Introduction to lattice QCD - Challenges and New Opportunities

Constantia Alexandrou
University of Cyprus and The Cyprus Institute

QCD - old challenges and new opportunities
HPC-LEAP
EUROPEAN JOINT DOCTORATES

Outline

(1) Motivation

- Standard Model of Elementary Particles
- QCD versus QED
(2) Introduction
- Current status of simulations
- Low-lying hadron masses
- Evaluation of matrix elements in lattice QCD
(3) Nucleon charges
- Nucleon axial charge
- The quark content of the nucleon (σ-terms)
(4) The nucleon spin decomposition
(5) Nucleon Electromagnetic and axial form factors
- Electromagnetic form factors
- Axial form factors
(6) Challenges
- Direct computation of Parton Distribution functions
- Ab Initio Nuclear Physics
(7) Conclusions

Standard model

The Standard Model (SM) is a synthesis of three of the four forces of nature described by gauge theories with coupling constants:

- Strong Interactions: $\alpha_{s} \sim 1$
- Electromagnetic interactions: $\alpha_{e m} \approx 1 / 137$
- Weak interactions: $G_{F} \approx 10^{-5} \mathrm{GeV}^{-2}$.

Basic constituents of matter:

- Six quarks, u, d, s, c, b, t, each in 3 colors, and six leptons $e, \nu_{e}, \mu, \nu_{\mu}, \tau, \nu_{\tau}$
- The quarks and leptons are classified into 3 generations of families.
- The interactions between the particles are mediated by vector bosons: the 8 gluons mediate strong interactions, the $W^{ \pm}$and Z mediate weak interactions, and the electromagnetic interactions are carried by the photon γ.
- The weak bosons acquire a mass through the Higgs mechanism.
- The SM is a local gauge field theory with the gauge group $S U(3) \times S U(2) \times U(1)$ specifying the interactions among these constituents.

Masses in the Standard Model

Masses of leptons
$6 \quad e, \mu, \tau$ $M_{\nu e}, \nu_{\mu}, \nu_{\tau}$ non-zero

Mass of $W^{ \pm}$	1	80.3 GeV
Mass of Z	1	91.2 GeV
Mass of gluons, γ		0 (Gauge symmetry)

Mass of Higgs $\left.\left.1125.03_{-0.27}^{+0.26}\right\rangle(\text { stat })_{-0.15}^{+0.13}\right\rangle($ sys $) \mathrm{GeV}$ discovered at LHC, 2012

Quantum Chromodynamics QCD

\star Theoretical description of the strong interactions

* Fundamental constituents:

6 quarks, 8 gluons (force mediators) bound states
\star Quarks \& gluons carry a color quantum number (Quarks: 3 colors)
\star Few parameters to explain the spectrum of strong interactions:

- quark masses
- coupling constant

Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction
Lagrangian: formulated in terms of quarks and gluons

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{f=u, d, s, c, b, t} \bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) \psi_{f} \\
D_{\mu} & =\partial_{\mu}-i g \frac{\lambda^{a}}{2} A_{\mu}^{a}
\end{aligned}
$$

Harald Fritzsch

Murray Gell-Mann

Heinrich Leutwyler

Phys.Lett. 47B (1973) 365-368
This "simple" Lagrangian produces the amazingly rich structure of strongly interacting matter in the universe.

Numerical simulation of QCD provides essential input for a wide class of complex strong interaction phenomena

Properties of QCD

Confinement

low energies
distances $>1 \mathrm{fm}$
non-perturbative
e.g. soft hadronic processes

Lattice QCD
hadrons and glue balls

Asymptotic freedom

distances $\ll 1 \mathrm{fm}$
perturbative QCD
quarks and gluons

D. Gross

Properties of QCD

Nobel Prize in Physics 2004
". . for the discovery of asymptotic freedom in the theory of the strong interaction"

David Gross

Frank Wilczek

David Politzer

QCD vs QED

QED

Quantum theory of electromagnetic force mediated by exchange of photons Photon couples to electric charge

Hydrogen atom

$$
m_{\text {Hydrogen }}=\underbrace{0.51 \mathrm{MeV}}_{m_{e^{-}}}+\underbrace{938.29 \mathrm{MeV}}_{m_{p}+}-\underbrace{13.6 \mathrm{eV}}_{E_{\text {binding }}}
$$

A. Stodolna et al., PRL(13)213001

QCD

Quantum theory of strong force mediated by exchange of gluons Gluon couples to color charge of quark

Proton

$$
\begin{gathered}
m_{p}=\underbrace{4.4 \mathrm{MeV}}_{2 \times m_{u}}+\underbrace{4.7 \mathrm{MeV}}_{m_{d}}+\underbrace{929.2 \mathrm{MeV}}_{\text {interaction }}=938 \mathrm{MeV} \\
99 \% \text { of mass comes from interaction! }
\end{gathered}
$$

artist's impression

QCD versus QED

Quantum Electrodynamics (QED): The interaction is due to the exchange of photons. Every time there is an exchange of a photon there is a correction in the interaction of the order of 0.01.
\rightarrow we can apply perturbation theory reaching whatever accuracy we like
$O(\alpha) \sim 0.01$

QCD: Interaction due to exchange of gluons. In the energy range of $\sim 1 \mathrm{GeV}$ the coupling constant is ~ 1
\rightarrow We can no longer use perturbation theory

QCD on the lattice

- Discrete space-time lattice acts as a non-perturbative regularization scheme with the lattice spacing a providing an ultraviolet cutoff at $\pi / a \rightarrow$ no infinities. Furthermore, renormalized physical quantities have a finite well behaved limit as $a \rightarrow 0$.
- Can be simulated on the computer using methods analogous to those used for Statistical Mechanics systems. These simulations allow us to calculate correlation functions of hadronic operators and matrix elements of any operator between hadronic states in terms of the fundamental quark and gluon degrees of freedom.

Like continuum QCD lattice QCD has as unknown input parameters the coupling constant α_{s} and the masses of the up, down, strange, charm and bottom quarks (the top quark is too short lived).
\Longrightarrow Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly from the QCD Langragian.

Lattice Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction
Lagrangian: formulated in terms of quarks and gluons

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{t=u, d, s, c, b, t} \bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) \psi_{f} \\
D_{\mu} & =\partial_{\mu}-i g \frac{\lambda^{a}}{2} A_{\mu}^{a}
\end{aligned}
$$

Choice of fermion discretisation scheme e.g. Clover, Twisted Mass, Staggered, Domain Wall, Overlap Each has its advantages and disadvantages

Eventually,

- all discretization schemes must agree in the continuum limit $a \rightarrow 0$
- observables extrapolated to the infinite volume limit $L \rightarrow \infty$

QCD on the lattice

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 performed the first numerical simulation

- Discretization of space-time with lattice spacing a and implement gauge invariance
- quark fields $\psi(x)$ and $\bar{\psi}(x)$ on lattice sites
- Introduce parallel transporter connecting point x and $x+a \hat{\mu}$: $U_{\mu}(x)=e^{i A_{\mu}(x)}$ i.e. gauge field $U_{\mu}(x)$ is defined on links \longrightarrow lattice derivative $\mathcal{D}_{\mu} \psi(x) \rightarrow \frac{1}{a}\left[U_{\mu}(x) \psi(x+a \hat{\mu})-\psi(x)\right]$
- Finite a provides an ultraviolet cutoff at $\pi / a \rightarrow$ non-perturbative regularization; Finite $L \rightarrow$ discrete momenta in units of $2 \pi / L$ if periodic b.c.
- Construct an appropriate action S and rotate into imaginary time: $S=S_{G}+S_{F}$ where $S_{F}=\sum_{x} \bar{\psi}(x) D \psi(x)$ i.e. quadratic in the fermions
\longrightarrow can be integrated out
- Path integral over gauge fields: $Z \sim \int \mathcal{D} U_{\mu}(x) \prod_{f} \operatorname{det}\left(D_{f}[U]\right) e^{-S_{G}[U]}$
\rightarrow Monte Carlo simulation to produce a representative ensemble of $\left\{U_{\mu}(x)\right\}$ using the largest supercomputers
\rightarrow Observables: $\langle\mathcal{O}\rangle=\sum_{\left\{U_{\mu}\right\}} O\left(D^{-1}, U_{\mu}\right)$

Computational resources

Juelich SuperComputing Centre, Germany
 Peak performance: 5.9 Petaflop/s 458752 cores
 Our time allocation: 65 Million core-h

Swiss National Supercomputing Centre, Switzerland
Peak performance: 7.8 PFlops/s
42176 cores
Tesla Graphic cards
Our time allocation: $\mathbf{2}$ Million node-h
(equiv. to $\mathbf{2 0 0}$ Million core-h)

Germany

Europe's Fastest GPU SuperComputer
Gauss Centre, Stuttgart,
Peak performance: 7.42 Petaflop/s
185088 cores
Our time allocation: $\mathbf{4 8}$ Million core-h

JLAB (12GeV Upgrade)

JPARC

RHIC (BNL)

FERMILAB

Rich experimental

activities in

 major facilities
ALICE

BES III

COMPASS

PSI

MAMI

With simulations at the physical point lattice QCD can provide essential input for the experimental programs.

Questions we would like to address

With simulations at the physical value of the pion mass there is a number of interesting questions we want to address:

- Can we reproduce known quantities including the excited spectrum of the nucleon and its associated resonances?
- Can we resolve the long-standing issue of the spin content of the nucleon?
- Can we determine accurately enough the charge radius of the proton?
- Can we provide input for experimental searches for new physics?

In this talk I will address two topics:

- The nucleon scalar content or σ-terms as a probe of new physics
- The nucleon spin decomposition of the nucleon
- Nucleon form factors

Status of simulations

Size of the symbols according to the value of $m_{\pi} L$: smallest value $m_{\pi} L \sim 3$ and largest $m_{\pi} L \sim 6.7$.

Hadron mass

First goal: reproduce the low-lying masses

- Use Euclidean correlation functions:

$$
\begin{aligned}
G\left(\vec{q}, t_{s}\right) & =\sum_{\vec{x}_{s}} e^{-i \vec{x}_{s} \cdot \vec{q}}\left\langle J\left(\vec{x}_{s}, t_{s}\right) J^{\dagger}(0)\right\rangle \\
& =\sum_{n=0, \cdots, \infty} A_{n} e^{-E_{n}(\vec{q}) t_{s} t_{s} \rightarrow \infty} A_{0} e^{-E_{0}(\vec{q}) t_{s}}
\end{aligned}
$$

Interpolating field with the quantum numbers of $\pi^{+}: J(x)=\bar{d}(x) \gamma_{5} u(x)$

- Large Euclidean time evolution gives ground state for given quantum numbers \Longrightarrow enables determination of low-lying hadron properties
- $a E_{\text {eff }}\left(\vec{q}, t_{s}\right)=\ln \left[G\left(\vec{q}, t_{s}\right) / G\left(\vec{q}, t_{s}+a\right)\right]$

$$
\begin{aligned}
& \left.=a E_{0}(\vec{q})+\text { excited }\right\rangle \text { states } \\
& \rightarrow a E_{0}(\vec{q}) \xrightarrow{\vec{q}=0} a m
\end{aligned}
$$

$N_{f}=2+1+1 \mathrm{TM}$ fermions at $m_{\pi}=210 \mathrm{MeV}$
$N_{t}=2$ TM plus clover fermions at physical pion mass

Hadron mass

First goal: reproduce the low-lying masses

- Use Euclidean correlation functions:

$$
\begin{aligned}
G\left(\vec{q}, t_{s}\right) & =\sum_{\vec{x}_{s}} e^{-i \vec{x}_{s} \cdot \vec{a}}\left\langle J\left(\vec{x}_{s}, t_{s}\right) J^{\dagger}(0)\right\rangle \\
& =\sum_{n=0, \cdots, \infty} A_{n} e^{-E_{n}(\vec{q}) t_{s} t_{s} \rightarrow \infty} A_{0} e^{-E_{0}(\vec{q}) t_{s}}
\end{aligned}
$$

Interpolating field with the quantum numbers of $p: J(x)=\epsilon^{a b c}\left(u^{a \top}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x)$

- Large Euclidean time evolution gives ground state for given quantum numbers \Longrightarrow enables determination of low-lying hadron properties
- $a E_{\text {eff }}\left(\vec{q}, t_{s}\right)=\ln \left[G\left(\vec{q}, t_{s}\right) / G\left(\vec{q}, t_{s}+a\right)\right]$

$$
\begin{aligned}
& \left.=a E_{0}(\vec{q})+\text { excited }\right\rangle \text { states } \\
& \rightarrow a E_{0}(\vec{q}) \xrightarrow{\vec{q}=0} a m
\end{aligned}
$$

$N_{f}=2$ TM plus clover fermions at physical pion mass
Noise to signal increases with $t_{s}: \sim e^{\left(m_{h}-\frac{3}{2} m_{\pi}\right) t_{s}}$

Hadron masses

20'-plet of spin-1/2 baryons

20-plet of spin-3/2 baryons

\Longleftarrow Two charm quarks \Longrightarrow
\Longleftarrow One charm quarks \Longrightarrow
\Longleftarrow No charm quarks \Longrightarrow

For our computation, the masses of the strange and charm quarks are fixed using the Ω^{-}and Λ_{c}^{+}.

$m_{s}^{R}=108.6(2.2) \mathrm{MeV}$ and $m_{c}^{R}=1392.6(23.5) \mathrm{MeV}$, in the $\overline{\mathrm{MS}}$-scheme at 2 GeV .

Low-lying spectrum

20 '-plet of spin-1/2 baryons

20-plet of spin-3/2 baryons

\Longleftarrow Two charm quarks \Longrightarrow
\Longleftarrow One charm quarks \Longrightarrow
\Longleftarrow No charm quarks \Longrightarrow

Using $N_{f}=2$ simulations at a physical value of the pion mass

C. Alexandrou and C. Kallidonis, Phys. Rev. D96 (2017) 034511, arXiv:1704.02647

Low-lying spectrum

20'-plet of spin-1/2 baryons

\Longleftarrow Two charm quarks \Longrightarrow
\Longleftarrow One charm quarks \Longrightarrow
\Longleftarrow No charm quarks \Longrightarrow

20-plet of spin-3/2 baryons

C. Alexandrou and C. Kallidonis, Phys. Rev. D96 (2017) 034511, arXiv:1704.02647

Evaluation of matrix elements

Three-point functions:
$G^{\mu \nu}\left(\Gamma, \vec{q}, t_{s}, t_{\text {ins }}\right)=\sum_{\vec{x}_{s}, \vec{x}_{\text {ins }}} e^{i \vec{x}_{\text {ins }} \cdot \vec{q}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \mathcal{O}_{\Gamma}^{\mu \nu}\left(\vec{x}_{\text {ins }}, t_{\text {ins }}\right) \bar{J}_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle$

Evaluation of matrix elements

Three-point functions:
$G^{\mu \nu}\left(\Gamma, \vec{q}, t_{s}, t_{\text {ins }}\right)=\sum_{\vec{x}_{s}, \vec{x}_{\text {ins }}} e^{i \vec{x}_{\text {ins }} \cdot \vec{q}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \mathcal{O}_{\Gamma}^{\mu \nu}\left(\vec{x}_{\text {ins }}, t_{\text {ins }}\right) \bar{J}_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle$

Disconnected Diagram

Evaluation of matrix elements

Three-point functions:

$$
G^{\mu \nu}\left(\Gamma, \vec{q}, t_{s}, t_{\text {ins }}\right)=\sum_{\vec{x}_{s}, \vec{x}_{\text {ins }}} e^{i \vec{x}_{\text {ins }} \cdot \vec{q}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \mathcal{O}_{\Gamma}^{\mu \nu}\left(\vec{x}_{\text {ins }}, t_{\text {ins }}\right) \bar{J}_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle
$$

Disconnected Diagram

- Plateau method:

$$
R\left(t_{s}, t_{\mathrm{ins}}, t_{0}\right) \xrightarrow[\left(t_{s}-t_{\mathrm{ins}}\right) \Delta \gg 1]{\left(t_{\mathrm{ins}}\right) \Delta \gg 1} \mathcal{M}\left[1+\ldots e^{-\Delta(\mathfrak{p})\left(t_{\mathrm{ins}}-t_{0}\right)}+\ldots e^{-\Delta\left(\mathfrak{p}^{\prime}\right)\left(t_{s}-t_{\mathrm{ins}}\right)}\right]
$$

- Summation method: Summing over $t_{\text {ins }}$:

$$
\sum_{t_{\text {ins }}=t_{0}}^{t_{s}} R\left(t_{s}, t_{\text {ins }}, t_{0}\right)=\text { Const. }+\mathcal{M}\left[\left(t_{s}-t_{0}\right)+\mathcal{O}\left(e^{-\Delta(\mathbf{p})\left(t_{s}-t_{0}\right)}\right)+\mathcal{O}\left(e^{-\Delta\left(\mathbf{p}^{\prime}\right)\left(t_{s}-t_{0}\right)}\right)\right]
$$

Excited state contributions are suppressed by exponentials decaying with $t_{s}-t_{0}$, rather than $t_{s}-t_{\text {ins }}$ and/or $t_{\text {ins }}-t_{0}$
However, one needs to fit the slope rather than to a constant or take differences and then fit to a constant L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys. B293, 420 (1987); S. Capitani et al., arXiv:1205.0180

- Fit keeping the first excited state, T. Bhattacharya et al., arXiv:1306.5435

All should yield the same answer in the end of the day!

Evaluation of matrix elements

Three-point functions:

connected contribution

- \mathcal{M} the desired matrix element
- $t_{s}, t_{\text {ins }}, t_{0}$ the sink, insertion and source time-slices
- $\Delta(\mathbf{p})$ the energy gap with the first excited state

To ensure ground state dominance need multiple sink-source time separations ranging from 0.9 fm to 1.5 fm

Nucleon isovector charges: g_{A}, g_{s}, g_{T}

- axial-vector operator: $\mathcal{O}_{A}^{a}=\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$
- scalar operator: $\mathcal{O}_{S}^{a}=\bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- pseudoscalar: $\mathcal{O}_{p}^{a}=\bar{\psi}(x) \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$
- tensor operator: $\mathcal{O}_{T}^{a}=\bar{\psi}(x) \sigma^{\mu \nu} \frac{\tau^{a}}{2} \psi(x)$
\Longrightarrow extract from matrix element: $\left.\left\langle N\left(\overrightarrow{p^{\prime}}\right) \mathcal{O}_{X} N(\vec{p})\right\rangle\right|_{q^{2}=0}$
\bullet Axial charge $g_{A} \bullet$ Scalar charge $g_{S} \bullet$ Pseudoscalar charge g_{p}, Tensor charge g_{T}
(i) isovector combination has no disconnect contributions; (ii) g_{A} well known experimentally, Goldberger-Treiman relation yields g_{p}, g_{T} to be measured at JLab, Predict g_{S}

Nucleon axial charge g_{A}

Nucleon scalar charge

- $N_{f}=2$ twisted mass plus clover, $48^{3} \times 96, a=0.093(1) \mathrm{fm}, m_{\pi}=131 \mathrm{MeV}$
- ~ 9260 statistics for $t_{s} / a=10,12,14, \sim 48000$ for $t_{s} / a=16$ and ~ 70000 for $t_{s} / a=18$
- 5 sink-source time separations ranging from 0.9 fm to 1.7 fm

At the physical point we find from the plateau method:

- $g_{A}^{\text {isov }}=1.21(3)(3), g_{S}^{\text {isov }}=0.93(25)(33), g_{T}^{\text {isov }}=1.00(2)(1)$
- g_{A} further study for larger t_{s}. Important to keep constant error
A. Abdel-Rehim et al. (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522
- New analysis of COMPASS and Belle data: $g_{T}^{u-d}=0.81$ (44), M. R. A. Courtoy, A. Bacchettad, M. Guagnellia, arXiv: 1503.03495
- For g_{s} increasing the sink-source time separation to $\sim 1.5 \mathrm{fm}$ is crucial

The quark content of the nucleon

Rotational curve of M33 galaxy

- $\sigma_{f} \equiv m_{f}\langle N| \bar{q}_{f} q_{f}|N\rangle$: measures the explicit breaking of chiral symmetry

Largest uncertainty in interpreting experiments for direct dark matter searches - Higgs-nucleon coupling depends on σ,
e.g. spin-independent cross-section can vary an order of magnitude if $\sigma_{\pi N}$ changes from 35 MeV to 60 MeV , J. Ellis, K. Olive, C. Savage, arXiv:0801.3656

- In lattice QCD:
- Feynman-Hellmann theorem: $\sigma_{l}=m_{l} \frac{\partial m_{N}}{\partial m_{l}}$

Similarly $\sigma_{s}=m_{s} \frac{\partial m_{N}}{\partial m_{s}}$, S. Dürr et al. (BMW C_{C}) Phys.Rev.Lett. 116 (2016) 172001

- Direct computation of the scalar matrix element
G. Bali, et al. (RQCD) Phys.Rev. D93 (2016) 094504, arXiv:1603.00827; Yi-Bo Yang et al. (χ QCD) Phys.Rev. D94 (2016) no.5, 054503;
A. Abdel-Rehim et al. arXiv:1601.3656, PRL116 (2016) 252001;

The quark content of the nucleon via Feynman-Hellmann

BMW Collaboration: 47 lattice ensembles with $N_{f}=2+1$ clover fermions, 5 lattice spacings down to 0.054 fm , lattice sizes up to 6 fm and pion masses down to 120 MeV .

$\sigma_{\pi N}=38(3)(3) \mathrm{MeV} \quad \sigma_{s}=105(41)(37) \mathrm{MeV}$

The quark content of the nucleon via direct determination

Need disconnected contributions

Disconnected Diagram

- RQCD: $N_{f}=2$ clover fermions with a range of pion masses down to $m_{\pi}=150 \mathrm{MeV}$ and $a=0.06-0.08 \mathrm{fm}$ G. Bali, et al., Phys.Rev. D93 (2016) 094504, arXiv:1603.00827
- χ QCD: Valence overlap fermions on $N_{f}=2+1$ flavor domain-wall fermion (DWF) configurations, 3 ensembles of $m_{\pi}=330 \mathrm{MeV}, m_{\pi}=300 \mathrm{MeV}$ and $m_{\pi}=139 \mathrm{MeV}$ Yi-Bo Yang et al., Phys.Rev. D94 (2016) no.5, 054503; M/ Gong et al., Phys. Rev. D 88 (2013) 014503 arXiv:1304.1194
- ETM Collaboration: $N_{f}=2$ twisted mass plus clover, $48^{3} \times 96, a=0.093(1) \mathrm{fm}, m_{\pi}=131 \mathrm{MeV}$, A. Abdel-Rehim et al., arXiv:1601.3656, PRL116 (2016) 252001

The quark content of the nucleon from ETMC

$N_{f}=2$ twisted mass plus clover, $48^{3} \times 96, a=0.093(1) \mathrm{fm}, m_{\pi}=131 \mathrm{MeV}$

- Connected: $t / a=10,12,149264$ statistics, $t / a=16 \sim 47,600$ statistics and $t / a=18 \sim 70,000$ statistics
- Disconnected: $\sim 213,700$ statistics
A. Abdel-Rehim et al. arXiv:1601.3656, PRL116 (2016) 252001

Our results are: $\sigma_{\pi N}=36(2) \mathrm{MeV}$

The quark content of the nucleon from ETMC

$N_{f}=2$ twisted mass plus clover, $48^{3} \times 96, a=0.093(1) \mathrm{fm}, m_{\pi}=131 \mathrm{MeV}$

- Connected: $t / a=10,12,149264$ statistics, $t / a=16 \sim 47,600$ statistics and $t / a=18 \sim 70,000$ statistics
- Disconnected: $\sim 213,700$ statistics
A. Abdel-Rehim et al. arXiv:1601.3656, PRL116 (2016) 252001

Connected

Our results are: $\quad \sigma_{\pi N}=36(2) \mathrm{MeV} \quad \sigma_{s}=37(8) \mathrm{MeV} \quad \sigma_{c}=83(17) \mathrm{MeV}$

The quark content of the nucleon

Comparison of results

G. Bali, et al., Phys.Rev. D93 (2016) 094504, arXiv:1603.00827

The quark content of the nucleon

Comparison of results

Recent results from lattice QCD at the physical point and from phenomenology. Filled symbols for lattice QCD results include simulations with pion mass close to its physical value, A. Abdel-Rehim et al. arXiv:1601.3656, PRL116 (2016) 252001

Nucleon spin

Spin sum: $\frac{1}{2}=\sum_{q} \underbrace{\left(\frac{1}{2} \Delta \Sigma^{q}+L^{q}\right)}_{\jmath^{q}}+J^{g}$
$J^{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right)$ and $\Delta \Sigma^{q}=g_{A}^{q}$

Need isoscalar g_{A}, which has disconnected contributions

- $N_{f}=2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^{3} \times 96$ and $a=0.093(1) \mathrm{fm}$
- Intrinsic quark spin: $\Delta \Sigma^{q}=g_{A}^{q}$

Nucleon spin

Spin sum: $\frac{1}{2}=\sum_{q} \underbrace{\left(\frac{1}{2} \Delta \Sigma^{q}+L^{q}\right)}_{J q}+J^{g}$
$J^{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right)$ and $\Delta \Sigma^{q}=g_{A}^{q}$

Need isoscalar g_{A}, which has disconnected contributions

Isoscalar disconnected

Strange

We find from the plateau method:

- $g_{A}^{u+d}=-0.15(2)$ (disconnected only) with 854,400 statistics
- Combining with the isovector we find: $g_{A}^{u}=0.828(21), g_{A}^{d}=-0.387(21)$
- $g_{A}^{S}=-0.042(10)$ with 861,200 statistics

Quark total spin J^{q}

Generalized parton distributions functions (GPDs) are matrix elements of light cone operators that cannot be computed directly \rightarrow Factorization leads to matrix elements of local operators:

- vector operator

$$
\left.\mathcal{O}_{V^{a}}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi}(x) \gamma^{\left\{\mu_{1}\right.} i \stackrel{\leftrightarrow}{D} \mu_{2} \ldots i \stackrel{\leftrightarrow}{D} \mu_{n}\right\} \frac{\tau^{a}}{2} \psi(x)
$$

- axial-vector operator

$$
\mathcal{O}_{A^{a}}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi}(x) \gamma^{\left\{\mu_{1}\right.} i \stackrel{\leftrightarrow}{D} \mu_{2} \ldots i \overleftrightarrow{D}^{\left.\mu_{n}\right\}} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)
$$

- tensor operator

$$
\mathcal{O}_{T^{a}}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi}(x) \sigma^{\left\{\mu_{1}, \mu_{2}\right.} i \stackrel{\leftrightarrow}{D} \mu_{3} \ldots i \overleftrightarrow{D}^{\left.\mu_{n}\right\}} \frac{\tau^{a}}{2} \psi(x)
$$

Special cases:

- no-derivative \rightarrow nucleon form factors
- For $Q^{2}=0 \rightarrow$ parton distribution functions
one-derivative \rightarrow first moments e.g. average momentum fraction $\langle x\rangle$
Generalized form factor decomposition:

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{v^{3}}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[A_{20}\left(q^{2}\right) \gamma^{\{\mu} P^{\nu\}}+B_{20}\left(q^{2}\right) \frac{i \sigma^{\{\mu \alpha} q_{\alpha} P^{\nu\}}}{2 m}+C_{20}\left(q^{2}\right) \frac{q^{\{\mu} q^{\nu\}}}{m}\right] \frac{1}{2} u_{N}(p, s)
$$

Total quark spin $J^{q}=\frac{1}{2}\left[A_{20}^{q}(0)+B_{20}^{q}(0)\right]$ and $\langle x\rangle_{q}=A_{20}^{q}(0)$

Momentum fraction $\langle\mathbf{x}\rangle_{\mathrm{u}-\mathrm{d}}$

Results for the isovector in the $\overline{\mathrm{MS}}$ at 2 GeV

Results for the connected isoscalar in the $\overline{\mathrm{MS}}$ at 2 GeV

Momentum fraction $\langle\mathbf{x}\rangle_{u-d}$

 At the physical point we find in the $\overline{\mathrm{MS}}$ at 2 GeV from the plateau method $(\mathcal{O}(860,000)$ statistics $)$:

- $\langle x\rangle_{u-d}=0.194(9)(10)$
- $\langle x\rangle_{u+d+s}=0.80(12)_{\text {stat }}(10)_{\text {syst }}$
$\langle x\rangle_{u+d+s}$ is perturbatively renormalized to one-loop due to its mixing with the gluon operator.
A. Abdel-Rehim et al. (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522

Gluon content of the nucleon

- Gluons carry a significant amount of momentum and spin in the nucleon
- Compute gluon momentum fraction: $\langle x\rangle_{g}=A_{20}^{g}$
- Compute gluon spin: $J^{g}=\frac{1}{2}\left(A_{20}^{g}+B_{20}^{g}\right)$
- Nucleon matrix of the gluon operator: $O_{\mu \nu}=-G_{\mu \rho} G_{\nu \rho}$ \rightarrow gluon momentum fraction extracted from

$\langle N(0)| O_{44}-\frac{1}{3} O_{j j}|N(0)\rangle=m_{N}\langle x\rangle_{g}$
- Disconnected correlation function, known to be very noisy
\Rightarrow we employ several steps of stout smearing in order to remove fluctuations in the gauge field
- Results are computed on the $N_{f}=2$ ensemble at the physical point, $m_{\pi}=131 \mathrm{MeV}, a=0.093 \mathrm{fm}$, $V=48^{3} \times 96$, A. Abdel-Rehim et al. (ETMC):1507.04936
- The methodology was tested for $N_{f}=2+1+1$ twisted mass at $m_{\pi}=373 \mathrm{MeV}$, c. Alexandrou, V. Drach, K . Hadjiyiannakou, K. Jansen, B. Kostrzewa, C. Wiese, PoS LATTICE2013 (2014) 289

Nucleon gluon moment-Renormalization

Mixing with $\langle x\rangle_{u+d+s} \Longrightarrow$ Perturbation theory - M. Constantinou and H. Panagopoulos

$\times Z_{q g}: \quad \Lambda_{q g}=\langle g| \mathcal{O}_{q}|g\rangle$

- $Z_{g q}: \quad \Lambda_{g q}=\langle q| \mathcal{O}_{g}|q\rangle$

$-Z_{g g}: \quad \Lambda_{g g}=\langle g| \mathcal{O}_{g}|g\rangle$

Nucleon gluon moment-Renormalization

Mixing with $\langle x\rangle_{u+d+s} \Longrightarrow$ Perturbation theory - M. Constantinou and H. Panagopoulos

$$
\begin{array}{ll}
\times Z_{q q}: & \Lambda_{q q}=\langle q| \mathcal{O}_{q}|q\rangle \\
& Z_{g g}=1+\frac{g^{2}}{16 \pi^{2}}\left(1.0574 N_{f}+\frac{-13.5627}{N_{c}}-\frac{2 N_{f}}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
\times Z_{q g}: & \Lambda_{q g}=\langle g| \mathcal{O}_{q}|g\rangle \\
& Z_{g q}=0+\frac{g^{2} C_{f}}{16 \pi^{2}}\left(0.8114+0.4434 c_{S W}-0.2074 c_{S W}^{2}+\frac{4}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
& Z_{g q}: \quad \Lambda_{g q}=\langle q| \mathcal{O}_{g}|q\rangle \\
Z_{q q}=1+\frac{g^{2}}{16 \pi^{2}}\left(-1.8557+2.9582 c_{S W}+0.3984 c_{S W}^{2}-\frac{8}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
\bullet Z_{g g}: \quad & \Lambda_{g g}=\langle g| \mathcal{O}_{g}|g\rangle \\
Z_{q g}=0+\frac{g^{2} N_{f}}{16 \pi^{2}}\left(0.2164+0.4511 c_{S W}+1.4917 c_{S W}^{2}-\frac{4}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right)
\end{array}
$$

Results for the gluon content

- 2094 gauge configurations with 100 different source positions each \rightarrow more than 200000 measurements
- Due to mixing with the quark singlet operator, the renormalization and mixing coefficients had to be extracted from a one-loop perturbative lattice calculation, M. Constantinou and H. Panagopoulos
- $\langle x\rangle_{g, \text { bare }}=0.318(24) \xrightarrow{\text { Renormalization }}$
$<x>{ }_{g}^{R}=Z_{g g}<x>_{g}+Z_{g q}<x>_{u+d+s}=0.267(12)_{\text {stat }}(10)_{\text {syst }}$. The renormalization is perturbatively done using two-levels of stout smearing. The systematic error is the difference between using one- and two-levels of stout smearing.
- Momentum sum is satisfied: $\sum_{q}\langle x\rangle_{q}+\langle x\rangle_{g}=\langle x\rangle_{u+d}^{C l}+\langle x\rangle_{u+d+s}^{D I}+\langle x\rangle_{g}=1.07(12)_{\text {stat }}(10)_{\text {syst }}$

Nucleon spin

Disconnected contribution using $\mathcal{O}(860000)$ statistics

Nucleon spin

Spin sum: $\frac{1}{2}=\sum_{q} \underbrace{\left(\frac{1}{2} \Delta \Sigma^{q}+L^{q}\right)}_{J q}+J^{g}$

$$
\begin{align*}
\frac{1}{2} \Delta \Sigma^{u}=0.415(13)(2), & \frac{1}{2} \Delta \Sigma^{d} & =-0.193(8)(3), & \tag{1}\\
J^{u}=0.308(30)(24), & J^{d} & =0.054(29)(24), &
\end{align*}
$$

We find that $B_{20}^{q}(0) \sim 0 \longrightarrow$ taking $B_{20}(0)^{g} \sim 0$ we can directly check the nucleon spin sum:

$$
J_{N}=(0.308)_{u}+(0.054)_{d}+(0.046)_{s}+(0.133)_{g}=0.54(6)(5)
$$

The proton spin puzzle

1987: the European Muon Collaboration showed that only a fraction of the proton spin is carried by the quarks \Longrightarrow ETMC has now provided the solution

Recent results from lattice QCD at the physical point
C.A. et al., Phys. Rev. Lett. (in press) arXiv:1706.02973

Electromagnetic form factors

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u_{N}(p, s) \\
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 m_{N}^{2}} F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned}
$$

- Proton radius extracted from muonic hydrogen is 7.9σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213
- Muonic measurement is ten times more accurate and a reanalysis of electron scattering data may give agreement with muonic measurement

Recent results on the electric and magnetic form factors

- ETMC using $N_{f}=2$ twisted mass fermions (TMF), $a=0.093 \mathrm{fm}, 48^{3} \times 96 G_{E}$ with $t_{s}=1.7 \mathrm{fm}$ and 66,000 statistics, G_{M} with $t_{s}=1.3 \mathrm{fm}$ and 9,300 statistics
- LHPC using $N_{f}=2+1$ clover fermions, $a=0.116 \mathrm{fm}, 48^{4}$, summation method with 3 values of t_{s} from 0.9 fm to 1.4 fm and $\sim 7,800$ statistics, 1404.4029

Recent results on the electric and magnetic form factors

- ETMC using $N_{f}=2$ twisted mass fermions (TMF), $a=0.093 \mathrm{fm}, 48^{3} \times 96$
- Connected contributions: G_{E} with $t_{s}=1.7 \mathrm{fm}$ and 66,000 statistics, G_{M} with $t_{s}=1.3 \mathrm{fm}$ and 9,300 statistics
only<1>C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou and A. Vaquero Aviles-Casco. Phys. Rev. D96 (2017) 034503, arXiv:1706.00469

Recent results on the electric and magnetic form factors

- ETMC using $N_{f}=2$ twisted mass fermions (TMF), $a=0.093 \mathrm{fm}, 48^{3} \times 96$
- Connected contributions: G_{E} with $t_{s}=1.7 \mathrm{fm}$ and 66,000 statistics, G_{M} with $t_{s}=1.3 \mathrm{fm}$ and 9,300 statistics
- Disconnected uses about 200,000 statistics
only<1>C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou and A. Vaquero Aviles-Casco. Phys. Rev. D96 (2017) 034503, arXiv:1706.00469

Strange Electromagnetic form factors

Experimental determination: Parity violating $e-N$ scattering
HAPPEX experiment finds $G_{M}^{s}(0.62)=-0.070(67)$
New methods for disconnected fermion loops: hierarchical probing, A. Stathopoulos, J. Laeuchli, K. Orginos, arXiv:1302.4018

$N_{f}=2+1$ clover fermions, $m_{\pi} \sim 320 \mathrm{MeV}$, J. Green et al., Phys.Rev. D92 (2015) 3, 031501, arXiv: 1505.01803

Sampling of the fermion propagator using site colouring schemes

Strange Electromagnetic form factors

Experimental determination: Parity violating e $-N$ scattering
HAPPEX experiment finds $G_{M}^{s}(0.62)=-0.070(67)$
R. S. Sufian et al. (χ QCD Collaboration) 1606.07075

Overlap valence on $N_{f}=2+1$ domain wall fermions, $24^{3} \times 64$, $a=0.11 \mathrm{fm}, m_{\pi}=330 \mathrm{MeV} ; 32^{3} \times 64$, $a=0.083 \mathrm{fm}, m_{\pi}=300 \mathrm{MeV}$ and $48^{3}, \mathrm{a}=0.11 \mathrm{fm}, m_{\pi}=139 \mathrm{MeV}$

Recent results on the axial form factors

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}|N(p, s)\rangle=i \sqrt{\frac{m_{N}^{2}}{E_{N}\left(\vec{p}^{\prime}\right) E_{N}(\vec{p})}} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left(\gamma_{\mu} G_{A}\left(Q^{2}\right)-i \frac{Q_{\mu}}{2 m_{N}} G_{p}\left(Q^{2}\right)\right) \gamma_{5} u_{N}(p, s)
$$

Isovector

- ETMC using $N_{f}=2$ twisted mass fermions (TMF), $a=0.093 \mathrm{fm}, 48^{3} \times 96$
- Connected contributions: G_{E} with $t_{s}=1.7 \mathrm{fm}$ and 66,000 statistics, G_{M} with $t_{s}=1.3 \mathrm{fm}$ and 9,300 statistics
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou and A. Vaquero Aviles-Casco. Phys. Rev. D, arXiv:1705.03399 [hep-lat]

Recent results on the axial form factors

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}|N(p, s)\rangle=i \sqrt{\frac{m_{N}^{2}}{E_{N}\left(\vec{p}^{\prime}\right) E_{N}(\vec{p})}} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left(\gamma_{\mu} G_{A}\left(Q^{2}\right)-i \frac{Q_{\mu}}{2 m_{N}} G_{p}\left(Q^{2}\right)\right) \gamma_{5} u_{N}(p, s)
$$

- ETMC using $N_{f}=2$ twisted mass fermions (TMF), $a=0.093 \mathrm{fm}, 48^{3} \times 96$
- Connected contributions: G_{E} with $t_{s}=1.7 \mathrm{fm}$ and 66,000 statistics, G_{M} with $t_{s}=1.3 \mathrm{fm}$ and 9,300 statistics
C. A.et al. (ETMC), Phys. Rev. D, arXiv:1705.03399 [hep-lat]

Recent results on the axial form factors

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}|N(p, s)\rangle=i \sqrt{\frac{m_{N}^{2}}{E_{N}\left(\vec{p}^{\prime}\right) E_{N}(\vec{p})}} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left(\gamma_{\mu} G_{A}\left(Q^{2}\right)-i \frac{Q_{\mu}}{2 m_{N}} G_{p}\left(Q^{2}\right)\right) \gamma_{5} u_{N}(p, s)
$$

- ETMC using $N_{f}=2$ twisted mass fermions (TMF), $a=0.093 \mathrm{fm}, 48^{3} \times 96$
- Connected contributions: G_{E} with $t_{s}=1.7 \mathrm{fm}$ and 66,000 statistics, G_{M} with $t_{s}=1.3 \mathrm{fm}$ and 9,300 statistics
- Disconnected uses about 200,000 statistics
C. A.et al. (ETMC), Phys. Rev. D, arXiv:1705.03399 [hep-lat]

Direct evaluation of parton distribution functions - an exploratory study

$$
\begin{gathered}
\left.\tilde{a}_{n}\left(x, \Lambda, P_{3}\right)=\int_{-\infty}^{+\infty} d x x^{n-1} \tilde{q}\left(x, \Lambda, P_{3}\right)\right\rangle, \\
\tilde{q}\left(x, \Lambda, P_{3}\right)=\int_{-\infty}^{+\infty} \frac{d z}{4 \pi} e^{-i z x P_{3}} \underbrace{\langle P \mid \bar{\psi}(z, 0)\rangle \gamma_{3} W(z) \psi(0,0)|P\rangle}_{h\left(P_{3}, z\right) \rightarrow \text { can be computed in } L Q C D}
\end{gathered}
$$

is the quasi-distribution defined by X. Ji Phys.Rev.Lett. 110 (2013) 262002, arXiv:1305.1539 Exploratory calculations:

- Huey-Wen Lin et al. Phys. Rev. D91 (2015) 054510, Clover on $N_{f}=2+1+1 \mathrm{HISQ}, m_{\pi}=310 \mathrm{MeV}$ and Jiunn-Wei Chen et al., arXiv:1603.06664
- C.A., K. Cichy, E. G. Ramos, V. Drach, K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese, Phys.Rev. D92 (2015) 014502
- $N_{f}=2+1+1, V=32^{3} \times 64, m_{\pi}=373 \mathrm{MeV}, a \approx 0.082 \mathrm{fm}$
- 1000 gauge configurations with 15 source positions each and 2 sets stochastic samples
$\rightarrow 30000$ measurements
- 5 steps of HYP smearing for the gauge links in the operator
- Stochastic method for the three-point functions
- Matching and mass corrections are included
- Currently under study for future applications:
- Renormalization
- A new smearing method indicates an improvement of errors that can enable us to reach larger momentum

The momentum, helicity and transversity parton distributions

- $\tilde{q}\left(x, P_{3}\right)=$ $\int_{-\infty}^{\infty} \frac{d z}{4 \pi} e^{-i z k_{3}}\langle P| \bar{\psi}(z) \gamma_{3} W_{3}(z, 0) \psi(0)|P\rangle$
- crossing relation: $\bar{q}(x)=-q(-x)$
- negative $x \Rightarrow \bar{d}-\bar{u}$

- $\Delta q(x)=q^{\uparrow}(x)-q^{\downarrow}(x)$
- $\Delta \tilde{q}\left(x, P_{3}\right)=$ $\int_{-\infty}^{\infty} \frac{d z}{4 \pi} e^{-i z k_{3}}\langle P| \bar{\psi}(z) \gamma_{5} \gamma_{3} W_{3}(z, 0) \psi(0)|P\rangle$
- crossing relation: $\Delta \bar{q}(x)=\Delta q(-x)$
- negative x region $\Rightarrow \Delta \bar{u}-\Delta \bar{d}$

- $\delta q(x)=q^{\top}(x)-q^{\perp}(x)$
- $\delta \tilde{q}\left(x, P_{3}\right)=$ $\int_{-\infty}^{\infty} \frac{d z}{4 \pi} e^{-i z k_{3}}\langle P| \bar{\psi}(z) \gamma_{j} \gamma_{3} W_{3}(z, 0) \psi(0)|P\rangle$
- crossing relation: $\delta \bar{q}(x)=-\delta q(-x)$
- negative x region $\Rightarrow \delta \bar{d}-\delta \bar{u}$

C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Steffens and C. Wiese, arXiv:1610.03689 [hep-lat]

Challenges: Ab Initio Nuclear Physics?

From the $q \bar{q}$ potential to the determination of nuclear forces

K. Schilling, G. Bali and C. Schlichter, 1995

Challenges: Ab Initio Nuclear Physics?

From the $q \bar{q}$ potential to the determination of nuclear forces

K. Schilling, G. Bali and C. Schlichter, 1995

A.I. Signal, F.R.P. Bissey and D. Leinweber, arXiv:0806.0644

Challenges: Ab Initio Nuclear Physics?

From the $q \bar{q}$ potential to the determination of nuclear forces

Two approaches:

- Determine N-N energy as a function of $L \rightarrow$ extract phase shift - NPQCD
- Detemine BS wave function $\langle 0| N(\vec{r}) N(\overrightarrow{0})|N N\rangle$ and exract asymptotically the phase shift - HALQCD
\rightarrow study nuclear physics, neutron stars, ...
Only at the begining...

Challenges: Ab Initio Nuclear Physics?

T.Yamazaki, K. Ishikawa, Y. Kuramashi, A. Ukawa, 1502.04182

Deuteron and nn (${ }^{1} S_{0}$ channel) binding energy, k . Orginos et al. 1508.07583

Only at the begining...

Conclusions and Future Perspectives

- Computation of $g_{A},\langle x\rangle_{u-d}$, etc, at the physical point allows direct comparison with experiment
- Provide predictions for g_{s}, g_{T}, tensor moment, σ-terms, etc.
- Resolution of the spin decomposition of the nucleon

A number of collaborations are now using simulations with close to physical values of the pion mass to:

- Compute gluonic observables
- Study excited states and resonances and scattering lengths
- Hadon-hadron interactions and multi-nucleon systems
- ...

European Joint doctorate

APPLY NOW

15 Ph.D. positions for European Joint Doctorates

Applications are welcome from candidates worldwide with a scientific background and a keen interest in simulation and data science.

Multidisciplinary projects

- Computational Biology
- Computational Fluid Dynamics
- Lattice Quantum Chromodynamics

- Mathematical Modelling and Algorithm

3 degrees in 1

The successful candidates will obtain a single joint Ph.D. degree from three academic institutions.

Marie Sklodowska-Curie Ph.D. fellowships

An attractive remuneration package is offered including salary, mobility and family allowances.

Deadline for applications

$15^{\text {th }}$ of December 2017
For further information on admissions, requirements and eligibility criteria please visit our website www.stimulate-ejd.eu and find STIMULATE on social media if in

European Twisted Mass Collaboration

 European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:
A. Abdel-Rehim, S. Bacchio, K. Cichy, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K.Jansen, Ch. Kallidonis, G. Koutsou, K. Ottnad, M. Petschlies, F. Steffens, A. Vaquero, C. Wiese

Backup slides

Bibliography

(1) J. W. Negele, QCD and Hadrons on a lattice, NATO ASI Series B: Physics vol. 228, 369, eds. D. Vautherin, F. Lenz and J.W. Negele.
(2) M. Lüscher, Advanced Lattice $Q C D$, Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions, Les Houches 1997, 229, hep-lat/9802029.
(3) R. Gupta, Introduction to Lattice QCD, hep-lat/9807028.
(4) P. Lepage, Lattice for Novices, hep-lat/0506036.
(5) H. Wittig, Lecture week, SFB/TR16, 3-7 Aug. 2009, Bonn.
(6) H. J. Rothe, Quantum Gauge Theories: An introduction, World Scientific, 1997.
(7) I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge University Press, 1994.
(8) C.Gattringer and C. B. Lange, Quantum Chromodynamics on the Lattice - An Introductory Presentation, Springer, 2009.

Metropolis Algorithm

We need an algorithm to to create our set of random paths $x^{(\alpha)}$ with probability $\frac{e^{-S[x]}}{Z}$, where $Z=\int \mathcal{D}[x(t)] e^{-S[x]}$.
\Longrightarrow a simple procedure, though not always the best, is the Metropolis Algorithm:

- Start with an arbitrary path $x^{(0)}$
- Modify by visiting each of the sites on the lattice, and randomizing the x_{j} 's at those sites, one at a time, in a particular fashion as described below \rightarrow generate a new random path from the old one: $x^{(0)} \rightarrow x^{(1)}$. This is called "updating" the path.
- Apply to $x^{(1)}$ to generate path $x^{(2)}$, and so on until we have $N_{c f}$ random paths.

The algorithm for randomizing x_{j} at the $j^{\text {th }}$ site is:

- Generate a random number $-\epsilon<\zeta \leq \epsilon$, with uniform probability;
- Let $x_{j} \rightarrow x_{j}+\zeta$ and compute the change ΔS in the action;
- If $\Delta S<0$ retain the new value for x_{j}, and proceed to the next site;
- If $\Delta S>0$ accept change with probability $\exp (-\Delta S)$ i.e. generate a random number η uniformly distributed between 0 and 1 ; retain the new value for x_{j} if $\exp (-\Delta S)>\eta$, otherwise restore the old value; proceed to the next site.

Comments:

- Choice of ϵ : should be tuned so that $40 \%-60 \%$ of the x_{j} 's are changed on each pass (or "sweep") through the lattice. Then ϵ is of order the typical quantum fluctuations expected in the theory. Whatever the ϵ, successive paths are going to be quite simitar and so contain rather simitar information about the theory. Thus when we accumulate random paths $x^{(\alpha)}$ for our Monte Carlo estimates we should keep only every $N_{\text {cor }}$-th path; the intervening sweeps erase correlations, giving us configurations that are statistically independent. The optimal value for $N_{\text {cor }}$ depends upon the theory, and can be found by experimentation. It also depend's on the lattice spacing a.
- Initial configuration: Guess the first configuration \rightarrow discard some number of configurations at the beginning, before starting to collect $\chi^{(\alpha)}$'s. This is called "thermalizing the lattice.

Metropolis Algorithm

We need an algorithm to to create our set of random paths $x^{(\alpha)}$ with probability $\frac{e^{-S[x]}}{Z}$, where $Z=\int \mathcal{D}[x(t)] e^{-S[x]}$.
\Longrightarrow a simple procedure, though not always the best, is the Metropolis Algorithm:

- Start with an arbitrary path $x^{(0)}$
- Modify by visiting each of the sites on the lattice, and randomizing the x_{j} 's at those sites, one at a time, in a particular fashion as described below \rightarrow generate a new random path from the old one: $x^{(0)} \rightarrow x^{(1)}$. This is called "updating" the path.
- Apply to $x^{(1)}$ to generate path $x^{(2)}$, and so on until we have $N_{c f}$ random paths.

The algorithm for randomizing x_{j} at the $j^{\text {th }}$ site is:

- Generate a random number $-\epsilon<\zeta \leq \epsilon$, with uniform probability;
- Let $x_{j} \rightarrow x_{j}+\zeta$ and compute the change ΔS in the action;
- If $\Delta S<0$ retain the new value for x_{j}, and proceed to the next site;
- If $\Delta S>0$ accept change with probability $\exp (-\Delta S)$ i.e. generate a random number η uniformly distributed between 0 and 1 ; retain the new value for x_{j} if $\exp (-\Delta S)>\eta$, otherwise restore the old value; proceed to the next site.

Comments:

- Choice of ϵ : should be tuned so that $40 \%-60 \%$ of the x_{j} 's are changed on each pass (or "sweep") through the lattice. Then ϵ is of order the typical quantum fluctuations expected in the theory. Whatever the ϵ, successive paths are going to be quite similar and so contain rather similar information about the theory. Thus when we accumulate random paths $x^{(\alpha)}$ for our Monte Carlo estimates we should keep only every $N_{\text {cor }}$-th path; the intervening sweeps erase correlations, giving us configurations that are statistically independent. The optimal value for $N_{\text {cor }}$ depends upon the theory, and can be found by experimentation. It also depends on the lattice spacing a.
- Initial configuration: Guess the first configuration \rightarrow discard some number of configurations at the beginning, before starting to collect $x^{(\alpha)}$'s. This is called "thermalizing the lattice."

Gauge degrees of freedom

In the continuum a fermion moving from site x to y in the presence of a gauge field $A_{\mu}(x)$ picks up a phase factor given by the path ordered product

$$
\psi(y)=\mathcal{P} e^{i \int_{x}^{y} g A_{\mu}(x) d x_{\mu}} \psi(x)
$$

\Longrightarrow associate gauge fields with links that connect sites on the lattice. So, with each link associate a discrete version of the path ordered product:

$$
U(x ; x+\hat{\mu}) \equiv U_{\mu}(x)=e^{i a g A_{\mu}(x)}
$$

U is a 3×3 unitary matrix with unit determinant. It follows that

$$
U(x ; x-\hat{\mu}) \equiv U_{-\mu}(x)=e^{-i a g A_{\mu}(x)}=U^{\dagger}(x-\hat{\mu} ; x)
$$

Local gauge symmetry

The effect of a local gauge transformation $V(x)$ on the variables $\psi(x)$ and U is defined as

$$
\begin{aligned}
& \psi(x) \rightarrow V(x) \psi(x) \\
& \bar{\psi}(x) \rightarrow \\
& U_{\mu}(x) \rightarrow \\
& V(x) V^{\dagger}(x) \\
& V(x) U_{\mu}(x) V^{\dagger}(x+\hat{\mu})
\end{aligned}
$$

where $V(x)$ is in the same representation as the $U_{\mu}(x)$, i.e., it is an $S U(3)$ matrix. With these definitions there are two types of gauge invariant objects that one can construct on the lattice.

- A string consisting of a path-ordered product of links capped by a fermion and an antifermion e.g.

$$
\operatorname{Tr} \bar{\psi}(x) U_{\mu}(x) U_{\nu}(x+\hat{\mu}) \ldots U_{\rho}(y-\hat{\rho}) \psi(y)
$$

where the trace is over the color indices.
If the string stretches across the lattice and is closed by the periodicity are called Polyakov lines.

- The simplest example of closed Wilson loops is the plaquette, a 1×1 loop,

$$
W_{\mu \nu}^{1 \times 1}=P_{\mu \nu}(x)=\operatorname{Re} \operatorname{Tr}\left(U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)\right)
$$

Preserve gauge invariance at all $a \rightarrow$ protects from having many more parameters to tune (the zero gluon mass, and the equality of the quark-gluon, 3-gluon, and 4-gluon couplings) and there would arise many more operators at any given order in a.

$\mathrm{U}(1)$ gauge theory

Consider a Lagrangian of a complex field $\phi: L=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-V\left(\phi^{*}, \phi\right)$. If we require that the Lagrangian is invariant under a local gauge transformation $\phi^{\prime}(x)=e^{-i \alpha(x)} \phi(x)$ then we need a field $A_{\mu}(x)$ to compensate the change in the derivative $\partial_{\mu} \phi$ that transforms as

$$
A_{\mu}^{\prime}(x)=A_{\mu}(x)+\frac{1}{g} \partial_{\mu} \alpha(x) \partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i g A_{\mu}(x)
$$

The gauge invariant Lagrangian is written as

$$
L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*} D_{\mu} \phi-V\left(\phi^{*}, \phi\right)
$$

A scalar moving from site x to y in the presence of a gauge field $A_{\mu}(x)$ picks up a phase factor given by

$$
U(x ; y)=e^{i g \int_{x}^{y} d x_{\mu} A^{\mu}(x)}
$$

which removes the phase between the value of the field at the two points and yields a gauge invariant result.

The action is defined in terms of link variables assigned to links between sites of the space-time lattice.
The link variable from site n in the μ direction to site $n+a \hat{e}_{\mu}$ is defined as the discrete approximation to the integral $e^{i g \int_{n}^{n+\mu}}: U_{\mu}(n)=e^{i \theta \mu(n)}$ with $\theta_{\mu}(n)$ the approximation of $g \int_{n}^{n+\mu} d x_{\mu} A^{\mu}(x)$.
The integral over the field variables is the invariant group measure for $U(1)$:
 $\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta$.
The action is the sum of all plaquettes $P_{\mu \nu}=U(n)_{\mu} U_{\nu}(n+\mu) U_{\mu}^{\dagger}(n+\nu) U_{\nu}^{\dagger}(n)$.
For U(1): $P_{\mu \nu}(n)=e^{i \theta_{\mu}(n)} e^{i \theta_{\nu}(n+\mu)} e^{-i \theta_{\mu}(n+\mu)} e^{-i \theta_{\nu}(n)} \equiv e^{i B_{\mu \nu}}, B_{\mu \nu}=\Delta_{\mu} \theta_{\nu}-\Delta_{\nu} \theta_{\mu} \xrightarrow{a \rightarrow 0} F_{\mu \nu}$.

Lattice action of $\mathrm{U}(1)$

Since a plaquette produces $F_{\mu \nu}$ the action can be constructed by choosing a function of the plaquette such that it generates $F_{\mu \nu}^{2}$ in the continuum limit.

$$
S=\beta \sum_{n} \sum_{\mu>\nu}\left(1-\operatorname{Re} P_{\mu \nu}(n)\right)=\beta \sum_{n} \sum_{\mu>\nu}\left(1-\cos B_{\mu \nu}\right)
$$

where $\beta=\frac{1}{g^{2}}$ and $B_{\mu \nu}=\Delta_{\mu} \theta_{\nu}-\Delta_{\nu} \theta_{\mu} \xrightarrow{a \rightarrow 0} F_{\mu \nu}$.
In the limit $a \rightarrow 0$ we recover continuum QED:
Taking $\theta_{\mu}(n)=a g A_{\mu}(n)$ and expanding $\theta_{\nu}\left(n+\hat{e}_{\mu} a\right)=\theta_{\nu}(n)+a \partial_{\mu} \theta_{\nu}(n)+\mathcal{O}\left(a^{2}\right)$

$$
\begin{aligned}
S & \sim \frac{1}{g^{2}} \sum_{P}\left[1-\cos \left(a \partial_{\mu} \theta_{\nu}-a \partial_{\nu} \theta_{\mu}\right)\right]=\frac{1}{g^{2}} \sum_{P}\left[1-\cos \left(a^{2} g F_{\mu \nu}\right)\right]=\frac{1}{g^{2}} \sum_{n} \sum_{\mu>\nu}\left[\frac{a^{4} g^{2}}{2} F_{\mu \nu}^{2}+\cdots\right] \\
& \rightarrow \frac{1}{4} \int d^{4} x F_{\mu \nu}^{2}(x)
\end{aligned}
$$

Path integral for QED

The Hamiltonian does not constrain the charge state of the system \rightarrow project the states appearing in the path integral onto the space satisfying $\vec{\nabla} \cdot \vec{E}=\rho$ where ρ is the background charge. This is done by including in the path integral the δ-function:

$$
\int \mathcal{D} \chi e^{i \int d x d t \chi(\vec{\nabla} \cdot \vec{E}-\rho)}
$$

Consider $A_{0}=0$ and replacing $x \rightarrow A$ and the momentum $\rightarrow E$ in the coordinate path-integral we have

$$
\begin{aligned}
Z & =\int \mathcal{D} \chi \mathcal{D} \vec{A} \mathcal{D} \vec{E} e^{\int d x d t\left[i \vec{E} \cdot \vec{A}-\frac{1}{2}\left(E^{2}+B^{2}\right)+i \chi(\vec{\nabla} \cdot \vec{E}-\rho)\right]} \\
& =\int \mathcal{D} \chi \mathcal{D} \vec{A} e^{-\int d x d t\left[\frac{1}{2}\left((\vec{A}-\vec{\nabla} \chi)^{2}+B^{2}-i \chi \rho\right)\right]}
\end{aligned}
$$

Rename $\chi=A_{0}$ and take $\rho(x)=\sum_{n} q_{n} \delta\left(x-x_{n}\right)$

$$
Z=\int \mathcal{D} A_{\mu} e^{-\int d x d t} \frac{1}{4} F_{\mu \nu}^{2} \prod_{n} e^{-i q_{n} \int d t A_{0}\left(x_{n}, t\right)}
$$

\Longrightarrow we obtain the Lagrangian path integral with a line of $\pm A_{0}$ fields at the positions of the fixed external \pm charges.

