
- With a fixed collision energy, lower Bjorken-x corresponds to lower values of  $Q^2$ .
- Low  $Q^2$  means low  $k_t$  of the process and therefore difficult detection.

$$x = \frac{Q^2}{2P \cdot q}$$

#### SATURATION INSIDE NUCLEUS

Furthermore, if we look at the influence of nuclear effects on saturation, we find out that



Saturation scale  $Q_s^2$  determines the momentum region where saturation effects start to dominate and suppress the distribution function.

Compared to proton, saturation scale inside a nucleus is higher due to higher overlapping because of Lorentz contraction.

These effects can be used to determine whether saturation is present in hadrons.

WHAT PROCESSES TO FOCUS ON?

#### STUDIED PROCESSES

For our computation, we focused on back-to-back jets in the forward region of rapidity.

Why?

#### STUDIED PROCESSES

Although  $p_{1t}$ ,  $p_{2t} >> Q_s$ 

$$p(p_p) + A(p_A) \to j_1(p_1) + j_2(p_2) + X$$

If we focus on back to back jets in the transverse momentum plane, we can get

$$Q_s \sim k_t \qquad \qquad k_t = |\vec{p}_{1t} + \vec{p}_{2t}|$$

Furthermore, it is necessary to reach the region where  $x_1$  is large a  $x_2 << 1$ .

 $x_2 << 1$  is necessary to detect saturation effects, large  $x_1$  is required, because in this region of Bjorken-x, we can use parton distribution functions that are known with great precision from previous experiments. This can be achieved by looking into the forward region in rapidity.

# HOW DO WE DETERMINE WHETHER SATURATION EFFECTS ARE PRESENT?

### USE OF NUCLEAR EFFECTS

We use the fact that in nuclei, saturation scale reaches higher values than in protons.

For the detection of saturation effects we use:

$$Q_s^2 \sim A^{1/3}$$

$$R_{\text{pPb}} = \frac{\frac{d\sigma^{p+Pb}}{d\mathcal{O}}}{A \frac{d\sigma^{p+p}}{d\mathcal{O}}}$$

When we take a look at the nuclear modification factor with respect to the angle between the two jets, we can see the non-linear effects as a decrease at about  $\sim 180^{\circ}$  when  $k_{1t} \sim k_{2t}$ .

# HOW DO WE PREDICT THESE CROSS SECTIONS?

Cross section is calculated as:

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

 ${f P}_t$  - Single jet transverse momentum,  $k_t$  - jet pair transverse momentum,

 $y_1, y_2$  – jet rapidities

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

Running coupling – fixed at 1 for our computation

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \alpha_s^2 \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

•  $x_1$  corresponds to the projectile particle,  $x_2$  to the target particle and s is the energy of the collision

1) Projectile gluon distribution

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} x_1 f_{a/p}(x_1) \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

Is obtained from data from previous experiments.

Projectile gluon distrit

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha}{(x_1 x_1)^2}$$

Is obtained from data fron



 $k_t$ 

#### 2) Matrix elements

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^{2} \left[ K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t) \right]$$



$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^{2} K_{ag^* \to cd}^{(i)}(P_t, k_t) P_{ag \to cd}^{(i)}(x_2, k_t)$$

Take the following form for the considered processes:

| i                                  | 1                                                                                                                                                                                   | 2                                                                                                                                                                                                         |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $K_{gg^* 	o gg}^{(i)}$             | $2\frac{\left(\overline{s}^4 + \overline{t}^4 + \overline{u}^4\right)\left(\overline{u}\hat{u} + \overline{t}\hat{t}\right)}{\overline{t}\hat{t}\overline{u}\hat{u}\bar{s}\hat{s}}$ | $-\frac{\left(\overline{s}^4 + \overline{t}^4 + \overline{u}^4\right)\left(\overline{u}\hat{u} + \overline{t}\hat{t} - \overline{s}\hat{s}\right)}{\overline{t}\hat{t}\overline{u}\hat{u}\bar{s}\hat{s}}$ |
| $K_{gg^* \to q\overline{q}}^{(i)}$ | $\frac{1}{2N_c}\frac{\left(\overline{t}^2+\overline{u}^2\right)\left(\overline{u}\hat{u}+\overline{t}\hat{t}\right)}{\overline{s}\hat{s}\hat{t}\hat{u}}$                            | $\frac{1}{2N_c^3}  \frac{\left(\overline{t}^2 + \overline{u}^2\right) \left(\overline{u}\hat{u} + \overline{t}\hat{t} - \overline{s}\hat{s}\right)}{\overline{s}\hat{s}\hat{t}\hat{u}}$                   |
| $K_{qg^* \to qg}^{(i)}$            | $-\frac{\overline{u}\left(\overline{s}^2+\overline{u}^2\right)}{2\overline{t}\hat{t}\hat{s}}$                                                                                       | $-rac{\overline{s}\left(\overline{s}^2+\overline{u}^2 ight)}{2ar{t}\hat{t}\hat{u}}$                                                                                                                      |

3) Transverse momentum distributions

$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

For these, we need to undergo several substeps.

#### a) Scattering amplitude.

• Scattering amplitude corresponds to the cross section of the interaction of a color dipole with proton. It is a solution of the Balitsky-Kovchegov equation.

$$N_F(x,\mathbf{r}) = 1 - S_F(x,\mathbf{r})$$

#### b) Fourier transform

• We transform the scattering amplitude from the coordinate space to the momentum space with the Fourier transform.

$$F(x_2, k_t) = \int \frac{d^2 \mathbf{r}}{(2\pi)^2} e^{-ik_t \cdot \mathbf{r}} S_F(x_2, \mathbf{r})$$

Scattering amplitude.

Scattering amplitude cc

h proton. It is a solut جَرِيْ

Fourier transform

We transform the scatt
 with the Fourier transfc



c) Compute the dipole gluon distribution and Weiszacker Williams gluon distribution.

$$x_{2}G^{(2)}(x_{2}, k_{t}) = \frac{N_{c} k_{t}^{2} S_{\perp}}{2\pi^{2} \alpha_{s}} F(x_{2}, k_{t})$$

$$x_{2}G^{(1)}(x_{2}, k_{t}) = \frac{C_{F}}{2\alpha_{s}\pi^{4}} \int d^{2}b \int \frac{d^{2}\mathbf{r}}{\mathbf{r}^{2}} e^{-ik_{t}\cdot\mathbf{r}} \left[1 - S_{A}(x_{2}, \mathbf{r})\right]$$

$$S_{A}(x, \mathbf{r}) = \left[S_{F}(x, \mathbf{r})\right]^{2}$$



d) Compute the transverse momentum distributions as a convolution of the Fourier transform and the gluon distributions.

$$\mathcal{F}_{qg}^{(1)}(x_{2}, k_{t}) = x_{2}G^{(2)}(x_{2}, q_{t}), 
\mathcal{F}_{qg}^{(2)}(x_{2}, k_{t}) = \int d^{2}q_{t} x_{2}G^{(1)}(x_{2}, q_{t})F(x_{2}, k_{t} - q_{t}), 
\mathcal{F}_{gg}^{(1)}(x_{2}, k_{t}) = \int d^{2}q_{t} x_{2}G^{(2)}(x_{2}, q_{t})F(x_{2}, k_{t} - q_{t}), 
\mathcal{F}_{gg}^{(2)}(x_{2}, k_{t}) = -\int d^{2}q_{t} \frac{(k_{t} - q_{t}) \cdot q_{t}}{q_{t}^{2}} x_{2}G^{(2)}(x_{2}, q_{t})F(x_{2}, k_{t} - q_{t}), 
\mathcal{F}_{gg}^{(6)}(x_{2}, k_{t}) = \int d^{2}q_{t}d^{2}q'_{t} x_{2}G^{(1)}(x_{2}, q_{t})F(x_{2}, q'_{t})F(x_{2}, k_{t} - q_{t} - q'_{t})$$



$$\frac{d\sigma^{pA \to \text{dijets} + X}}{d^2 P_t d^2 k_t dy_1 dy_2} = \frac{\alpha_s^2}{(x_1 x_2 s)^2} \sum_{a,c,d} \frac{x_1 f_{a/p}(x_1)}{1 + \delta_{cd}} \sum_{i=1}^2 K_{ag^* \to cd}^{(i)}(P_t, k_t) \Phi_{ag \to cd}^{(i)}(x_2, k_t)$$

Now we can compute the cross-section and from that the nuclear modification factor.

# NUCLEAR MODIFICATION FACTOR



#### CONCLUSIONS

- The existence of saturation effects can be studied with the use of nuclear modification factor.
- That is caused by the fact that the transverse momentum of the outgoing back-to-back jet is similar to the nuclear saturation scale.
- These studies are all impact parameter independent. Future incorporation of non-trivial impact parameter dependence is highly desired, because it can have a major influence on the studied phenomena.

#### THANK YOU FOR YOUR ATTENTION

No matter what, don't loose hope. We are all bombastic.

- Dan Nekonečný

#### REFERENCES

- Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework: A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, arXiv:1607.03121v1, 2016
- Brief Review of Saturation Physics: Yuri V. Kovchegov, arXiv:1410.7722v1 [hep-ph], 28 Oct 2014
- Gluon saturation in dijet production in p-Pb collisions at Large Hadron Collider: Krzysztof Kutak, Sebastian Sapeta, arXiv:1205.5035v3, 2012

e) Redefine the transverse momentum distributions in the limit of high number of

#### STUDIED PROCESSES

For  $x_1$  and  $x_2$  holds:

$$x_1 = \frac{1}{\sqrt{s}} (|p_{1t}|e^{y_1} + |p_{2t}|e^{y_2}), \quad x_2 = \frac{1}{\sqrt{s}} (|p_{1t}|e^{-y_1} + |p_{2t}|e^{-y_2})$$

Therefore for  $y_1, y_2 >> 1$  we obtain  $x_1 \sim 1$  a  $x_2 << 1$ .

That is why we shall focus on studying back-to-back jets in the forward region in rapidity to detect saturation effects.