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The QCD spectrum
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The QCD spectrum – on the lattice

C(t) =

∫

d3x 〈[q̄γ5q(x)] [q̄γ5q(0)]〉 eipx t→∞
−→

∞∑

n=0

cn e−Ent

Mπ = lim
L→∞

a→0

Mπ(L, a) Mπ(L, a) = En(p = 0)

γ5q      q,
_ _

Γq    q

y

x

t

fermion propagator
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The QCD spectrum

◮ the lowest-lying particles in the spectra are well

understood: they would become exactly massless in the

chiral limit of QCD (Goldstone bosons)

◮ the dynamics of strong interactions at low energy can be

understood on the basis of chiral symmetry

(chiral perturbation theory = χPT)

◮ the positions of the low-lying resonances is more difficult to

determine and understand

(lattice? χPT+ dispersion relations?)

◮ they set the limit of validity of the chiral expansion
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Systems with spontaneous symmetry breaking

◮ If a symmetry is spontaneously broken the spectrum

contains massless particles – the Goldstone bosons

◮ symmetry constrains the interactions of the Goldstone

bosons – their interactions vanish at low energy

◮ Green functions contain poles and cuts due to the

exchange of Goldstone bosons

◮ the vertices, on the other hand, can be expanded in

powers of momenta and obey symmetry relations

◮ effective Lagrangian: systematic method to construct this

expansion, respecting symmetry and all the general

principles of quantum field theory Weinberg (79)

◮ The method leads to predictions – even very sharp ones
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Quantum Chromodynamics in the chiral limit

L
(0)
QCD = q̄Li /DqL + q̄R i /DqR −

1

4
Ga

µνGaµν q =





u

d

s





Large global symmetry group:

SU(3)L × SU(3)R × U(1)V × U(1)A

1. U(1)V ⇒ baryonic number

2. U(1)A is anomalous

3.

SU(3)L × SU(3)R ⇒ SU(3)V

⇒ Goldstone bosons with the quantum numbers of

pseudoscalar mesons will be generated
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Quark masses, chiral expansion

In the real world quarks are not massless:

LQCD = L
(0)
QCD

+ Lm, Lm := −q̄Mq

M =





mu

md

ms





the mass term Lm can be considered as a small perturbation ⇒

Expand around L
(0)
QCD

≡ Expand in powers of mq



Introduction χPT Unitarity Renormalization Summary QCD χPT

Quark masses, chiral expansion

In the real world quarks are not massless:

LQCD = L
(0)
QCD

+ Lm, Lm := −q̄Mq

M =





mu

md

ms





the mass term Lm can be considered as a small perturbation ⇒

Expand around L
(0)
QCD

≡ Expand in powers of mq

Chiral perturbation theory, the low-energy effective theory of

QCD, is a simultaneous expansion in powers of momenta and

quark masses



Introduction χPT Unitarity Renormalization Summary QCD χPT

Quark mass expansion of meson masses

General quark mass expansion for the P particle:

M2
P = M2

0 + 〈P|q̄Mq|P〉+ O(m2
q)

For the pion M2
0 = 0:

M2
π = −(mu + md)

1

F 2
π

〈0|q̄q|0〉+ O(m2
q)

where we have used a Ward identity:

〈π|q̄q|π〉 = −
1

F 2
π

〈0|q̄q|0〉 =: B0

〈0|q̄q|0〉 is an order parameter for the chiral spontaneous

symmetry breaking Gell-Mann, Oakes and Renner (68)
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Quark mass expansion of meson masses

Consider the whole pseudoscalar octet:

M2
π = (mu + md)B0 + O(m2

q)

M2
K+ = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1

3
(mu + md + 4ms)B0 + O(m2

q)
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Quark mass expansion of meson masses

Consider the whole pseudoscalar octet:

M2
π = (mu + md)B0 + O(m2

q)

M2
K+ = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1

3
(mu + md + 4ms)B0 + O(m2

q)

Consequences: (m̂ = (mu + md)/2)

M2
K/M2

π = (ms + m̂)/2m̂ ⇒ ms/m̂ = 25.9

M2
η/M2

π = (2ms + m̂)/3m̂ ⇒ ms/m̂ = 24.3

3M2
η = 4M2

K − M2
π Gell-Mann–Okubo (62)

(0.899 = 0.960) GeV2
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Quark mass expansion of meson masses
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Goldstone theorem

Hamiltonian H symmetric under the group of transformations

G: [Qi are the generators of G]

[Qi ,H] = 0 i = 1, . . . nG

Ground state not invariant under G, i.e. for some generators Xi

Xi |0〉 6= 0

{Q1, . . . ,QnG
} = {H1, . . . ,HnH

,X1, . . . ,XnG−nH
}
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Goldstone theorem

[Qi ,H] = 0 i = 1, . . .nG , Xi |0〉 6= 0 , Hi |0〉 = 0

1. The subset of generators Hi which annihilate the vacuum

forms a subalgebra

[Hi ,Hk ]|0〉 = 0 i , k = 1, . . . nH

2. The spectrum of the theory contains nG − nH massless

excitations

Xi |0〉 i = 1, . . . nG − nH

from [Xi ,H] = 0 follows that Xi |0〉 is an eigenstate of the

Hamiltonian with the same eigenvalue as the vacuum
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Goldstone theorem

[Qi ,H] = 0 i = 1, . . .nG , Xi |0〉 6= 0 , Hi |0〉 = 0

◮ Xi |0〉 are the Goldstone boson states

◮ the Xi are generators of the quotient space G/H

◮ the Goldstone fields are elements of the space G/H

◮ their transformation properties under G are fully dictated:

they transform nonlinearly

◮ the dynamics of the Goldstone bosons at low energy is

strongly constrained by symmetry
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Matrix elements of conserved currents

Goldstone’s theorem also asserts that:

the transition matrix elements between the conserved currents

associated with the generators Qi and the pions∗

〈0|Jµ
i |π

a(p)〉 = iF a
i pµ

is an nG × (nG − nH) matrix F a
i of rank NGB = nG − nH

∗We have introduced the symbol π for the Goldstone boson fields, and will

call them “pions”, as in strong interactions. The discussion however, remains

completely general
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Pions do not interact at low energy

Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = p

µ
1 + p

µ
2 + . . .
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Pions do not interact at low energy

Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = p

µ
1 + p

µ
2 + . . .

Consider the amplitude for pair creation

〈πa1(p1)π
a2(p2)out|Jµ

i |0〉 =
p
µ
3

p2
3

∑

a3

F
a3

i va1a2a3
(pi) + . . .
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Pions do not interact at low energy

Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = p

µ
1 + p

µ
2 + . . .

Consider the amplitude for pair creation

〈πa1(p1)π
a2(p2)out|Jµ

i |0〉 =
p
µ
3

p2
3

∑

a3

F
a3

i va1a2a3
(pi) + . . .

Current conserv. ⇒
∑

a3

F
a3

i va1a2a3
(0) = 0 ⇒ va1a2a3

(0) = 0

Lorentz invariance ⇒ va1a2a3
(p1, p2, p3) can only depend on

p2
1, p2

2, p2
3: on the mass shell it is always zero
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Pions do not interact at low energy

Amplitude for three–pion creation from a conserved current

〈πa1πa2πa3out|Jµ
i |0〉 =

p
µ
4

p2
4

∑

a4

F
a4

i va1a2a3a4
(pi) + . . .
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Pions do not interact at low energy

Amplitude for three–pion creation from a conserved current

〈πa1πa2πa3out|Jµ
i |0〉 =

p
µ
4

p2
4

∑

a4

F
a4

i va1a2a3a4
(pi) + . . .

Current conservation ⇒

∑

a4

F
a4

i va1a2a3a4
(0) = 0 ⇒ va1a2a3a4

(0) = 0
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Pions do not interact at low energy

Amplitude for three–pion creation from a conserved current

〈πa1πa2πa3out|Jµ
i |0〉 =

p
µ
4

p2
4

∑

a4

F
a4

i va1a2a3a4
(pi) + . . .

Current conservation ⇒

∑

a4

F
a4

i va1a2a3a4
(0) = 0 ⇒ va1a2a3a4

(0) = 0

In this case the vertex function can depend on two Lorentz

scalars, s and t , and we can do a Taylor expansion:

va1a2a3a4
(p1, p2, p3, p4) = c1

a1a2a3a4
s + c2

a1a2a3a4
t + . . .
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low energy
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low energy

◮ take explicitly into account the poles in the Green functions

due to exchanges of Goldstone bosons ⇒ expand the

vertices in powers of momenta
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Low energy expansion

◮ Symmetry implies that Goldstone bosons do not interact at

low energy

◮ take explicitly into account the poles in the Green functions

due to exchanges of Goldstone bosons ⇒ expand the

vertices in powers of momenta

◮ Symmetry of the system ⇒ relations among the

coefficients in the Taylor expansion in the momenta

◮ The effective Lagrangian is a systematic method to

construct this expansion in a way that automatically

respects the symmetry of the system

◮ Effective Lagrangian for Goldstone Bosons = χPT

Weinberg (79)
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Transformation properties of the pions

The pion fields transform according to a representation of G

g ∈ G : ~π → ~π′ = ~f (g, ~π)

where f has to obey the composition law

~f (g1,~f (g2, ~π)) = ~f (g1g2, ~π)

~f (g, 0) = image of the origin : the elements which leave the

origin invariant form a subgroup – the conserved subgroup H

~f (gh, 0) coincides with ~f (g, 0) for each g ∈ G and h ∈ H ⇒ the

function ~f maps elements of G/H onto the space of pion fields
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Transformation properties of the pions

The pion fields transform according to a representation of G

g ∈ G : ~π → ~π′ = ~f (g, ~π)

where f has to obey the composition law

~f (g1,~f (g2, ~π)) = ~f (g1g2, ~π)

The mapping is invertible: ~f (g1, 0) = ~f (g2, 0) implies g1g−1
2 ∈ H

⇒ pions can be identified with elements of G/H
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Action of G on G/H

Two elements of G, g1,2 are identified with the same element of

G/H if

g1g−1
2 ∈ H

Let us call qi the elements of G/H
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Two elements of G, g1,2 are identified with the same element of

G/H if

g1g−1
2 ∈ H

Let us call qi the elements of G/H

The action of G on G/H is given by

gq1 = q2h where h(g, q1) ∈ H



Introduction χPT Unitarity Renormalization Summary Goldstone th. π transf. Eff. Lagrangian ESB Ext. fields

Action of G on G/H

Two elements of G, g1,2 are identified with the same element of

G/H if

g1g−1
2 ∈ H

Let us call qi the elements of G/H

The action of G on G/H is given by

gq1 = q2h where h(g, q1) ∈ H

The transformation properties of the coordinates of G/H under

the action of G are nonlinear (h is in general a nonlinear

function of q1 and g)
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The space G/H for QCD

The choice of a representative element inside each

equivalence class is arbitrary. For example

g = (gL, gR) = (1, gRg−1
L ) · (gL, gL) =: q · h

but also g = (gL, gR) = (gLg−1
R , 1) · (gR, gR) =: q′ · h′

where q, q′ ∈ G/H and h, h′ ∈ H

Action of G on G/H

(VL,VR) · (1, gRg−1
L ) = (VL,VRgRg−1

L )

= (1,VRgRg−1
L V−1

L ) · (VL,VL)
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The space G/H for QCD

The pion fields are usually collected in a matrix–valued field U,

which transforms like

U
G

−→ U ′ = VRUV−1
L

U is a shorthand notation for (1, gRg−1
L ), or its nontrivial part

gRg−1
L

As a matrix U is a member of SU(3) ⇒ it can be written as

U = eiφaλa

where φa are the eight pion fields
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Construction of the effective Lagrangian

Goal: reproduce the low–energy structure of QCD

⇒ construct an effective Lagrangian which:

◮ contains the pion fields as the only degrees of freedom

◮ is invariant under G

◮ and expand it in powers of momenta

Leff = f1(U) + f2(U)〈U+
¤U〉

+ f3(U)〈∂µU+∂µU〉+ O(p4)

The invariance under transformations U
G

−→ U ′ = VRUV−1
L

implies that f1,2,3(U) do not depend on U

⇒ f1 is an irrelevant constant and can simply be dropped
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Construction of the effective Lagrangian

Partial integration ⇒

Leff = L2 + L4 + L6 + . . . L2 =
F 2

4
〈∂µU+∂µU〉

the constant in front of the trace fixed by looking at the Noether

currents of the G symmetry:

V
µ
i = i

F 2

4
〈λi [∂

µU,U+]〉 A
µ
i = i

F 2

4
〈λi{∂

µU,U+}〉

and comparing the result of the matrix element with

〈0|Aµ
i |π

k (p)〉 = ipµδikF
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Some technical details

The matrix field U is an exponential of the pion fields π. If we

want fields π of canonical dimension, we have to introduce a

dimensional constant in the definition of U:

U = exp

{
i

F ′
πkλk

}

The requirement that the kinetic term of the pion fields is

standard:

Lkin =
1

2
∂µπ

i∂µπi implies: F = F ′

The Lagrangian contains only one coupling constant which is

the pion decay constant
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The first prediction: ππ scattering

Isospin invariant amplitude:

M(πaπb→πcπd) = δabδcdA(s,t ,u) + δacδbdA(t ,u,s)

+ δadδbcA(u,s,t)

Using the effective Lagrangian above

A(s, t , u) =
s

F 2

Exercise: calculate it!
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χPT and explicit symmetry breaking?

◮ The effective Lagrangian was constructed in order to

systematically account for symmetry relations.

What if the symmetry is explicitly broken?

◮ If the symmetry breaking is weak ⇒ perturbative

expansion: matrix elements of the symmetry breaking

Lagrangian (or of powers thereof) will appear

◮ Once the transformation properties of the symmetry

breaking term are known: use symmetry to constrain its

matrix elements

◮ Effective Lagrangian = appropriate tool to derive

systematically all symmetry relations
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Effective Lagrangian with ESB

LQCD = LQCD

0 − q̄Mq

The symmetry breaking term

q̄Mq = q̄RMqL + h.c.

becomes also chiral invariant if we impose that M transforms

according to

M → M′ = VRMV+
L

Proceed to construct a chiral invariant effective Lagrangian that

includes explicitly the matrix M:

Leff = Leff(U, ∂U, ∂2U, . . . ,M)
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Effective Lagrangian with ESB

To first order in M there is only one chiral invariant term:

L
(1)
M =

F 2

2

[
B〈MU+〉+ B∗〈M+U〉

]

Strong interactions respect parity ⇒ B must be real:

L
(1)
M =

F 2B

2
〈M

(
U + U+

)
〉
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Effective Lagrangian with ESB

To first order in M there is only one chiral invariant term:

L
(1)
M =

F 2

2

[
B〈MU+〉+ B∗〈M+U〉

]

Strong interactions respect parity ⇒ B must be real:

L
(1)
M =

F 2B

2
〈M

(
U + U+

)
〉

Before using this Lagrangian, pin down the constant B:

B = −
1

F 2
〈0|q̄q|0〉 M2

π = 2Bm̂
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Leading order effective Lagrangian

The complete leading order effective Lagrangian of QCD reads:

L2 =
F 2

4

[
〈∂µU+∂µU〉+ 〈2BM

(
U + U+

)
〉
]

F is the pion decay constant in the chiral limit

B is related to the q̄q–condensate and to the pion mass

M2
π = 2Bm̂ + O(m̂2)
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ππ scattering to leading order

In the presence of quark masses the ππ scattering amplitude

becomes

A(s, t , u) =
s − M2

π

F 2
π

Weinberg (66)

The two S–wave scattering lengths read

a0
0 =

7M2
π

32πF 2
π

= 0.16 a2
0 = −

M2
π

16πF 2
π

= −0.045
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External fields

QCD coupled to external fields (M → s):

L = L
(0)
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q

Generating functional of Green functions of quark bilinears

〈0|Tei
∫

d4xL|0〉 = eiZ [v ,a,s,p]
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External fields

QCD coupled to external fields (M → s):

L = L
(0)
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q

Generating functional of Green functions of quark bilinears

〈0|Tei
∫

d4xL|0〉 = eiZ [v ,a,s,p] = N−1

∫

[dU]ei
∫

d4xLeff

External fields in Leff = L2(U, v , a, s, p) + L4(U, v , a, s, p) + . . .

L2 =
F 2

4

[

〈DµU†DµU〉+ 〈Uχ† + χU†〉
]

DµU = ∂µU − irµU + iUlµ χ = 2B(s + ip) (rµ, lµ) = vµ ± aµ

Gasser, Leutwyler (84)
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The chiral Lagrangian to higher orders

Leff = L2 + L4 + L6 + . . .

L2 contains (2, 2) constants

L4 contains (7, 10) constants Gasser, Leutwyler (84)

L6 contains (53, 90) constants Bijnens, GC, Ecker (99)

The number in parentheses are for an SU(N) theory with

N = (2, 3)
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The L4 Lagrangian

L4 = L1〈DµU†DµU〉2 + L2〈DµU†DνU〉〈DµU†DνU〉

+L3〈DµU†DµUDνU†DνU〉+ L4〈DµU†DµU〉〈χ†U + χU†〉

+L5〈DµU†DµU(χ†U + U†χ)〉+ L6〈χ
†U + χU†〉2

+L7〈χ
†U − χU†〉2 + L8〈χ

†Uχ†U + χU†χU†〉

−iL9〈F
µν
R DµUDνU† + F

µν
L DµU†DνU〉

+L10〈U
†F

µν
R UFLµν〉

DµU = ∂µU − irµU + iUlµ χ = 2B(s + ip)

F
µν
R = ∂µrν − ∂νrµ − i[rµ, rν ]

rµ = vµ + aµ lµ = vµ − aµ
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Why go beyond O(p2)? Why loops?

〈0|Tei
∫

d4xL|0〉 = eiZ [v ,a,s,p] = N−1

∫

[dU]ei
∫

d4xLeff
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Why go beyond O(p2)? Why loops?

◮ Why not? Chiral Symmetry forbids O(p0) interactions

between pions, but allows all higher orders

◮ Unitarity: if an amplitude at order p2 is purely real, at order

p4 its imaginary part is nonzero.

Take the ππ scattering amplitude. Elastic unitarity relation

for the partial waves t I
ℓ of isospin I and angular momentum

ℓ:

Im t I
ℓ =

√

1 −
4M2

π

s
|t I
ℓ|

2



Introduction χPT Unitarity Renormalization Summary Why loops?

Why go beyond O(p2)? Why loops?

◮ Why not? Chiral Symmetry forbids O(p0) interactions
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◮ The correct imaginary parts are generated automatically

by loops
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Why go beyond O(p2)? Why loops?

◮ Why not? Chiral Symmetry forbids O(p0) interactions

between pions, but allows all higher orders

◮ Unitarity: if an amplitude at order p2 is purely real, at order

p4 its imaginary part is nonzero.

Take the ππ scattering amplitude. Elastic unitarity relation

for the partial waves t I
ℓ of isospin I and angular momentum

ℓ:

Im t I
ℓ =

√

1 −
4M2

π

s
|t I
ℓ|

2

◮ The correct imaginary parts are generated automatically

by loops

◮ The divergences occuring in the loops can be disposed of

just like in a renormalizable field theory
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Effective quantum field theory

The method of effective quantum field theory provides a

rigorous framework to compute Green functions that respect:

symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green

functions in powers of momenta and quark masses

In the following I will discuss in detail how this works when you

consider loops:

◮ I will consider the finite, analytically nontrivial part of the

loops and discuss in detail its physical meaning

◮ I will consider the divergent part of the loops and discuss

how the renormalization program works
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Scalar form factor of the pion

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 ,

At tree level:

Γ(t) = 2m̂B = M2
π + O(p4) ,

in agreement with the Feynman–Hellman theorem:

the expectation value of the perturbation in an eigenstate of the

total Hamiltonian determines the derivative of the energy level

with respect to the strength of the perturbation:

m̂
∂M2

π

∂m̂
= 〈π|m̂q̄q|π〉 = Γ(0) .

This matrix element is relevant for the decay h → ππ, which, for

mH ∼ 1 GeV would have been the main decay mode

Donoghue, Gasser & Leutwyler (90)
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Dispersion relation for Γ(t)

For t ≥ 4M2
π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in the

complex t plane, and obeys the following dispersion relation:

Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)

t ′ − t
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Dispersion relation for Γ(t)

For t ≥ 4M2
π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in the

complex t plane, and obeys the following dispersion relation:

Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)

t ′ − t

Unitarity implies [σ(t) =
√

1 − 4M2
π/t ]

Im Γ̄(t) = σ(t)Γ̄(t)t0
0

∗
(t) = Γ̄(t)e−iδ0

0 sin δ0
0 = |Γ̄(t)| sin δ0

0

where t0
0 is the S–wave, I = 0 ππ scattering amplitude

Strictly speaking, the above unitarity relation is valid only for t ≤ 16M2
π

. To a good approximation, however, it holds

up to the K K̄ threshold
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Dispersion relation and chiral counting

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t
′)

t ′ − t

b ∼ O(1)
(

1 + O(M2
π)
)

δ0
0 ∼ O(p2)

(

1 + O(p2)
)

There are two O(p2) correction to Γ̄:

1. O(1) contribution to b;

2. the dispersive integral containing the O(p2) phase δ0
0.

Notice that the latter is fixed by unitarity and analyticity

Are these respected by the one loop calculation?
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Dispersion relation and one–loop CHPT

The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(ℓ̄4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t)− 1

σ(t) + 1
+ 2

]
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Dispersion relation and one–loop CHPT

The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(ℓ̄4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t)− 1

σ(t) + 1
+ 2

]

To prove that unitarity and analyticity are respected at this order

is sufficient to add:

δ0
0(t) = σ(t)

2t − M2
π

32πF 2
π

+O(p4) J̄(t) =
t

16π2

∫ ∞

4M2
π

dt ′

t ′
σ(t ′)

t ′ − t
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Can you prove it?

Hints:

◮ Subtract J̄(t) once more

J̄(t) =
t

96π2M2
π

+
t2

16π2

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)

t ′ − t

◮ Trick to pull out a linear term from the dispersive integral:

∫ ∞

4M2
π

dt ′

t ′2
t ′σ(t ′)

t ′ − t
= t

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)

t ′ − t
+

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
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High-energy contributions

The dispersive integral goes up to s′ = ∞, but the integrand is

correct only at low energy!

Γ̄(t)h.e. =
t2

π

∫ ∞

Λ2

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t
′)

t ′ − t

∼
t2

π

∫ ∞

Λ2

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t
′)

1

t ′

(

1 +
t

t ′
+ . . .

)

∼ ct2 +O(t3)

The contributions from the high-energy region of the dispersive

integral are formally of higher order – introducing a cut-off to

remove them would only make the formulae more cumbersome
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Renormalization at one loop

∫
d4l

(2π)4

{p2, p ·l , l2}

(l2 − M2)((p − l)2 − M2)
, p = p1 + p2

∼

∫
d4l

(2π)4

1

(l2−M2)
︸ ︷︷ ︸

+ p2

∫
d4l

(2π)4

1

(l2−M2)((p−l)2−M2)
︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)
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Renormalization at one loop

∫
d4l

(2π)4

{p2, p ·l , l2}

(l2 − M2)((p − l)2 − M2)
, p = p1 + p2

∼

∫
d4l

(2π)4

1

(l2−M2)
︸ ︷︷ ︸

+ p2

∫
d4l

(2π)4

1

(l2−M2)((p−l)2−M2)
︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)

T̄ (M2) and J̄(t) are finite

Γ(t) ∼ M2

[

1 + bM2 + tJ(0)
︸ ︷︷ ︸

+T̄ (M2) + J̄(t)

]

divergent part
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t
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L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t

To remove the divergences need to properly define the

couplings (ℓ3,4) in the Lagrangian at order O(p4)
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t

To remove the divergences need to properly define the

couplings (ℓ3,4) in the Lagrangian at order O(p4)

Quote from Weinberg’s book on QFT, vol. I: “(...) as long as we

include every one of the infinite number of interactions allowed

by symmetries, the so–called non–renormalizable theories are

actually just as renormalizable as renormalizable theories.”
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Chiral logarithms

Scalar radius of the pion

Γ(t) = Γ(0)

[

1 +
1

6
〈r2〉πSt + O(t2)

]

〈r2〉πS ∼ J(0) =

∫
d4l

(2π)4

1

(l2 − M2)2
∼ ln

M2

Λ2

The integral is UV divergent, but also IR divergent if M → 0:

lim
M2→0

〈r2〉πS ∼ ln M2 ,

The extension of the cloud of pions surrounding a pion (or any

other hadron) goes to infinity if pions become massless (Li and

Pagels ’72 )
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) must fix the divergent part

of chiral–invariant operators of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .



Introduction χPT Unitarity Renormalization Summary

Chiral symmetry and renormalization

To remove the divergent part in Γ(t) must fix the divergent part

of chiral–invariant operators of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .

Chiral symmetry implies that after calculating the divergent

part of Γ(s) I also know the divergent part of the 6π → 6π
scattering amplitude
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) must fix the divergent part

of chiral–invariant operators of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce

violations of the chiral symmetry? Or that one can build a

chiral invariant generating functional only with a path

integral over a chiral invariant classical action?



Introduction χPT Unitarity Renormalization Summary

Chiral symmetry and renormalization

To remove the divergent part in Γ(t) must fix the divergent part

of chiral–invariant operators of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce

violations of the chiral symmetry? Or that one can build a

chiral invariant generating functional only with a path

integral over a chiral invariant classical action?

2. Is there a tool that allows one to calculate the divergences

keeping chiral invariance explicit in every step of the

calculation?
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Leutwyler’s theorem

What is the most general way of constructing a chiral-invariant

generating functional out of a path integral over the Goldstone

boson degrees of freedom?

Z [v ′, a′, s′, p′] = Z [v , a, s, p] ⇔ Leff[v
′, a′, s′, p′] = Leff[v , a, s, p]?

For Lorentz–invariant theories in 4 dimensions, a path integral

constructed with gauge–invariant lagrangians is a necessary

and sufficient condition to obtain a gauge–invariant generating

functional

The theorem also includes the case in which the symmetry is

anomalous and the case in which the symmetry is explicitly

broken

,
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Chiral invariant renormalization

◮ Gasser & Leutwyler (84): the calculation of the divergences

at one loop – and the corresponding renormalization – can

be performed in an explicitly chiral invariant manner

◮ The method has been extended and applied to two loops

(Bijnens, GC & Ecker 98). After a long and tedious

calculation, the divergent parts of all the counterterms at

O(p6) has been provided

◮ Renormalization of CHPT up to two loops has been

performed explicitly: the calculation of any two-loop

amplitude can be immediately checked by comparing the

divergent part of Feynman diagrams to the divergent parts

of the relevant counterterms
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Chiral perturbation theory

◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good

properties we require:

symmetry, analyticity, unitarity
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◮ The method yields a systematic expansion of the Green

functions in powers of momenta and quark masses
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Chiral perturbation theory

◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good

properties we require:

symmetry, analyticity, unitarity

◮ The method yields a systematic expansion of the Green

functions in powers of momenta and quark masses

◮ The method has been rigorously established and can be

formulated as a set of calculational rules:

LO tree level diagrams with L2

NLO tree level diagrams with L4

1-loop diagrams with L2

NNLO tree level diagrams with L6

2-loop diagrams with L2

1-loop diagrams with one vertex from L4
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Summary

◮ Goldstone’s theorem has physical implications at low

energy

◮ Effective Lagrangian for Goldstone bosons

= tool to systematically derive symmetry constraints

on their interactions

◮ I have discussed how to construct the effective Lagrangian,

even in the presence of a (small) symmetry breaking

◮ Anatomy of loop contributions:
◮ the analytically nontrivial part of loop integrals automatically

yields the correct imaginary parts (unitarity)

◮ IR singular behaviour of loop integrals (= chiral logs) is a

physical effect expected in a system with massless particles

◮ UV divergences encountered in loop integrals can be

removed according to standard renormalization methods
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