ALICE: SOFT QCD PROBES

MICHAEL WEBER (SMI, VIENNA) WE HERAEUS PHSYICS SCHOOL 24.-30.09.2017

ÖSTERREICHISCH AKADEMIE DER WISSENSCHAFTEN

- Introduction
- QCD at extreme conditions
- Heavy Ion collisions
- Soft probes
- Initial energy density
- Chemical freeze-out
- Kinetic freeze-out
- Radial flow
- Anisotropic flow
- Small systems

CHALLENGES IN QCD

CC by-nc-nd | www.weltderphysik.de

Confinement
Generation of hadron masses

Non-perturbative QCD / dynamics

QCD AT EXTREME CONDITIONS

- Interactions between quarks and gluons become weaker at small distances and for large momentum transfers \rightarrow "deconfined" phase of QCD matter by creating a high density/temperature extended system composed by quarks and gluons

Weakly coupled Quark-Gluon Plasma E.V. Shuryak, Phys. Lett. B,
vol. 78 , page 150, 1978.

- First sketch of phase diagram in that sense date back to the '70s
- But ideas of critical densities are even older (Pomeranchuk '50s, Hagedorn '60s)

Fig. 1. Schematic phase diagram of hadronic matter. ρ_{B} is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

"Experimental hadronic spectrum and quark liberation"
Cabibbo and Parisi Phys.Lett. 59 B,67(1975)
\rightarrow Phase transition at large T and/or ρ_{B}

LATTICE QCD - PHASE TRANSITION

- increase in the number of d.o.f. from pion gas (3 d.o.f., corresponding to π^{+}, π^{-}, π^{0}) to deconfined phase leads to increase in energy density
- no sharp phase transition but cross-over
- Critical temperature T_{c} between 140 and 200 MeV (energy density between 0.2 and $1.8 \mathrm{GeV} / \mathrm{fm}^{3}$), compare to MIT bag model: $\mathrm{T}_{\mathrm{c}} \approx 150 \mathrm{MeV}$ and $\varepsilon_{\mathrm{c}} \approx 0.6$ $\mathrm{GeV} / \mathrm{fm}^{3}$

Heavy Ion collisions

A laboratory to test QCD at extreme conditions

HEAVY ION COLLISIONS

HEAVY ION COLLISIONS

HEAVY ION COLLISIONS

HEAVY ION COLLISIONS

ALICE (A LARGE ION COLLIDER EXPERIMENT)

42 countries, 176 institutes, 1800 members

 with $\theta=$ angle to beam axis; additive in relativity

- extremely low-mass tracker $\sim 10 \%$ of X_{0}
- efficient low-momentum tracking, down to $\sim 100 \mathrm{MeV} / \mathrm{c}$

ALICE

Peripheral Collision Semi-Central Collis Central Collision

- particle identification (practically all known techniques)
- excellent vertexing capability

ONE HEAVY ION COLLISION

= several 1000 charged particles in the detector in central collisions!

Estimate of energy density

ENERGY DENSITY

- Can we estimate the energy density reached in the collision ?
- Important quantity: directly related to the possibility of observing the deconfinement transition (foreseen for $\varepsilon \geq 1 \mathrm{GeV} / \mathrm{fm}^{3}$)
- Consider colliding nuclei as thin pancakes (Lorentz-contraction) which, after crossing, leave an initial volume with a limited longitudinal extension, where the secondary particles are produced

Bjorken estimate:

$\langle\varepsilon\rangle(\tau)=\frac{1}{\tau \pi R^{2}} \frac{\mathrm{~d} E_{\mathrm{T}}}{\mathrm{d} y}$
Bjorken, PRD 27 (1983) 140

- System undergoes rapid evolution, use $1 \mathrm{fm} / \mathrm{c}$ as an upper limit for the time needed for "thermalisation"
- $R^{2}=r_{0}{ }^{2} A^{2 / 3}=(1.25 \mathrm{fm})^{2}$ * $208^{2 / 3}$ for Pb
- $E_{T}=m_{T} \cosh y \sim m_{T}$ (for $\left.y \sim 0\right)$
- Assume $<\mathrm{m}_{\mathrm{T}}>\sim 0.5 \mathrm{GeV}$ (see later)
- $\mathrm{dE}_{\mathrm{T}} / \mathrm{dy} \sim<\mathrm{m}_{\mathrm{T}}>\mathrm{dN} / \mathrm{dy}$

MEASURE PARTICLE MULTIPLICITY DENSITY

ALI-PUB-104920

$$
\begin{aligned}
& \operatorname{AGS}(\mathrm{Au}-\mathrm{Au}): \sqrt{s_{N N}}=5 \mathrm{GeV} \Rightarrow \varepsilon_{B j}=1.5 \mathrm{GeV} / \mathrm{fm}^{3} \\
& \operatorname{SPS}(\mathrm{~Pb}-\mathrm{Pb}): \sqrt{s_{N N}}=17 \mathrm{GeV} \Rightarrow \varepsilon_{B j}=2.9 \mathrm{GeV} / \mathrm{fm}^{3} \\
& \operatorname{RHIC}(\mathrm{Au}-\mathrm{Au}): \sqrt{s_{N N}}=200 \mathrm{GeV} \Rightarrow \varepsilon_{B j}=5.4 \mathrm{GeV} / \mathrm{fm}^{3}
\end{aligned}
$$

Centrality	$\left\langle\mathrm{d} N_{\text {ch }} / \mathrm{d} \eta\right\rangle$	$\left\langle N_{\text {part }}\right\rangle$	$\frac{2}{\left\langle N_{\text {part }}\right\rangle}\left\langle\mathrm{d} N_{\text {ch }} / \mathrm{d} \eta\right\rangle$
$0-2.5 \%$	2035 ± 52	398 ± 2	10.2 ± 0.3
$2.5-5.0 \%$	1850 ± 55	372 ± 3	9.9 ± 0.3
$5.0-7.5 \%$	1666 ± 48	346 ± 4	9.6 ± 0.3
$7.5-10 \%$	1505 ± 44	320 ± 4	9.4 ± 0.3
$10-20 \%$	1180 ± 31	263 ± 4	9.0 ± 0.3
$20-30 \%$	786 ± 20	188 ± 3	8.4 ± 0.3
$30-40 \%$	512 ± 15	131 ± 2	7.8 ± 0.3
$40-50 \%$	318 ± 12	86.3 ± 1.7	7.4 ± 0.3
$50-60 \%$	183 ± 8	53.6 ± 1.2	6.8 ± 0.3
$60-70 \%$	96.3 ± 5.8	30.4 ± 0.8	6.3 ± 0.4
$70-80 \%$	44.9 ± 3.4	15.6 ± 0.5	5.8 ± 0.5

- With LHC data one gets $\varepsilon \sim 18 \mathrm{GeV} / \mathrm{fm}^{3}$
- Leads to densities above deconfinement transition (also at AGS)
- Caveat: only necessary not sufficient condition for QPG
- Warning: τ_{f} is expected to decrease when increasing $\sqrt{ }$ s

Particle yields

Are particles produced as expected from a grand canonical system in chemical equilibrium?

CHEMICAL COMPOSITION OF THE FIREBALL

- measure the multiplicity of the various particles produced in the collision \rightarrow chemical composition
- The chemical composition of the fireball is sensitive to
- Degree of equilibrium of the fireball at (chemical) freeze-out
- Temperature $\mathrm{T}_{\text {ch }}$ at chemical freeze-out
- Net-Baryonic content of the fireball

- This information is obtained through the use of statistical models
- Thermal and chemical equilibrium at chemical freeze-out assumed
- Write partition function and use statistical mechanics (grand-canonical ensemble) \rightarrow assume hadron production is a statistical process
- System described as an ideal gas of hadrons and resonances
- Follows original ideas by Fermi (1950s) and Hagedorn (1960s)

PARTICLE RATIOS AT LHC

- Ratios well described over 7 orders of magnitude
- Small disagreement for p / π (only 2.8σ) may point to the relevance of other effects at LHC like:
- Rescattering in hadronic phase
- Non-equilibrium effects
- Flavor-dependent freeze-out

$$
\text { Minimum } \mathrm{X}^{2} \text { for : } \mathrm{T}_{\mathrm{ch}}=156 \pm 2 \mathrm{MeV} \text { and } \mu_{\mathrm{B}}=0 \mathrm{MeV} \text { (fixed) }
$$

PARTICLE SPECTRA

- Exponential behavior at low p_{T}, in pp collisions
- ~ Identical for all hadrons
- Transverse mass (m_{T}) scaling $\frac{\mathrm{d} N}{m_{\mathrm{T}} \mathrm{d} m_{\mathrm{T}}} \propto e^{-\frac{m_{\mathrm{T}}}{T_{\text {slope }}}}\left(m_{\mathrm{T}}^{2}=m_{0}^{2}+p_{\mathrm{T}}^{2}\right)$

THERMAL SOURCE

Small shape difference when plotting vs. p_{T} instead of m_{T}

- Evolution of p_{T} spectra vs $T_{\text {slope }}$, higher T implies "flatter" spectra
- $\mathrm{T}_{\text {slope }}$ can be interpreted as the temperature at the time when kinetic interactions between particles ended
- Kinetic freeze-out temperature (T_{fo})

COLLECTIVE RADIAL EXPANSION

- high pressures generated when nuclear matter is heated and compressed \rightarrow Flow: collective motion of particles superimposed to thermal motion
- Due to the Flux velocity of an element of the system is given by the sum of the velocities of the particles in that element
- Collective flow is a correlation between the velocity v of a volume element and its space-time position

COLLECTIVE RADIAL EXPANSION

$$
\mathrm{T}_{\text {slope }} \sim \mathrm{T}_{\mathrm{fo}}+1 / 2 \mathrm{mv}_{\mathrm{T}}^{2}
$$

RADIAL FLOW AT LHC

- hardening of the spectrum with increasing centrality - more pronounced for the heavier protons than for pions.

RADIAL FLOW AT LHC

- Hydro models work reasonably well
- Blast-Wave fits ("simplified hydro model") to p_{T} spectra, parameters:
\rightarrow Radial flow velocity $\langle\beta>\approx 0.65$
\rightarrow Kinetic freeze-out temp. $\mathrm{T}_{\mathrm{fo}} \approx 90 \mathrm{MeV}$

Anisotropic flow

Did we create "matter" (collectivity)?
What are its properties?

COLLECTIVE EXPANSION

Macroscopic - hydrodyn̋amic picture

Spatial anisotropy (eccentricity) of nuclear overlap zone

COLLECTIVE EXPANSION

Macroscopic - hydrodyñamic picture

Spatial anisotropy (eccentricity) of nuclear overlap zone

Azimuthal pressure gradients (w.r.t. reaction plane)

Instead of:

COLLECTIVE EXPANSION

Macroscopic - hydrodyn̋amic picture

Spatial anisotropy (eccentricity) of nuclear overlap zone

Azimuthal pressure gradients (w.r.t. reaction plane)

Momentum space anisotropy

NULL HYPOTHESIS: NON INTERACTING PARTICLES

Spatial anisotropy (eccentricity) of nuclear overlap zone

Uniform particle density

ANISOTROPIC FLOW

Eccentricity $\epsilon_{\text {std }}=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}$

Fourier decomposition:

$$
\frac{d N}{d \varphi} \propto 1+2 v_{1} \cos \left[\varphi-\Psi_{1}\right]+2 v_{2} \cos \left[2\left(\varphi-\Psi_{2}\right)\right]+2 v_{3} \cos \left[3\left(\varphi-\Psi_{3}\right)\right]+. .
$$

Elliptic flow parameter:

$$
v_{2}=\left\langle\cos \left(2 \varphi-2 \Psi_{R}\right)\right\rangle
$$

ANISOTROPIC FLOW

Eccentricity?

Initial energy density?
Event-by-event fluctuations?

Medium transport parameters?

Hadronic phase?

Elliptic flow parameter:

$$
v_{2}=\left\langle\cos \left(2 \varphi-2 \Psi_{R}\right)\right\rangle
$$

ANISOTROPIC FLOW IN HEAVY ION EXPERIMENTS

ALICE, Phys Rev Lett 116 (2016) 132302

MICROSCOPIC PICTURE

Parton transport model:
 Boltzmann equation with 2-to-2 gluon processes

- HUGE (hadronic) cross sections needed to describe v_{2}
- Macroscopic description possible?

$$
\begin{aligned}
& 1 / \lambda=n \sigma \\
& K n=\lambda / L \ll 1
\end{aligned}
$$

MACROSCOPIC: HYDRODYNAMIC MODELS

- Hydrodynamics works for all systems with short mean free path (compared to size scales of interest)

- Ingredients:
- Equation of state $p\left(\varepsilon, \rho_{B}\right)$: from lattice QCD
- Initial conditions (energy density in fluid cells): e.g. taking into account gluon saturation
- Values of transport coefficients of QCD: e.g. shear viscosity
- Freeze-out and conversion of energy densities into particles (after hydrodynamic evolution)

BACK TO THE MEASUREMENT

$\frac{d N}{d \varphi} \propto 1+2 v_{1} \cos \left[\varphi-\Psi_{1}\right]+2 v_{2} \cos \left[2\left(\varphi-\Psi_{2}\right)\right]+2 v_{3} \cos \left[3\left(\varphi-\Psi_{3}\right)\right]+.$.
Integrated v_{n} measured up to v_{6} using cumulants

Not only large v_{2}, but also odd harmonics (in a symmetric system?)

THE ROLE OF INITIAL ENERGY DISTRIBUTION

ALICE

Initial spatial anisotropy not smooth, leads to higher harmonics / symmetry planes.

$$
\begin{aligned}
\frac{d N}{d \varphi} & \sim 1
\end{aligned}+2 v_{2} \cos \left[2\left(\varphi-\psi_{2}\right)\right]+2 v_{3} \cos \left[3\left(\varphi-\psi_{3}\right)\right] .
$$

Alver, Roland

CONSTRAINING VISCOSITY OF QCD MATTER

Observable: Shear viscosity over entropy η / s

CONSTRAINING VISCOSITY OF QCD MATTER

ALICE
Observable: Shear viscosity over entropy η / s

CONSTRAINING VISCOSITY OF QCD MATTER

Collision energy dependence of η / s ?

CONSTRAINING VISCOSITY OF QCD MATTER

Collision energy dependence of η / s ? \rightarrow Ratio comparison

> Perfect liquid (RHIC, 2005): Strongly coupled Quark-Gluon Plasma

IDENTIFIED PARTICLES V_{2}

- Low $p_{\mathrm{T}}\left(p_{\mathrm{T}}<2 \mathrm{GeV} / c\right)$: mass ordering \rightarrow elliptic/radial flow interplay
- Well described by hydrodynamic models
- ϕ meson different \rightarrow importance of hadronic rescattering phase?

HEAVY QUARKS FLOW

ALICE, arXiv: 1709.05260 [nucl_ex]

AND EVEN LIGHT NUCLEI FLOW

Deuterons follow the expected mass ordering

ALICE, arXiv:1707.07304 [nucl-ex]

Small systems

Some surprisinglfindings victhe vastyears

ALICE, Nature Physics 13 (2017) 535-539

TRANSVERSE MOMENTUM SPECTRA

ALI-PUB-58145

> In high multiplicity p-Pb collisions at LHC (also in d-Au at RHIC)

- Hardening of spectra
- Mass ordering
- Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET)
- Blast wave fits describes spectra reasonably well \rightarrow radial flow velocity < $\beta>\approx 0.55$

Radial Flow in p-Pb collisions?

ANISOTROPIC FLOW

Mass ordering in $\mathrm{p}-\mathrm{Pb}$ collisions Qualitative similar picture of v_{2} for identified particles as in $\mathrm{Pb}-\mathrm{Pb}$

Elliptic Flow in p-Pb collisions?

STRANGENESS

ALICE
ALICE, Nature Physics 13 (2017) 535-539

- Strangeness enhancement thought to be signature of deconfined matter
- BUT: smooth evolution with increasing multiplicity
- Slope depends on strangeness content

SUMMARY

BACKUP

HAGEDORN PICTURE

Statistical Bootstrap model:

Number of hadronic resonances increases exponentially with the mass m of the resonances

$$
\frac{d N_{\text {Particles }}}{d M} \sim \exp \left(M / T_{\mathrm{H}}\right)
$$

HAGEDORN PICTURE

K. Redlich, H. Satz, arXiv: 1501.07523 [hep_ph]

Consider an interacting gas of resonances, partition function:

$$
\ln \mathscr{Z}(T, V)=\sum_{i} \frac{V T m_{i}^{2}}{2 \pi^{2}} \rho\left(m_{i}\right) K_{2}\left(\frac{m_{i}}{T}\right)
$$

With exponential behaviour (see previous slide):

$$
\begin{aligned}
& \ln \mathscr{Z}(T, V) \simeq \frac{V I}{2 \pi^{2}} \int d m m^{2} \rho\left(m_{i}\right) K_{2}\left(\frac{m_{i}}{T}\right) \\
\sim & V\left[\frac{T}{2 \pi}\right]^{3 / 2} \int d m m^{-3 / 2} \exp \left\{-m\left[\frac{1}{T}-\frac{1}{T_{H}}\right]\right\} .
\end{aligned}
$$

Divergent, for $T>T_{H}$:
\rightarrow Limiting "Hagedorn temperature"
$\rightarrow \mathrm{T}_{\mathrm{H}} \sim 150 \mathrm{MeV}$

STATISTICAL MODEL

- Statistical models of hadronization
- Use hadron resonance gas with masses $<2 \mathrm{GeV} / \mathrm{c}$
- Yield per species for a grand-canonical ensemble:

$$
N_{i}=V \frac{g_{i}}{2 \pi^{2}} \int \frac{p^{2} \mathrm{~d} p}{e^{\left(E_{i}-\mu_{\mathrm{B}} B_{i}-\mu_{\mathrm{s}} S_{i}-\mu_{3} I_{3 i}\right) / T} \pm 1}
$$

- Here, E_{i} is the energy and g_{i} is the degeneracy of the species i, and μ_{B}, μ_{S}, μ_{3} are baryon, strangeness and isospin chemical potentials, respectively
- In principle, 5 unknowns but also have information from initial state about Ns neutron and Zs stopped protons
- Only three parameters remain: $\mathrm{V}, \mu_{\mathrm{B}}$ and T

$$
\begin{aligned}
V \sum n_{i} I_{3 i} & =\frac{Z_{\mathrm{S}}-N_{\mathrm{S}}}{2} \\
V \sum n_{i} B_{i} & =Z_{\mathrm{S}}+N_{\mathrm{S}} \\
V \sum n_{i} S_{i} & =0
\end{aligned}
$$

- Typically use ratio of particle yields between various species to determine μ_{B} and T

BLAST WAVE MODEL

- Consider a thermal Boltzman source

$$
E \frac{\mathrm{~d}^{3} N}{\mathrm{~d} p^{3}} \propto E e^{-E / T} \quad E=m_{\mathrm{T}} \cosh (y)
$$

- Boost source radially with a velocity β and evaluate at $y=0$
$\frac{1}{m_{\mathrm{T}}} \frac{\mathrm{d} N}{\mathrm{~d} m_{\mathrm{T}}} \propto m_{\mathrm{T}} I_{0}\left(\frac{p_{\mathrm{T}} \sinh (\rho)}{T}\right) K_{1}\left(\frac{m_{\mathrm{T}} \cosh (\rho)}{T}\right)$
with $\rho=\tanh ^{-1}(\beta)$
- Simple assumption: Consider uniform sphere of radius R

$$
\frac{1}{m_{\mathrm{T}}} \frac{\mathrm{~d} N}{\mathrm{~d} m_{\mathrm{T}}} \propto \int_{0}^{R} r \mathrm{~d} r m_{\mathrm{T}} I_{0}\left(\frac{p_{\mathrm{T}} \sinh (\rho(r))}{T}\right) K_{1}\left(\frac{m_{\mathrm{T}} \cosh (\rho(r))}{T}\right)
$$

and parametrize surface velocity as

$$
\beta(r)=\beta_{\mathrm{s}}(r / R)^{n}
$$

Three parameters: T, β_{s} and n (sometimes $\mathrm{n}=2$ is fixed)

GEOMETRIC AND MOMENTUM ANISOTROPY

From hydrodynamic models:

- Geometric anisotropy ($\varepsilon_{\mathrm{X}}=$ elliptic deformation of the fireball) decreases with time
- Momentum anisotropy (ε_{p}, actual observable):
- grows quickly in the QGP state ($\tau<2-3 \mathrm{fm} / \mathrm{c}$)
- remains constant during the phase transition ($2<\tau<5 \mathrm{fm} / \mathrm{c}$), which in the models is assumed to be first-order
- Increases slightly in the hadronic phase ($\tau>5 \mathrm{fm} / \mathrm{c}$)

How can we measure this?

EQUATION OF STATE

Need an equation of state $p(\varepsilon)$ to close the set of hydro equations:

- Early days: 1st order phase transition EoS from MIT bag model
- Today: EoS from lattice QCD + hadron resonance gas model

INITIAL CONDITIONS

- MC-Glauber: geometric model determining wounded nucleons based on the inelastic cross section (different implementations)
- MC-KLN: Color-Glass-Condensate (CGC) based model using kT -factorization
- IP-Glasma: Recent CGC based model using classical Yang-Mills evolution of early-time gluon fields, including additional fluctuations in the particle production
- Also hadronic cascades UrQMD or NEXUS and partonic cascades (e.g. BAMPS) can provide initial conditions

TRANSPORT COEFFICIENTS

- Usually divided by entropy: η / s
- Early hydro models (at RHIC) were done with $\eta / s=0$. Today small values between (1-3)/4m used.

HYDRO TIMELINE

EXPERIMENTAL FLOW METHODS

- Usage of two-particle azimuthal correlations instead of event plane:

ALICE, Phys Lett B 708 (2012) 249-264

$$
\begin{array}{ll}
3<\mathrm{P}_{\mathrm{T}}^{\mathrm{t}}<4 \mathrm{GeV} / \mathrm{c} & \mathrm{~Pb}-\mathrm{Pb} 2.76 \mathrm{TeV} \\
0-10 \%
\end{array}
$$

$$
C(\Delta \phi, \Delta \eta) \equiv \frac{N_{\text {mixed }}}{N_{\text {same }}} \times \frac{N_{\text {same }}(\Delta \phi, \Delta \eta)}{N_{\text {mixed }}(\Delta \phi, \Delta \eta)}
$$

EXPERIMENTAL FLOW METHODS

- Usage of two-particle azimuthal correlations instead of event plane:

Remove non-flow by projecting at large $\Delta \eta$

EXPERIMENTAL FLOW METHODS

- Usage of two-particle azimuthal correlations instead of event plane:

Calculate Fourier coefficients
$V_{n \Delta}=\langle\cos n \Delta \varphi\rangle=\frac{\int d \Delta \varphi C(\Delta \varphi) \cos n \Delta \varphi}{\int d \Delta \varphi C(\Delta \varphi)}$
ALICE, Phys Lett B 708 (2012) 249-264

EXPERIMENTAL FLOW METHODS

- Usage of two-particle azimuthal correlations instead of event plane:

Snellings, New Jour Phys 13 (2011) 055008

$v_{2}=0, v_{2}\{2\}=0$
(b)

$$
v_{2}=0, v_{2}\{2\}>0
$$

Elliptic flow

Reduce contribution from non-flow effects by using 4- and more particle correlations $\mathrm{v}_{2}\{4\} \approx \mathrm{v}_{2}\{6\} \approx \mathrm{v}_{2}\{8\} \ldots$.

