

ALICE: SOFT QCD PROBES

MICHAEL WEBER (SMI, VIENNA) WE HERAEUS PHSYICS SCHOOL 24.-30.09.2017

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

OUTLINE

Introduction

- QCD at extreme conditions
- Heavy Ion collisions

Soft probes

- Initial energy density
- Chemical freeze-out
- Kinetic freeze-out
- Radial flow
- Anisotropic flow
- Small systems

CHALLENGES IN QCD

CC by-nc-nd | www.weltderphysik.de

Confinement

Generation of hadron masses

Non-perturbative QCD / dynamics

ALICE

QCD AT EXTREME CONDITIONS

 Interactions between quarks and gluons become weaker at small distances and for large momentum transfers → "deconfined" phase of QCD matter by creating a high density/temperature extended system composed by quarks and gluons

Weakly coupled

Quark-Gluon Plasma

in hadrons. We expect models of this kind to give rise

to a phase transition at a temperature $kT \approx m_{\pi}$, the high temperature phase being one where quarks can

E.V. Shuryak, Phys. Lett. B, vol. 78, page 150, 1978.

- First sketch of phase diagram in that sense date back to the '70s
- But ideas of critical densities are even older (Pomeranchuk '50s, Hagedorn '60s)

LATTICE QCD – PHASE TRANSITION

- increase in the number of d.o.f. from pion gas (3 d.o.f., corresponding to π^+ , π^- , π^0) to deconfined phase leads to increase in energy density
- no sharp phase transition but cross-over
- Critical temperature T_c between 140 and 200 MeV (energy density between 0.2 and 1.8 GeV/fm³), compare to MIT bag model: $T_c \approx 150$ MeV and $\varepsilon_c \approx 0.6$ GeV/fm³

Heavy Ion collisions

A laboratory to test QCD at extreme conditions

ALICE (A LARGE ION COLLIDER EXPERIMENT)

42 countries, 176 institutes, 1800 members

GERMANY

BONN, Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische F-W.-Universität Bonn DARMSTADT, GSI Helmholtzzentrum fur Schwerionenforschung GmbH DARMSTADT, Technische Universität Darmstadt FRANKFURT, Institut für Kernphysik, Johann-Wolfgang-Goethe Universität FRANKFURT, Johann-Wolfgang-Goethe Universitat, Institut fur Informatik FRANKFURT, Frankfurt Institute for Computer Science HEIDELBERG, Physikalisches Institut, Ruprecht-Karls-Universität KOELN, Fachhochschule Köln MUNICH, Technische Universitat Muchen MUENSTER, Institut für Kernphysik, Westfälische Wilhelms-Universität TUEBINGEN, Eberhard-Karls-Universitat Tubingen WORMS, Fachhochschule Worms, ZTT,

ALICE PERFORMANCE

- extremely low-mass tracker ~ 10% of X_0
- efficient low-momentum tracking, down to ~100 MeV/c
- particle identification (practically all known techniques)
- excellent vertexing capability

Peripheral Collision Semi-Central Collis Central Collision

Centrality

Int. J. Mod. Phys. A29 (2014) 1430044

ONE HEAVY ION COLLISION

= several 1000 charged particles in the detector in central collisions!

Particle multiplicity

Estimate of energy density

ENERGY DENSITY

- Can we estimate **the energy density** reached in the collision ?
- Important quantity: directly related to the possibility of observing the deconfinement transition (foreseen for ε ≥ 1 GeV/fm³)
- Consider colliding nuclei as thin pancakes (Lorentz-contraction) which, after crossing, leave an initial volume with a limited longitudinal extension, where the secondary particles are produced

Bjorken estimate:

- System undergoes rapid evolution, use 1 fm/c as an upper limit for the time needed for "thermalisation"
- $R^2 = r_0^2 A^{2/3} = (1.25 \text{ fm})^2 * 208^{2/3} \text{ for Pb}$
- $E_T = m_T \cosh y \sim m_T (\text{for } y \sim 0)$
- Assume $\langle m_T \rangle \sim 0.5$ GeV (see later)

• $dE_T/dy \sim \langle m_T \rangle dN/dy$

ALICE

MEASURE PARTICLE MULTIPLICITY DENSITY

AGS (Au - Au):
$$\sqrt{s_{NN}} = 5$$
 GeV $\Rightarrow \epsilon_{Bj} = 1.5$ GeV/fm³
SPS (Pb - Pb): $\sqrt{s_{NN}} = 17$ GeV $\Rightarrow \epsilon_{Bj} = 2.9$ GeV/fm³
RHIC (Au - Au): $\sqrt{s_{NN}} = 200$ GeV $\Rightarrow \epsilon_{Bj} = 5.4$ GeV/fm³

Centrality	$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	$\langle N_{\rm part} \rangle$	$ rac{2}{\langle N_{ m part} angle}\langle { m d}N_{ m ch}/{ m d}\eta angle$
0-2.5%	2035 ± 52	398 ± 2	10.2 ± 0.3
2.5 - 5.0%	1850 ± 55	372 ± 3	9.9 ± 0.3
5.0-7.5%	1666 ± 48	346 ± 4	9.6 ± 0.3
7.5–10%	1505 ± 44	320 ± 4	9.4 ± 0.3
10-20%	1180 ± 31	263 ± 4	9.0 ± 0.3
20-30%	786 ± 20	188 ± 3	8.4 ± 0.3
30-40%	512 ± 15	131 ± 2	7.8 ± 0.3
40-50%	318 ± 12	86.3 ± 1.7	7.4 ± 0.3
50-60%	183 ± 8	53.6 ± 1.2	6.8 ± 0.3
60-70%	96.3 ± 5.8	30.4 ± 0.8	6.3 ± 0.4
70-80%	44.9 ± 3.4	15.6 ± 0.5	5.8 ± 0.5

- With LHC data one gets $\epsilon \sim 18 \text{ GeV/fm}^3$
- Leads to densities above deconfinement transition (also at AGS)
- **Caveat**: only necessary not sufficient condition for QPG
- Warning: $\tau_{f} \, \text{is expected to decrease} \,$ when increasing \sqrt{s}

Particle yields

Are particles produced as expected from a grand canonical system in chemical equilibrium?

CHEMICAL COMPOSITION OF THE FIREBALL

- measure the multiplicity of the various particles produced in the collision
 → chemical composition
- The chemical composition of the fireball is sensitive to
 - Degree of equilibrium of the fireball at (chemical) freeze-out
 - Temperature T_{ch} at chemical freeze-out
 - Net-Baryonic content of the fireball

- This information is obtained through the use of statistical models
 - Thermal and chemical equilibrium at chemical freeze-out assumed
 - Write partition function and use statistical mechanics (grand-canonical ensemble) → assume hadron production is a statistical process
 - System described as an ideal gas of hadrons and resonances
 - Follows original ideas by Fermi (1950s) and Hagedorn (1960s)

Hagedorn temperature:

R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)

WE Heraeus physics school | 24.-30.09.2017 | Michael Weber (SMI) 19

PARTICLE RATIOS AT LHC

- Ratios well described over
 7 orders of magnitude
- Small disagreement for p/π (only 2.8 σ) may point to the relevance of other effects at LHC like:
 - Rescattering in hadronic phase
 - Non-equilibrium effects
 - Flavor-dependent freeze-out

Minimum χ^2 for : T_{ch} = 156±2 MeV and μ_B = 0 MeV (fixed)

Wheaton et al, Comput.Phys.Commun, 180 84 Petran et al, arXiv:1310.5108 Andronic et al, PLB 673 142

Radial flow

Are the particle p_T distributions as expected from a thermal source in kinetic equilibrium?

PARTICLE SPECTRA

THERMAL SOURCE

Small shape difference when plotting vs. p_{T} instead of m_{T}

- Evolution of p_T spectra vs T_{slope} , higher T implies "flatter" spectra
- T_{slope} can be interpreted as the temperature at the time when kinetic interactions between particles ended
- Kinetic freeze-out temperature (T_{fo})

- high pressures generated when nuclear matter is heated and compressed
 → Flow: collective motion of particles superimposed to thermal motion
- Due to the Flux velocity of an element of the system is given by the sum of the velocities of the particles in that element
- Collective flow is a correlation between the velocity v of a volume element and its space-time position

COLLECTIVE RADIAL EXPANSION

$$T_{slope} \sim T_{fo} + \frac{1}{2} m v_T^2$$

RADIAL FLOW AT LHC

- hardening of the spectrum with increasing centrality
- more pronounced for the heavier protons than for pions.

RADIAL FLOW AT LHC

- Hydro models work reasonably well
- Blast-Wave fits ("simplified hydro model") to p_T spectra, parameters:
- \rightarrow Radial flow velocity < β > \approx 0.65
- \rightarrow Kinetic freeze-out temp. T_{fo} \approx 90 MeV

Anisotropic flow

Did we create "matter" (collectivity)? What are its properties?

COLLECTIVE EXPANSION

Macroscopic – hydrodynamic picture

Spatial anisotropy (eccentricity) of nuclear overlap zone

COLLECTIVE EXPANSION

Macroscopic – hydrodynamic picture

Spatial anisotropy (eccentricity) of nuclear overlap zone

Azimuthal pressure gradients (w.r.t. reaction plane)

Instead of:

COLLECTIVE EXPANSION

Macroscopic – hydrodynamic picture

Spatial anisotropy (eccentricity) of nuclear overlap zone

Azimuthal pressure gradients (w.r.t. reaction plane)

NULL HYPOTHESIS: NON INTERACTING PARTICLES microscopic Non-interacting particles action plane Eccentricity information is not Spatial anisotropy (eccentricity) transferred to momentum space of nuclear overlap zone dN/dφ Uniform particle density Flat azimuthal distribution

O

 $\epsilon_{\rm std}^{+2}$

d

ANISOTROPIC FLOW IN HEAVY ION EXPERIMENTS

ALICE, Phys Rev Lett 116 (2016) 132302

MICROSCOPIC PICTURE

Parton transport model:

Boltzmann equation with 2-to-2 gluon processes

- HUGE (hadronic) cross sections needed to describe v₂
- Macroscopic description possible?

$$\begin{array}{l} 1/\lambda = n\sigma \\ Kn = \lambda/L \ll 1 \end{array}$$

MACROSCOPIC: HYDRODYNAMIC MODEL

 Hydrodynamics works for all systems with short mean free path (compared to size scales of interest)

- Ingredients:
 - Equation of state $p(\epsilon, \rho_B)$: from lattice QCD
 - Initial conditions (energy density in fluid cells): e.g. taking into account gluon saturation
 - Values of transport coefficients of QCD: e.g. shear viscosity
 - Freeze-out and conversion of energy densities into particles (after hydrodynamic evolution)

BACK TO THE MEASUREMENT

Integrated v_n measured up to v_6 using cumulants

Not only large v₂, but also odd harmonics (in a symmetric system?)

THE ROLE OF INITIAL ENERGY DISTRIBUTION

Initial spatial anisotropy not smooth, leads to higher harmonics / symmetry planes.

$$\frac{dN}{d\phi} \sim 1 + 2v_{2}\cos[2(\phi - \psi_{2})] + 2v_{3}\cos[3(\phi - \psi_{3})] + 2v_{4}\cos[4(\phi - \psi_{4})] + 2v_{5}\cos[5(\phi - \psi_{5})] + \dots$$

Alver, Roland

CONSTRAINING VISCOSITY OF QCD MATTER

Observable: Shear viscosity over entropy η /s

CONSTRAINING VISCOSITY OF QCD MATTER

Observable: Shear viscosity over entropy η /s

H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. Lett. **106**, 192301 (2011).

CONSTRAINING VISCOSITY OF QCD MATTER

ALI-PREL-118603

ALICE

Collision energy dependence of $\eta/s? \rightarrow$ Ratio comparison

Perfect liquid (RHIC, 2005): Strongly coupled Quark-Gluon Plasma

IDENTIFIED PARTICLES V₂

- Low $p_T (p_T < 2 \text{ GeV}/c)$: mass ordering \rightarrow elliptic/radial flow interplay
- Well described by hydrodynamic models

HEAVY QUARKS FLOW

ALICE, arXiv: 1709.05260 [nucl_ex]

AND EVEN LIGHT NUCLEI FLOW

Deuterons follow the expected mass ordering

ALICE, arXiv:1707.07304 [nucl-ex]

Small systems

Some surprising findings in the last years

TRANSVERSE MOMENTUM SPECTRA

In **high multiplicity** p-Pb collisions at LHC (also in d-Au at RHIC)

- Hardening of spectra
- Mass ordering
- Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET)
- Blast wave fits describes spectra reasonably well → radial flow velocity <β> ≈ 0.55

Radial Flow in p-Pb collisions?

ANISOTROPIC FLOW

Mass ordering in p-Pb collisions Qualitative similar picture of v_2 for identified particles as in Pb-Pb

Elliptic Flow in p-Pb collisions?

STRANGENESS

- Strangeness enhancement thought to be signature of deconfined matter
- BUT: smooth evolution with increasing multiplicity
- Slope depends on strangeness content

Thank you

BACKUP

HAGEDORN PICTURE

Statistical Bootstrap model: Number of hadronic resonances increases exponentially with the mass m of the resonances

 $\frac{dN_{\text{Particles}}}{dM} \sim \exp\left(\frac{M}{T_{\text{H}}}\right)$

R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)

HAGEDORN PICTURE

K. Redlich, H. Satz, arXiv: 1501.07523 [hep_ph]

Consider an interacting gas of resonances, partition function:

$$\ln \mathscr{Z}(T,V) = \sum_{i} \frac{VTm_i^2}{2\pi^2} \rho(m_i) K_2(\frac{m_i}{T})$$

With exponential behaviour (see previous slide):

$$\ln \mathscr{Z}(T,V) \simeq \frac{VT}{2\pi^2} \int dm \ m^2 \rho(m_i) \ K_2(\frac{m_i}{T})$$

$$\sim V\left[\frac{T}{2\pi}\right]^{3/2}\int dm \ m^{-3/2}\exp\{-m\left[\frac{1}{T}-\frac{1}{T_H}\right]\}.$$

Divergent, for $T > T_H$: \rightarrow Limiting "Hagedorn temperature" $\rightarrow T_H \sim 150 \text{ MeV}$

R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)

STATISTICAL MODEL

- Statistical models of hadronization
 - Use hadron resonance gas with masses < 2 GeV/c
- Yield per species for a grand-canonical ensemble:

$$N_{i} = V \frac{g_{i}}{2\pi^{2}} \int \frac{p^{2} dp}{e^{(E_{i} - \mu_{\rm B}B_{i} - \mu_{\rm s}S_{i} - \mu_{3}I_{3i})/T} \pm 1}$$

- Here, E_i is the energy and g_i is the degeneracy of the species i, and μ_B , μ_S , μ_3 are baryon, strangeness and isospin chemical potentials, respectively
- In principle, 5 unknowns but also have information from initial state about Ns neutron and Zs stopped protons

$$V \sum n_i I_{3i} = \frac{Z_{\rm S} - N_{\rm S}}{2}$$
$$V \sum n_i B_i = Z_{\rm S} + N_{\rm S}$$
$$V \sum n_i S_i = 0$$

- Only three parameters remain: V, μ_{B} and T
- Typically use ratio of particle yields between various species to determine μ_{B} and T

ALICE

BLAST WAVE MODEL

- Consider a thermal Boltzman source $E \frac{\mathrm{d}^3 N}{\mathrm{d}p^3} \propto E \, e^{-E/T} \qquad E = m_{\mathrm{T}} \cosh(y)$
- Boost source radially with a velocity β and evaluate at y=0

$$\frac{1}{m_{\rm T}} \frac{\mathrm{d}N}{\mathrm{d}m_{\rm T}} \propto m_{\rm T} I_0 \left(\frac{p_{\rm T} \mathrm{sinh}(\rho)}{T}\right) K_1 \left(\frac{m_{\rm T} \mathrm{cosh}(\rho)}{T}\right)$$

with $\rho = \tanh^{-1}(\beta)$

• Simple assumption: Consider uniform sphere of radius R

$$\frac{1}{m_{\rm T}} \frac{\mathrm{d}N}{\mathrm{d}m_{\rm T}} \propto \int_0^R r \mathrm{d}r \, m_{\rm T} \, I_0 \left(\frac{p_{\rm T} \sinh(\rho(r))}{T}\right) \, K_1 \left(\frac{m_{\rm T} \cosh(\rho(r))}{T}\right)$$

and parametrize surface velocity as $\beta\left(r\right)=\beta_{\rm s}\,\left(r/R
ight)^n$

Three parameters: $T_{,\beta_s}$ and n (sometimes n=2 is fixed)

Schnedermann et al., PRC 48 (1993) 2462 57

How can we measure this?

GEOMETRIC AND MOMENTUM ANISOTROPY

From hydrodynamic models:

- Geometric anisotropy (ε_X= elliptic deformation of the fireball) decreases with time
- Momentum anisotropy (ε_p, actual observable):
 - grows quickly in the QGP state (τ < 2-3 fm/c)
 - remains constant during the phase transition (2<τ<5 fm/c), which in the models is assumed to be first-order
 - Increases slightly in the hadronic phase (τ > 5 fm/c)

EQUATION OF STATE

Need an equation of state $p(\epsilon)$ to close the set of hydro equations:

- Early days: 1st order phase transition EoS from MIT bag model
- Today: EoS from lattice QCD + hadron resonance gas model

INITIAL CONDITIONS

- **MC-Glauber**: geometric model determining wounded nucleons based on the inelastic cross section (different implementations)
- **MC-KLN**: Color-Glass-Condensate (CGC) based model using kT –factorization
- IP-Glasma: Recent CGC based model using classical Yang-Mills evolution of early-time gluon fields, including additional fluctuations in the particle production
- Also hadronic cascades UrQMD or NEXUS and partonic cascades (e.g. BAMPS) can provide initial conditions

TRANSPORT COEFFICIENTS

Water: low	Honey: high

- Usually divided by entropy: η /s
- Early hydro models (at RHIC) were done with η/s=0. Today small values between (1-3)/4π used.

HYDRO TIMELINE

• Usage of two-particle azimuthal correlations instead of event plane:

ALICE, Phys Lett B 708 (2012) 249-264

• Usage of two-particle azimuthal correlations instead of event plane:

Remove **non-flow** by **projecting at large** $\Delta \eta$

• Usage of two-particle azimuthal correlations instead of event plane:

• Usage of two-particle azimuthal correlations instead of event plane:

