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77 scattering Experimental tests

7w scattering at NLO
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Higher orders

Higher order corrections are suppressed by O(mg/Az)
A ~ 1 GeV = expected to be a few percent

a)=0200+ O(p®) & = —0.0445 + O(p°)
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The reason for the rather large correction in ag is a chiral log
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77 scattering Experimental tests

Higher orders

Higher order corrections are suppressed by O(mg/Az)
A ~ 1 GeV = expected to be a few percent

a)=0200+ O(p®) & = —0.0445 + O(p°)

The reason for the rather large correction in ag is a chiral log
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How large are yet higher orders?
Is it at all possible to make a precise prediction?
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry = Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a3 and a3
Output: the full 77 scattering amplitude below 0.8 GeV
Note: if &9, a3 are chosen within the universal band
the solution exists and is unique

Numerical solutions of the Roy equations
Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)
Ananthanarayan, GC, Gasser and Leutwyler (00)
Descotes-Genon, Fuchs, Girlanda and Stern (01)
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Numerical solutions
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Combining CHPT and dispersive methods
In CHPT the two subtraction constants are predicted
Subtracting the amplitude at threshold (ag, ag) is not mandatory
The freedom in the choice of the subtraction point

can be exploited to use the chiral expansion
where it converges best, i.e. below threshold



Combining CHPT and dispersive methods
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold
a = 0159 0.200 — 0.216
10-a85 = —0.454 — —0.445 — —0.445

2 4 6

p p p

GC, Gasser and Leutwyler (01)



77 scattering Experimental tests

Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold
a = 0159 0.200 — 0.216
10-a85 = —0.454 — —0.445 — —0.445
p? p* p°
CHPT below threshold + Roy
a = 0197 - 02195 0.220
10-85 = -0.402 — —0.446 — —0.444

GC, Gasser and Leutwyler (01)



Low-energy theorem for =7 scattering

M(7°7° — 7t 7)) = A(s, t, u) = isospin invariant amplitude
s— M?
F2
M? = B(my+mg) M2 =M+ 0(m3), F.=F+0O(mg)

Low energy theorem:  A(s, t,u) = +O(p*)  weinberg 1966

All physical amplitudes can be expressed in terms of A(s, t, u)

_ o 25— M?
T=0 = 3A(s, t,u) + A(t,s,u) + A(u, t,8) = T-0 = "
S wave projection  (I=0)
Qo) =2-M o pame)= M o6
0T 32nF2 0 O T gerF2 T



Low-energy theorem for =7 scattering

M(7°7° — 7t 7)) = A(s, t, u) = isospin invariant amplitude
s— M?
F2
M? = B(my+mg) M2 =M+ 0(m3), F.=F+0O(mg)

Low energy theorem:  A(s, t,u) = +O(p*)  weinberg 1966

All physical amplitudes can be expressed in terms of A(s, t, u)

_ > —S+2M?
TI=2 = At,s,u) + A(u,t,s) = T'=2 = %
S wave projection (1=2)
2M? — s —M?
2 s 2 2 2 s
= = 2(4M?) = —_0.04
009) = "orpz %= BUM) = 55 = 0045
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Chiral predictions for a3 and a3

Quark mass dependence of M, and F;:

M2 = M?(1-— Mzz+0()
"= 3272F2 8 T PP
M2 = — % <0|aq‘0> Gell-Mann, Oakes, Renner (68)
M2
Fr = F<1 - 2F2€4+O(p)>

Phenomenological determinations (indirect):

Z3 - 29 + 24 Gasser & Leutwyler (84)
E4 == 44 + 02 GC, Gasser & Leutwyler (01)

Lattice calculations determine these constants directly
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Chiral predictions for a3 and a3
XPT calculations at NLO (Gasser & Leutwyler 84)

and at NNLO (Bijnens, GC, Ecker, Gasser & Sainio, 95)

Prediction obtained matching O(p®) xPT to Roy equations

(d|Sp relation): GC, Gasser & Leutwyler (01)
ag = 0.220 £ 0.001 + 0.009A/%4 — 0.002A/3
10 - ag = —0.444+0.003 — 0.01A¢4 — 0.004A43

where Z4 =44+ Af4 Z3 =29+ Af3

Adding errors in quadrature [Aly = 0.2, Alg = 2.4]
a = 0.220+0.005
10-285 = —0.444+0.01

al—a = 0.265+0.004



Chiral predictions for a3 and a3
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Sensitivity to the quark condensate
The constant /3 appears in the chiral expansion
of the pion mass

A

2Bm -
M = 2Bm 1+16 F2
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Sensitivity to the quark condensate
The constant /3 appears in the chiral expansion
of the pion mass

. 2Bm
M2 =2Bm |1 +

167 F2£3+O( )

. My + Mg __L _
m=-—5—  B=-5(0qq/0)

Its size tells us what fraction of the pion mass is given by the
Gell-Mann—Oakes—Renner term

Ménior = 2B/



Sensitivity to the quark condensate
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Experimental tests

L0.02|— Universal band

e tree (66), one loop (83), two loops (96)

—— Prediction (ChPT + dispersion theory, 2001)
DIRAC (2005)

— NA48 K -> 3 11(2005)
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Experimental tests
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Experimental tests
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Recent update: E865 corrected their data



Experimental tests

= Universal band N
e tree (66), one loop (83), two loops (96) NN A}
-0.02 = — Prediction (ChPT + dispersion theory, 2001) RS )
DIRAC (2005) R
-— NA48 K -> 3 11(2005)
NA48
E865
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Experimental tests

= Universal band N
e tree (66), one loop (83), two loops (96) NN A}
-0.02 = — Prediction (ChPT + dispersion theory, 2001) RS )
DIRAC (2005) R
-— NA48 K -> 3 11(2005)
NA48 isospin corrected
E865 isospin corrected

2 .
a 0.04
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-0.06

isospin breaking corrections recently calculated for Ko4 are
essential at this level of precision GC, Gasser, Rusetsky (09)



Experimental tests

= Universal band ISR NN
e tree (66), one loop (83), two loops (96) NN A}
-0.02 = — Prediction (ChPT + dispersion theory, 2001) RS )
DIRAC (2005) R
NA48 K -> 3 11(2005)
all data isospin corrected

-0.03

2 .
a 0.04

-0.05

-0.06

isospin breaking corrections recently calculated for Ko4 are
essential at this level of precision GC, Gasser, Rusetsky (09)
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Lattice input for /3 and /4
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Quark masses

QCD Lagrangian:

1 . _
ﬁQCD = —TQZTTGMVGM +Z qi(’LD_ mq;)Qi‘F; Qj(lw_ mQj)C?j

> In the limit mg, — 0 and mq, — oc: Mhadrons o< A

» Observe that mg, < A while mg, > A [A ~ Mp]

» Quarks do not propagate:
quark masses are coupling constants! (not observables)

they depend on the renormalization scale p (like o)
for light quarks by convention: © = 2 GeV
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How to determine quark masses

» From their influence on the spectrum XPT, lattice

> mg > A
M@q,- = Mq + O(/\)

> Mg <A
Mg,q; = Mo jj + O(mg,, mg;) Mo j = O(N)
In both cases need to understand the O(A) term
» From their influence on any other observable XPT, sum rules

Quark masses are coupling constants
= exploit the sensitivity to them of any observable
[e.g. n decays, spectral functions from 7 decays, etc. |



n — 3w and Q my — My

mg + my is easier to get than my — m,

mg, My <N = Lm=—mylu— mgdd = small perturbation
However:
mg+my,_ - uu — dd
Lm —M(uumlor)—(md_m,,)T

= —m qq +(mg — my)grsq
~~ ——
Oj=0 Oj=1
and selection rules make the effect of O,_1 well hidden
= M responsible for the mass of pions
but (my — m,) only contributes at O(p*) (atiny 6M,o)

better sensitivity in K masses



First estimates

Leading-order masses of = and K:
M2 = Bo(my+my) Mz, = Bo(my+ms) Mzy = By(mg + ms)

Quark mass ratios:

my M72f+_Mf2<°+M’2(+N067
mg M$++M’2<O—M,2(+ o
ms Mo + My, — M2,

12

~ 20
Mg M;z(o - M;2(+ + M72r+



Electromagnetic corrections to the masses

According to Dashen’s theorem

M,2,o = Bo(mu + my)
ME‘*’ = BO(mU + md) + Acm
MZ, = Bo(mg+ ms)
Mi2(+ = BO(mU + ms) + Aem
Extracting the quark mass ratios gives Weinberg (77)
my M/2(+ - M;Z(o +2M72ro - M72r+ — 056
md M,2<0 - M}%+ + M72l'+ '
m M2, + M2, — M?
—= = K K = 20.1

My M;2<o - M;2<+ + M72r+



Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)

M2 ms + M
w2 - om 1+ A+ 0P|

M2, — M2 my—m

KO K+ — d u 2
VW T e 1+ au+0(m?)]
8 M2 M?2

Ay = (,:2)(2L8 — Ls) + x-logs

s

The same O(m) correction appears in both ratios
= this double ratio is free from O(m) corrections

m2— 2 M2 M2 — M2

QP=—"5_"—" _ K K T
m3—mz  M2MZ, — M2,

[1 +O(m )]



Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)
Mg Ms + M 2
M2, — M2 my —m
KO K+ d u 2
_KE Rt _ A
M2 — M2 ms—m[1+ +O(mP)|
8(Mz — M?
Ay = (f<l__2)(2L8 — Ls) + x-logs

s

The same O(m) correction appears in both ratios
= this double ratio is free from O(m) and em corrections

(M!2<0 + Ml2(+ B M72r+ + M72|-0)(M}2(O + M;2(+ - M72r+ - Mzo)

Q3 ! _ 243
b AMZ, (M2, — M2, + M2, — MZ,)
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Violation of Dashen’s theorem
In pure QCD (Mp = Mp|_ )

Mg+ = Bo(ms+my) + O(mg)
Myo = Bo(ms+ my) + o(mg)

= MK+ — MKO = Bo(mu — md) + O(mg)

Define em contributions to masses
Mp=Mp — Mp, A} = M2 — 2
Dashen’s theorem: Dp, =A),
and its violation [Ar = M2, — M3]

Ny — DYy — AL+ Ny = e,
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Estimates of the size of Dashen’s theorem violation
xPT + model-based calculations:

1.0 Donoghue-Perez (97) Q=215 (wp

0.8 Bijnens-Prades (97) Q = 22 (ENJL mode))
€ =
1.5 Anant-Moussallam (04) Q= 20.7(Sum rules)

Lattice-based calculations (the value of Q s calculated in xPT at NLO)

( 0.50(8) Duncan et al. (96) Q=229

0.5(1) RBC (07) Q=229
0.78(6)(2)(9)(2) BMW (11) Q=221

e=4¢ 0.65(7)(14)(10) MILC (13) Q=226
0.79(18)(18) RM123 (13) Q=221
0.73(2)(5)(17) BMW (16) Q=222

L 0.73(3)(13)(5) MILC (16) Q=222

Value quoted in FLAG-3: e=0.7(3)



FLAG-3 summary of the quark masses

all masses in MeV

Ne Myg ms Ms/ Myg
2+1+1 3.70(17) 93.9(1.1) 27.30(34)
2+1 3.373(80) 92.0(2.1) 27.43(31)
2 3.6(2) 101(3) 27.3(9)
Ne my my My/ My R Q
2+1+1  2.36(24) 5.03(26)  0.470(56) 35.6(5.1) 22.2 (1.6)

241 2.16(9)(7) 4.68(14)(7) 0.46(2)(2) 35.0(1.9)(1.8)  22.5(6)(6)

2 2.40(23)  4.80(23) 0.50(4)  40.7(3.7)(2.2) 24.3(1.4)(0.6)
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xPTand n — 3«
Lowest order chiral amplitude: Osborn, Wallace (70)

M@ —7tr %) = A(s,t,u)  s= (P +Px )% ...

Bo(my — myg) 3(s — s0) 2
A =
(s, t,u) 3V3F2 M2 M2 + O(m)| + O(e“m)
Relate m, — my to meson masses Dashen (69)
Bo(my — mg) = (M. — M2¢) — (M2, — M2,) + O(&2m)

LO chiral prediction

F(n— a7 ~70eV < Tep = 295420 eV



n — 3w and Q my — my

xPTand n — 3«
Lowest order chiral amplitude: Osborn, Wallace (70)

M@ —7tr %) = A(s,t,u)  s= (P +Px )% ...

Bo(my — myg) 3(s — s0) 2
A =
(s, t,u) 3V3F2 M2 M2 + O(m)| + O(e“m)
Relate m, — my to meson masses Dashen (69)
Bo(my — mg) = (M. — M2¢) — (M2, — M2,) + O(&2m)
NLO chiral prediCtion Gasser-Leutwyler (85)

F(n—7tn 7% ~70eV — 160450 eV < Texp = 295420 eV
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Dispersive approach
Isospin decomposition of M(s, t, u) Stern, Sazdjian, Fuchs (93)
Anisovich, Leutwyler (96)

M(s, t,u) = Mo(8)+(s—u)M;(t)+(s—t)M; (u)+M2(t)+M2(u)—§M2(s)

assumes only: disc[t/(s)] =0  v¢>2in all channels

Analytic properties of the M(s) functions: [s > 4M?]
disc[M;(s)] = disc[t!(s)] = t}(s)€*® sin 5l (s)
t!(s) = partial wave with isospin / and angular momentum ¢
t)(s) = M(s) + My(s)
Dispersion relation for My analogous ones for My and My

s2 [ Mo(s') sin 62(s')
Mo(s) = Q0(S) |ao + BoS + 708 + — ! 2
o(8) = Q0(S) |0 + Bos + 70 7 Jae % [00(s)5%(s' — )

Anisovich, Leutwyler (96)



How we fit the data

» our dispersive amplitude, linear in the subtraction
constants («aq, Bo, .. .) (corrected for isospin breaking)

» (we use linear combinations of the o, 5o, ... — Ho1,..5

dividing by Ho we get hi=H/Hy, i=1,2.5)
» the invariants hy, h, and hs are constrained by the xPT
NLO calculation: (theoretical x2 added to the experimental)

hy = 4.52(36), h, =16.4(4.9), hs =6.3(1.9)

» the invariants h, and hs are treated as free parameters
» available data are from:

» KLOE (2016)

» WASA@COSY (2014)

» Crystal Ball@MAMI (2007)

» several values for « are in the PDG



How we fit the data

» our dispersive amplitude, linear in the subtraction
constants («aq, Bo, .. .) (corrected for isospin breaking)

» (we use linear combinations of the o, 5o, ... — Ho1,..5

dividing by Ho we get hi=H/Hy, i=1,2.5)
» the invariants hy, h, and hs are constrained by the xPT
NLO calculation: (theoretical x2 added to the experimental)

hy = 4.52(36), h, =16.4(4.9), hs =6.3(1.9)

» the invariants h, and hs are treated as free parameters
» available data are from:

» KLOE (2016) <

» WASA@COSY (2014)

» Crystal Ball@MAMI (2007)

» several values for « are in the PDG
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KLOE data
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KLOI: Anta
> 1
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Fit results
xPT:

AMLO — 4.52(36), KO =16.4(4.9), HYC =6.3(1.9)
sh :—Mﬁ SHEO = 1.40M2

3
Fit outcomes:
3-parameter fit — w/o X2,
X5p =385.3 for 371 data points

hy = 4.53, hy = 12.6, hy = 6.4,

Adler zero:
sa = 1.43M2
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Fit results
xPT:

AMLO — 4.52(36), KO =16.4(4.9), HYC =6.3(1.9)
sh :—Mﬁ SHEO = 1.40M2

3
Fit outcomes:
5-parameter fit — w/o x2
X5p =370.3 for 371 data points

hy = 0.93, hy = 16.3, hy = 52.0,
hy = 77.9, hs = —56.7

Adler zero: none!
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Fit results
xPT:

AMLO — 4.52(36), KO =16.4(4.9), HYC =6.3(1.9)
sh :—Mﬁ SHEO = 1.40M2

3
Fit outcomes:
5-parameter fit — w/ X2
X5p =380.2 for 371 data points

hy = 4.49(14), ho = 21.2(4.3), hy = 7.1(1.7),
hy = 76.4(3.4), hs = 47.3(5.8)

Adler zero:
sa = 1.34(10)M?



Momentum dependence

3
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—— LO of xPT (current algebra)
— NLOof XPT

2.5~ i uncertainty esti ate for NLO representation
ReM NNLO of xPT (Bi nens & Ghorbani 2007)
Ka pf et al. 2011
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Momentum dependence

ReM

3.5

25

0.5

my — my
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—— LO of xPT (current algebra)

—— NLO of xPT

NNLO of xPT (Bi nens & Ghorbani 2007)

Ka pf et al. 2011

-—-- Guo et al. 2016
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Dalitz plot in the neutral channel
Having fixed the subtraction constants, the Dalitz plot in the

neutral channel can be predicted: X2 =225

1

0.98 - t f

0.96 - ,

+ MAMI
E= prediction

0.94 - N

092 1 | 1 | 1 | 1 |



Dalitz plot in the neutral channel

Gullstr , Kupsc, Rusets y 2009
—— dispersive/NR representation
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Dalitz plot in the neutral channel: value of «
Comparison with other determinations:

ChPT O(p?)
—t—— ChPT O(p®)

Kambor et al.

Kampf et al.

NREFT, Schneider et al.

JPAC, Guo et al.

KT-elast, Albaladejo-Moussallam
KT-C.C., Albaladejo-Moussallam
Dispersive, fit to charged KLOE

GAMS-2000 (1984)

Crystal Barrel@LEAR (1998)
Crystal Ball@BNL (2001)
SND (2001)
WASA@CELSIUS (2007)
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KLOE (2010)
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Determination of Q
HY0 =1.176(53) and I'(n — = 7~ x°) = (300 + 12) eV yield:
(M2, — M2.) = 6.27(38)10° GeV?
which implies:
(M2 — M2 )qep = —2.38(38)10 72 GeV?

This corresponds to

e =0.9(3)
in agreement with recent lattice determinations:
0.74(18) BMW
_} 0.73(14) MILC
= 0.50(6) QCDSF/UKQCD
0.801(110) RMI23

avw e e e somewhat lower than recent lattice determinations



Determination of Q
HY0 =1.176(53) and I'(n — = 7~ x°) = (300 + 12) eV yield:

(M2, — M2.) = 6.27(38)10° GeV?

which implies: (upon use of)

. . M2(M2 — M?
(2o — WA2,) = K(ng) (1+0(m?)
Q = 22.0(7)

somewhat lower than recent lattice determinations

q_ | 2340(64) BMW
~ 1 23.8(1.1) RMI23

Unexpectedly large O(m?) effects?



Ratio of decay rates

The ratio of decay rates for the two channels can also be
calculated and with remarkable accuracy Gasser-Leutwyler (85)

The normalization Hp also drops out in this ratio

As it turns out most uncertainties cancel out, giving:

M(n— 37?0)

B
M(n — nta—m0)

= 1.44(4)

which agrees perfectly with the measured value

BPD(}(OUI’ flt) = 1426(26), Bng(OUI' average) =1 48(5)



Outline

Summary



Summary

As an illustration of the effective field theory method | have
discussed a two applications:

» the analysis of the =7 scattering amplitude beyond one
loop

» the determination of Q from n — 37



	 scattering beyond LO
	Experimental tests

	3  and Qms2- 2md2-mu2
	How to determine mu-md

	Summary

