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One QCD to rule them all… 

‣ hard jet production and 

evolution

‣ hadronisation and

soft processes

… measured in many

different final states by

the ATLAS detector!



The ATLAS detector
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Collision rates vs. final states

Reminder: N = ᶥ ∫ ℒ dt

‣ soft and hard QCD

processes produced copiously

‣ QCD corrections to EW processes 

become relevant and measurable

⇒ Let’s survey ATLAS measurements 

relevant for understanding of QCD.
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Probing QCD



Interlude: “Unfolding”

‣ ~ all ATLAS measurements are corrected to particle level
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background 

subtraction and 

“unfolding” of 

detector effects



Measurements related to non-perturbative QCD
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Soft QCD in ATLAS collisions

‣ many aspects of non-perturbative QCD studied in ATLAS

‣ often important input for our simulation of hard processes

• multiple parton interactions in MC generators

• minimum-bias simulation in pile-up

‣ often very specialised measurements, e.g.

• diffractive production,

• elastic/inelastic proton-proton cross section,

• Bose-Einstein correlations,

• central exclusive production,

• double parton scattering, … 

‣ here one recent example: Underlying Event
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poster by Rafal

talk by Oleg

poster by Sabina



Underlying event
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1.6 nb

-1

 of low-luminosity 2015 data at 

‣ Measurement of energy and particle flow with 

respect to leading particle

‣ Charged particles with pT>500 MeV and |ᶙ|<2.5

13 TeV



Underlying event
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‣ HBOM method for unfolding of “re-orientation” effects

‣ Largest uncertainty: track reco efficiency

(material in inner detector)

‣ Current UE models agree within ~5%

(compare ~1% data uncertainty!)

→ input for tuning



Measurements in pure jet production
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Probing QCD properties in jet processes:

‣ jet production rates as function of p

T

, rapidity, masses, … 

‣ event shapes in pure QCD events

‣ substructure of jets
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Jet production in ATLAS
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mjj = 6.3 TeV!



Interlude: Jet calibration

‣ reconstructed jets ≠ jets built from true particles
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⇒ jet calibration corrects for 

these in multi-step procedure



Inclusive and dijet production
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ATLAS-CONF-2017-048

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-048/


Exp. uncertainties in jet production processes
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‣ jet energy uncertainties dominant:

• scale (= shift)

• resolution (= width)

‣ 5% accuracy over large range!

‣ non-perturbative corrections for 

comparison with fixed-order theory

• significant differences between MC’s

→ limited accuracy for exp vs. theory



Event shape measurements

‣ event shapes were measured extensively

in e+e- collisions for QCD studies

‣ Transverse Energy-Energy Correlations

measured now with 8 TeV ATLAS data

‣ different phase space regions in

H

T2

 = p

T

(jet1) + p

T

(jet2)

‣ discriminating power between

different parton showers

→ generally doing quite well
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Event shape measurements

‣ extract ᶓ
S

 from fit to TEEC 

at different H

T2

 scales:

theory input including ᶓ
S

(m

Z

) 

and evolved with NLO RGE

‣ result:
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Jet substructure

‣ measuring jets beyond just momenta: shape & substructure

‣ tricky with large pile-up contaminations → “old” 7 TeV data
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Jet shape ᶣ(r) Energy fraction of charged 

particles in jets



Using tracks in jets

‣ most simple jet substructure:

number of particles in jet

‣ here: tracks as proxy for (charged) 

particles

‣ recently used to build a

“quark/gluon jet tagger”:
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Probing QCD in processes with colourless particles
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Z+jets cross sections

‣ 3.16 fb

-1

 of 2015 data at 

‣ Z → ee and Z → ᶞᶞ selection, combined results

‣ Up to 7 anti-k

t

 jets with  R=0.4,   pT>30 GeV,   |y|<2.5
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13 TeV

‣ Comparisons to

• Fixed NLO predictions

• NLO multi-jet merging

• LO multi-jet merging

‣ Even NLO multi-jet not perfect

• Sherpa (Z+0,1,2j@NLO+3,4j@LO)

≥ 5 jets (from shower) too hard

• MG5_aMC+Py8 (Z+0,1,2j@NLO)

≥ 4 jets (beyond NLO) too soft



kT splitting scales in Z+jets events

‣ Differential cross sections of splitting scales 

in k

T

-clustering of hadronic activity

‣ 20.2 fb

-1

 of 2012 data at 

‣ Particularly interesting in transition region 

between jets and soft hadronic activity

• sensitive to parton shower and its 

matching and merging

• not probed directly by measurements 

based on jet observables
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SM measurement of jet evolution in Z+jets events

8 TeV



Definition of observables

‣ Charged particle momenta i, j → input to cluster algorithm

‣ kT algorithm = sequential recombination algorithm,

matches singularity structure of QCD:
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‣ Recursively cluster k+1 to k momenta with smallest distance:

‣ Zeroth order splitting scale d0 is leading jet p

T

‣ Higher orders probe further QCD evolution

d

2

d

1

d

0



Event and object selection

‣ Z boson just used as a trigger → clean testbed with high purity:
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‣ Particle level selection mimicks reconstructed detector level

• Z candidate 71 GeV < mll < 111 GeV with dressed leptons

» pT
lepton > 25 GeV

» |ᶙe| < 2.47 excluding 1.37 < |ᶙe| < 1.52    and    |ᶙᶞ| < 2.4
• Charged particles with pT > 400 MeV and |ᶙ| < 2.5, excluding Z candidate



Detector level distributions

‣ Similar backgrounds for Z → ee and Z → ᶞᶞ: mainly tops and multijets

• Multijets estimated with data-driven approach

• All other backgrounds from Monte Carlo simulation
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Results

‣ Iterative Bayesian unfolding of background-subtracted data

‣ Comparison to state-of-the-art Monte Carlo predictions

• Z + 0,1,2jets@NLO + 3,4jets@LO (Sherpa 2.2 MEPS@NLO)

• Z + 0j@NNLO (Powheg NNLOPS)
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Non-prompt photons

(mainly ᶢ0→ ᶕᶕ)

Interlude: Photons and QCD
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Prompt photons

“Direct” “Fragmentation”



Non-prompt photons

(mainly ᶢ0→ ᶕᶕ)

Interlude: Photons and QCD
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Prompt photons

“Direct” “Fragmentation”

‣ isolation requirements: suppress non-prompt background, 

limit sensitivity to uncertain fragmentation component



Common isolation prescriptions

‣ (“naive” cone isolation → not IR safe)

‣ experimental cone isolation

• limit additional energy in fixed ᵼR cone

• main isolation requirement used in our 

measurements

‣ smooth cone isolation    [Frixione, 1998]

• veto additional energy in dynamical cone

• completely discards fragmentation 

component in predictions

→ convenient for fixed-order calculations

• not feasible in experiment

→ “incomplete” comparison … 
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E

ᵼR

(from J Krause)



20.2 fb

-1

 of 2012 data at 

ᶕ+jets

‣ ᶕ + 1, 2, 3 jets studies

• in 6(!) phase space regions

• for 35(!) observables

‣ Generally good agreement with

• NLO QCD (JetPhox, BlackHat)

• Monte Carlo (Pythia, Sherpa)

in classical photon/jet observables

‣ Some deviations at high photon p

T

and for Pythia8 in multi-jet regions
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8 TeV



‣ Additional observables for 2

nd

 jet production around 

photon (ᶔᶕ) and 1

st

 jet (ᶔjet1

)

‣ Different QCD radiation

pattern around ᶕ and 1st jet

ᶕ+jets
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Diboson production
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2015 flashback at the example of pp → W

+

W

-



Diboson production
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‣ Cross sections measured

in many VV final states

‣ NLO QCD often in

disagreement with exp

‣ NNLO QCD

calculations since ~2016

⇒ better agreement



Bonus: Monte-Carlo tuning in ATLAS

42



Precise and accurate?
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(from

Andre

David)



Precise and accurate?
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Precise and accurate?
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Precise and accurate?
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(from

Andre

David)



Tuning aspects of event generators
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Hadronisation 

modelling

Beam remnants, 

primordial k

T

Parton Shower

(initial and final 

state radiation)

Multiple parton 

interactions

(Underlying 

Event)



The need for tuned generators

‣ Pile-up simulation

• multiple simultaneous proton-proton collisions modelled with event generators for 

very inclusive inelastic collisions

• tuning to data obtained with very inclusive triggers (minimum bias)

‣ Calibration

• e.g. jet/tau identification and reconstruction (substructure)

‣ Unfolding

• correction for detector effects using generator truth vs. full detector simulation

• dependence on truth model typically small, but still adds to systematic 

uncertainties → need reliable tunes

‣ Background estimates in analyses

• analyses use background subtraction from MC generators directly or via 

extrapolation from control regions

• reliable tuning of non-perturbative aspects necessary for precision measurements 

and discoveries!
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ATLAS Pythia 8 shower tuning

ATL-PHYS-PUB-2014-021
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‣ Parton shower modelling

• contains parameters and ambiguities

• Example: ᶓ
S

 values for initial/final

state radiation vs. ᶎ*

‣ Often only considered tuning of 

multiple parton interactions

• many observables sensitive to both

• even more so for Pythia 8 with interleaved shower+MPI

• simultaneous tuning necessary

‣ Tuning with comprehensive ATLAS dataset:

• UE with jets and track-jets

• jet structure (track jet properties; jet shapes, masses, substructure)

• jet production (jet multiplicities, ᵼᶎ, Z pT, gap fractions in ttbar)

→  Sensitivity to MPI, final and initial state radiation



‣ Significant improvement over AU2 & Monash 

in ttbar and Z

‣ Damped shower reduces tension between 

ttbar and Z

ATLAS Pythia 8 shower tuning

ATL-PHYS-PUB-2014-021

‣ Restricted to 

p

T

(Z)<50 GeV in 

tuning
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‣ Systematic variation tunes for A14-NNPDF

done using Professor eigentunes approach

• normally: 2 variations for each parameter (up/down), with fixed ᵼᶩ2

‣ 20 variations too unwieldy → reduced to variation sets for 

UE activity, jet structure, jet production (3 options)

ATLAS Pythia 8 shower tuning

ATL-PHYS-PUB-2014-021
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Conclusions
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Conclusions
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Take-home messages:

‣ ~ all measurements in ATLAS are sensitive to QCD

‣ important: clean definition of observables at the particle 

level, without introducing model dependence

‣ experimental uncertainties often rival or beat theoretical 

precision ↔ lots of interplay

‣ QCD measurements are no discovery channels, but 

probably no future discovery will come without 

understanding of QCD basics

Go and have fun measuring + calculating QCD effects!


