Chiral dynamics in QCD

Gilberto Colangelo

WE-Heraeus Physics School "QCD: old challenges and new opportunities" 24–30 September 2017

Lecture II: two applications

 $\pi\pi$ scattering beyond LO Experimental tests

$$\eta
ightarrow 3\pi$$
 and $Q \equiv rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$
How to determine $m_u - m_d$

Summary

Outline

$\pi\pi$ scattering beyond LO Experimental tests

$$\eta
ightarrow 3\pi$$
 and $Q \equiv rac{m_{
m g}^2 - \hat{m}^2}{m_d^2 - m_u^2}$ How to determine $m_u - m_d$

Summary

$\pi\pi$ scattering at NLO

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{200\pi F_\pi^2 M_\pi^2}{7} (a_2^0 + 2a_2^2) - \frac{M_\pi^2}{672\pi^2 F_\pi^2} (15\bar{\ell}_3 - 353) \right] = 0.16 \cdot 1.25 = 0.20$$

$$2a_0^0 - 5a_0^2 = \frac{3M_\pi^2}{4\pi F_\pi^2} \left[1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{41M_\pi^2}{192\pi^2 F_\pi^2} \right] = 0.624$$

Gasser and Leutwyler (83)

Higher order corrections are suppressed by $\mathcal{O}(m_q^2/\Lambda^2)$ $\Lambda \sim 1 \text{ GeV} \Rightarrow \text{expected to be a few percent}$

$$a_0^0 = 0.200 + \mathcal{O}(p^6)$$
 $a_0^2 = -0.0445 + \mathcal{O}(p^6)$

Gasser and Leutwyler (84)

Higher order corrections are suppressed by $\mathcal{O}(m_q^2/\Lambda^2)$ $\Lambda \sim 1 \text{ GeV} \Rightarrow \text{expected to be a few percent}$

$$a_0^0 = 0.200 + \mathcal{O}(p^6)$$
 $a_0^2 = -0.0445 + \mathcal{O}(p^6)$

The reason for the rather large correction in a_0^0 is a chiral log

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{9}{2} \ell_\chi + \dots \right] \qquad a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} \left[1 - \frac{3}{2} \ell_\chi + \dots \right]$$

$$\ell_\chi = \frac{M_\pi^2}{16\pi^2 F_\pi^2} \ln \frac{\mu^2}{M_\pi^2}$$

Gasser and Leutwyler (84)

Higher order corrections are suppressed by $\mathcal{O}(m_q^2/\Lambda^2)$ $\Lambda \sim 1 \text{ GeV} \Rightarrow \text{expected to be a few percent}$

$$a_0^0 = 0.200 + \mathcal{O}(p^6)$$
 $a_0^2 = -0.0445 + \mathcal{O}(p^6)$

The reason for the rather large correction in a_0^0 is a chiral log

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{9}{2} \ell_\chi + \dots \right] \qquad a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} \left[1 - \frac{3}{2} \ell_\chi + \dots \right]$$

$$\ell_{\chi} = \frac{M_{\pi}^2}{16\pi^2 F_{\pi}^2} \ln \frac{\mu^2}{M_{\pi}^2}$$

Gasser and Leutwyler (84)

How large are yet higher orders? Is it at all possible to make a precise prediction?

Unitarity effects can be calculated exactly using dispersive methods

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV two subtraction constants, e.g. a_0^0 and a_0^2

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a_0^0 and a_0^2

Output: the full $\pi\pi$ scattering amplitude below 0.8 GeV

Note: if a_0^0 , a_0^2 are chosen within the universal band

the solution exists and is unique

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV

two subtraction constants, e.g. a_0^0 and a_0^2

Output: the full $\pi\pi$ scattering amplitude below 0.8 GeV

Note: if a_0^0 , a_0^2 are chosen within the universal band

the solution exists and is unique

Numerical solutions of the Roy equations

Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)

Ananthanarayan, GC, Gasser and Leutwyler (00)

Descotes-Genon, Fuchs, Girlanda and Stern (01)

In CHPT the two subtraction constants are predicted

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a_0^0, a_0^2) is not mandatory

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a_0^0, a_0^2) is not mandatory

The freedom in the choice of the subtraction point can be exploited to use the chiral expansion where it converges best, *i.e.* below threshold

The convergence of the series at threshold is greatly improved if CHPT is used only below threshold

CHPT at threshold

$$a_0^0 = 0.159 \rightarrow 0.200 \rightarrow 0.216$$
 $10 \cdot a_0^2 = -0.454 \rightarrow -0.445 \rightarrow -0.445$
 $p^2 \qquad p^4 \qquad p^6$

GC, Gasser and Leutwyler (01)

The convergence of the series at threshold is greatly improved if CHPT is used only below threshold

CHPT at threshold

$$a_0^0 = 0.159 \rightarrow 0.200 \rightarrow 0.216$$
 $10 \cdot a_0^2 = -0.454 \rightarrow -0.445 \rightarrow -0.445$
 $p^2 \qquad p^4 \qquad p^6$

CHPT below threshold + Roy

$$a_0^0 = 0.197 \rightarrow 0.2195 \rightarrow 0.220$$

 $10 \cdot a_0^2 = -0.402 \rightarrow -0.446 \rightarrow -0.444$

GC, Gasser and Leutwyler (01)

Low-energy theorem for $\pi\pi$ scattering

$$\mathcal{M}(\pi^0\pi^0 \to \pi^+\pi^-) \equiv A(s,t,u) = \text{isospin invariant amplitude}$$

Low energy theorem:
$$A(s,t,u)=rac{s-M^2}{F^2}+\mathcal{O}(p^4)$$
 Weinberg 1966 $M^2=B(m_u+m_d)$ $M_\pi^2=M^2+O(m_q^2),\ F_\pi=F+O(m_q)$

All physical amplitudes can be expressed in terms of A(s, t, u)

$$T^{l=0} = 3A(s,t,u) + A(t,s,u) + A(u,t,s) \Rightarrow T^{l=0} = \frac{2s - M_{\pi}^2}{F_{\pi}^2}$$

S wave projection (I=0)

$$t_0^0(s) = \frac{2s - M_\pi^2}{32\pi F_\pi^2}$$
 $a_0^0 = t_0^0(4M_\pi^2) = \frac{7M_\pi^2}{32\pi F_\pi^2} = 0.16$

Low-energy theorem for $\pi\pi$ scattering

$$\mathcal{M}(\pi^0\pi^0 \to \pi^+\pi^-) \equiv A(s,t,u) = \text{isospin invariant amplitude}$$

Low energy theorem:
$$A(s,t,u)=rac{s-M^2}{F^2}+\mathcal{O}(
ho^4)$$
 weinberg 1966 $M^2=B(m_u+m_d)$ $M_\pi^2=M^2+O(m_q^2),\; F_\pi=F+O(m_q)$

All physical amplitudes can be expressed in terms of A(s, t, u)

$$T^{l=2} = A(t, s, u) + A(u, t, s) \Rightarrow T^{l=2} = \frac{-s + 2M_{\pi}^2}{F_{\pi}^2}$$

S wave projection (I=2)

$$t_0^2(s) = \frac{2M_\pi^2 - s}{32\pi F_\pi^2}$$
 $a_0^2 = t_0^2(4M_\pi^2) = \frac{-M_\pi^2}{16\pi F_\pi^2} = -0.045$

Chiral predictions for a_0^0 and a_0^2

Quark mass dependence of M_{π} and F_{π} :

$$M_{\pi}^2 = M^2 \left(1 - \frac{M^2}{32\pi^2 F^2} \bar{\ell}_3 + O(p^4) \right)$$
 $M^2 \equiv -\frac{m_u + m_d}{F^2} \langle 0 | \bar{q}q | 0 \rangle$ Gell-Mann, Oakes, Renner (68)
 $F_{\pi} = F \left(1 + \frac{M^2}{16\pi^2 F^2} \bar{\ell}_4 + O(p^4) \right)$

Phenomenological determinations (indirect):

$$ar{\ell}_3 = 2.9 \pm 2.4$$
 Gasser & Leutwyler (84) $ar{\ell}_4 = 4.4 \pm 0.2$ GC, Gasser & Leutwyler (01)

Lattice calculations determine these constants directly

Chiral predictions for a_0^0 and a_0^2 χ PT calculations at NLO and at NNLO

(Gasser & Leutwyler 84)

(Biinens, GC, Ecker, Gasser & Sainio, 95)

Prediction obtained matching $O(p^6) \chi PT$ to Roy equations (disp. relation): GC, Gasser & Leutwyler (01)

$$a_0^0 = 0.220 \pm 0.001 + 0.009 \Delta \ell_4 - 0.002 \Delta \ell_3$$
 $10 \cdot a_0^2 = -0.444 \pm 0.003 - 0.01 \Delta \ell_4 - 0.004 \Delta \ell_3$ where $ar{\ell}_4 = 4.4 + \Delta \ell_4$ $ar{\ell}_3 = 2.9 + \Delta \ell_3$ and errors in quadrature $[\Delta \ell_4 = 0.2, \Delta \ell_3 = 2.4]$

Adding errors in quadrature

$$[\Delta\ell_4=0.2,\,\Delta\ell_3=2.4]$$

$$a_0^0 = 0.220 \pm 0.005$$

 $10 \cdot a_0^2 = -0.444 \pm 0.01$
 $a_0^0 - a_0^2 = 0.265 \pm 0.004$

Chiral predictions for a_0^0 and a_0^2

Sensitivity to the quark condensate

The constant $\bar{\ell}_3$ appears in the chiral expansion of the pion mass

$$M_{\pi}^{2} = 2B\hat{m}\left[1 + \frac{2B\hat{m}}{16\pi F_{\pi}^{2}}\bar{\ell}_{3} + \mathcal{O}(\hat{m}^{2})\right]$$

$$\hat{m} = \frac{m_u + m_d}{2}$$
 $B = -\frac{1}{F^2} \langle 0|\bar{q}q|0 \rangle$

Sensitivity to the quark condensate

The constant $\bar{\ell}_3$ appears in the chiral expansion of the pion mass

$$M_{\pi}^{2} = 2B\hat{m}\left[1 + \frac{2B\hat{m}}{16\pi F_{\pi}^{2}}\bar{\ell}_{3} + \mathcal{O}(\hat{m}^{2})\right]$$

$$\hat{m} = \frac{m_u + m_d}{2}$$
 $B = -\frac{1}{F^2} \langle 0|\bar{q}q|0 \rangle$

Its size tells us what fraction of the pion mass is given by the Gell-Mann–Oakes–Renner term

$$M_{
m GMOR}^2 \equiv 2B\hat{m}$$

Sensitivity to the quark condensate

The E865 data on $K_{\ell 4}$ imply that

GC, Gasser and Leutwyler PRL (01)

 $M_{\rm GMOR} > 94\% M_{\pi}$

Recent update: E865 corrected their data

Recent update: E865 corrected their data

Experimental tests

isospin breaking corrections recently calculated for $K_{\rm e4}$ are essential at this level of precision GC, Gasser, Rusetsky (09)

Experimental tests

isospin breaking corrections recently calculated for K_{e4} are essential at this level of precision GC, Gasser, Rusetsky (09)

Experimental tests

Figure from NA48/2 Eur.Phys.J.C64:589,2009

Lattice input for $\bar{\ell}_3$ and $\bar{\ell}_4$

Outline

 $\pi\pi$ scattering beyond LO Experimental tests

$$\eta o 3\pi$$
 and $Q \equiv rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$
How to determine $m_u - m_d$

Summary

Quark masses

QCD Lagrangian:

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{4g^2} ext{Tr} G_{\mu
u} G^{\mu
u} + \sum_j ar{q}_i (i
ot\!\!\!/ - m_{q_i}) q_i + \sum_j ar{Q}_j (i
ot\!\!\!/ - m_{Q_j}) Q_j$$

▶ In the limit $m_{q_i} \to 0$ and $m_{Q_i} \to \infty$:

 $M_{\rm hadrons} \propto \Lambda$

▶ Observe that $m_{q_i} \ll \Lambda$ while $m_{Q_i} \gg \Lambda$

 $[\Lambda \sim M_N]$

Quarks do not propagate: quark masses are coupling constants! (not observables)

they depend on the renormalization scale μ (like α_s) for light quarks by convention: $\mu = 2~{\rm GeV}$

How to determine quark masses

► From their influence on the spectrum

 χ PT, lattice

•
$$m_Q \gg \Lambda$$

$$M_{\bar{Q}q_i}=m_Q+\mathcal{O}(\Lambda)$$

• $m_q \ll \Lambda$

$$M_{\overline{q}_iq_j} = M_{0ij} + \mathcal{O}(m_{q_i}, m_{q_j})$$
 $M_{0ij} = \mathcal{O}(\Lambda)$

In both cases need to understand the $\mathcal{O}(\Lambda)$ term

► From their influence on any other observable

 χ PT, sum rules

Quark masses are coupling constants \Rightarrow exploit the sensitivity to them of any observable [e.g. η decays, spectral functions from τ decays, etc.]

$m_d + m_u$ is easier to get than $m_d - m_u$

$$m_d, m_u \ll \Lambda \Rightarrow \mathcal{L}_m = -m_u \bar{u}u - m_d \bar{d}d = \text{small perturbation}$$

However:

$$\mathcal{L}_{m} = -\frac{m_{d} + m_{u}}{2} (\bar{u}u + \bar{d}d) - (m_{d} - m_{u}) \frac{\bar{u}u - dd}{2}$$

$$= -\hat{m} \underbrace{\bar{q}q}_{\mathcal{O}_{l=0}} + (m_{d} - m_{u}) \underbrace{\bar{q}\tau_{3}q}_{\mathcal{O}_{l=1}}$$

and selection rules make the effect of $\mathcal{O}_{l=1}$ well hidden

$$\Rightarrow$$
 \hat{m} responsible for the mass of pions but $(m_d - m_u)$ only contributes at $\mathcal{O}(p^4)$ (a tiny δM_{π^0})

better sensitivity in K masses

First estimates

Leading-order masses of π and K:

$$M_{\pi}^2 = B_0(m_u + m_d) \quad M_{K^+}^2 = B_0(m_u + m_s) \quad M_{K^0}^2 = B_0(m_d + m_s)$$

Quark mass ratios:

$$\frac{m_u}{m_d} \simeq \frac{M_{\pi^+}^2 - M_{K^0}^2 + M_{K^+}^2}{M_{\pi^+}^2 + M_{K^0}^2 - M_{K^+}^2} \simeq 0.67$$

$$\frac{m_s}{m_d} \simeq \frac{M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} \simeq 20$$

Electromagnetic corrections to the masses

According to Dashen's theorem

$$M_{\pi^0}^2 = B_0(m_u + m_d)$$

 $M_{\pi^+}^2 = B_0(m_u + m_d) + \Delta_{em}$
 $M_{K^0}^2 = B_0(m_d + m_s)$
 $M_{K^+}^2 = B_0(m_u + m_s) + \Delta_{em}$

Extracting the quark mass ratios gives

Weinberg (77)

$$\begin{split} \frac{m_u}{m_d} &= \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} &= 0.56\\ \frac{m_s}{m_d} &= \frac{M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} &= 20.1 \end{split}$$

Higher order chiral corrections

Mass formulae to second order

Gasser-Leutwyler (85)

$$\frac{M_{K}^{2}}{M_{\pi}^{2}} = \frac{m_{s} + \hat{m}}{2\hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$

$$\frac{M_{K^{0}}^{2} - M_{K^{+}}^{2}}{M_{K}^{2} - M_{\pi}^{2}} = \frac{m_{d} - m_{u}}{m_{s} - \hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$

$$\Delta_{M} = \frac{8(M_{K}^{2} - M_{\pi}^{2})}{F_{\pi}^{2}} (2L_{8} - L_{5}) + \chi \text{-logs}$$

The same $\mathcal{O}(m)$ correction appears in both ratios \Rightarrow this double ratio is free from $\mathcal{O}(m)$ corrections

$$Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} = \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{M_{K^0}^2 - M_{K^+}^2} \left[1 + \mathcal{O}(m^2) \right]$$

Higher order chiral corrections

Mass formulae to second order

Gasser-Leutwyler (85)

$$\frac{M_K^2}{M_\pi^2} = \frac{m_s + \hat{m}}{2\hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]
\frac{M_{K^0}^2 - M_{K^+}^2}{M_K^2 - M_\pi^2} = \frac{m_d - m_u}{m_s - \hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]
\Delta_M = \frac{8(M_K^2 - M_\pi^2)}{F_\pi^2} (2L_8 - L_5) + \chi \text{-logs}$$

The same $\mathcal{O}(m)$ correction appears in both ratios \Rightarrow this double ratio is free from $\mathcal{O}(m)$ and em corrections

$$Q_D^2 \equiv \frac{(\textit{M}_{\textit{K}^0}^2 + \textit{M}_{\textit{K}^+}^2 - \textit{M}_{\pi^+}^2 + \textit{M}_{\pi^0}^2)(\textit{M}_{\textit{K}^0}^2 + \textit{M}_{\textit{K}^+}^2 - \textit{M}_{\pi^+}^2 - \textit{M}_{\pi^0}^2)}{4\textit{M}_{\pi^0}^2(\textit{M}_{\textit{K}^0}^2 - \textit{M}_{\textit{K}^+}^2 + \textit{M}_{\pi^+}^2 - \textit{M}_{\pi^0}^2)} = \textbf{24.3}$$

Violation of Dashen's theorem

In pure QCD ($\hat{M}_P \equiv M_{P|_{\alpha_{em}=0}}$)

$$\hat{M}_{K^{+}} = B_{0}(m_{s} + m_{u}) + \mathcal{O}(m_{q}^{2})$$
 $\hat{M}_{K^{0}} = B_{0}(m_{s} + m_{d}) + \mathcal{O}(m_{q}^{2})$
 $\Rightarrow \hat{M}_{K^{+}} - \hat{M}_{K^{0}} = B_{0}(m_{u} - m_{d}) + \mathcal{O}(m_{q}^{2})$

Define em contributions to masses

$$M_P^{\gamma} \equiv M_P - \hat{M}_P, \ \Delta_P^{\gamma} \equiv M_P^2 - \hat{M}_P^2$$

Dashen's theorem: $\Delta_{\kappa^+}^{\gamma} = \Delta_{\pi^+}^{\gamma}$

and its violation

$$[\Delta_\pi \equiv extit{M}_{\pi^+}^2 - extit{M}_{\pi^0}^2]$$

$$\Delta_{\mathcal{K}^+}^{\gamma} - \Delta_{\mathcal{K}^0}^{\gamma} - \Delta_{\pi^+}^{\gamma} + \Delta_{\pi^0}^{\gamma} = \epsilon \Delta_{\pi}$$

Estimates of the size of Dashen's theorem violation

 χ PT + model-based calculations:

$$\epsilon = \left\{ \begin{array}{ll} \text{0.8 Bijnens-Prades (97)} & Q = 22 \text{ (ENJL model)} \\ \text{1.0 Donoghue-Perez (97)} & Q = 21.5 \text{ (VMD)} \\ \text{1.5 Anant-Moussallam (04)} & Q = 20.7 \text{(Sum rules)} \end{array} \right.$$

Lattice-based calculations

(the value of Q is calculated in χPT at NLO)

$$\epsilon = \left\{ \begin{array}{ll} 0.50(8) & \text{Duncan et al. (96)} \quad \textit{Q} = 22.9 \\ 0.5(1) & \text{RBC (07)} \quad \textit{Q} = 22.9 \\ 0.78(6)(2)(9)(2) & \text{BMW (11)} \quad \textit{Q} = 22.1 \\ 0.65(7)(14)(10) & \text{MILC (13)} \quad \textit{Q} = 22.6 \\ 0.79(18)(18) & \text{RM123 (13)} \quad \textit{Q} = 22.1 \\ 0.73(2)(5)(17) & \text{BMW (16)} \quad \textit{Q} = 22.2 \\ 0.73(3)(13)(5) & \text{MILC (16)} & \textit{Q} = 22.2 \end{array} \right.$$

Value quoted in FLAG-3: $\epsilon = 0.7(3)$

FLAG-3 summary of the quark masses

			all masses in MeV
N _F	m_{ud}	m _s	m _s /m _{ud}
2+1+1	3.70(17)	93.9(1.1)	27.30(34)
2+1	3.373(80)	92.0(2.1)	27.43(31)
_ 2	3.6(2)	101(3)	27.3(9)

N _F	m _u	m_d	m_u/m_d	R	Q
2+1+1	2.36(24)	5.03(26)	0.470(56)	35.6(5.1)	22.2 (1.6)
2+1	2.16(9)(7)	4.68(14)(7)	0.46(2)(2)	35.0(1.9)(1.8)	22.5(6)(6)
2	2.40(23)	4.80(23)	0.50(4)	40.7(3.7)(2.2)	24.3(1.4)(0.6)

χ PT and $\eta \to 3\pi$

Lowest order chiral amplitude:

Osborn, Wallace (70)

$$\mathcal{M}(\eta \to \pi^+ \pi^- \pi^0) =: A(s, t, u) \qquad s = (p_{\pi^+} + p_{\pi^-})^2, \dots$$

$$A(s,t,u) = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_{\pi}^2} \left[1 + \frac{3(s - s_0)}{M_{\eta}^2 - M_{\pi}^2} + O(m) \right] + O(e^2m)$$

Relate $m_u - m_d$ to meson masses

Dashen (69)

$$B_0(m_u - m_d) = (M_{K^+}^2 - M_{K^0}^2) - (M_{\pi^+}^2 - M_{\pi^0}^2) + O(e^2m)$$

LO chiral prediction

$$\Gamma(\eta \to \pi^+\pi^-\pi^0) \sim 70 \; \text{eV} \qquad \qquad \ll \quad \Gamma_{exp} = 295 \pm 20 \; \text{eV}$$

χ PT and $\eta \to 3\pi$

Lowest order chiral amplitude:

Osborn, Wallace (70)

$$\mathcal{M}(\eta \to \pi^+ \pi^- \pi^0) =: A(s, t, u) \qquad s = (p_{\pi^+} + p_{\pi^-})^2, \dots$$

$$A(s,t,u) = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_{\pi}^2} \left[1 + \frac{3(s - s_0)}{M_{\eta}^2 - M_{\pi}^2} + O(m) \right] + O(e^2m)$$

Relate $m_u - m_d$ to meson masses

Dashen (69)

$$B_0(m_u - m_d) = (M_{K^+}^2 - M_{K^0}^2) - (M_{\pi^+}^2 - M_{\pi^0}^2) + O(e^2m)$$

NLO chiral prediction

Gasser-Leutwyler (85)

$$\Gamma(\eta \to \pi^+\pi^-\pi^0) \sim 70~\text{eV} \to 160 \pm 50~\text{eV} \quad \ll \quad \Gamma_{\text{exp}} = 295 \pm 20~\text{eV}$$

Dispersive approach

Isospin decomposition of M(s, t, u)

Stern, Sazdjian, Fuchs (93)

Anisovich, Leutwyler (96)

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

assumes only:

 $\operatorname{disc}[t_{\ell}^{l}(s)] = 0 \quad \forall \ell \geq 2 \text{ in all channels}$

Analytic properties of the $M_l(s)$ functions:

$$[s > 4M_{\pi}^{2}]$$

$$\operatorname{disc}[M_l(s)] = \operatorname{disc}[t_\ell^l(s)] = t_\ell^l(s)e^{i\delta_\ell^l(s)}\sin\delta_\ell^l(s)$$

 $t_{\ell}^{I}(s) = \text{partial wave with isospin } I \text{ and angular momentum } \ell$

$$t_{\ell}^{I}(s) = M_{I}(s) + \hat{M}_{I}(s)$$

Dispersion relation for M_0

analogous ones for M_1 and M_2

$$extstyle M_0(oldsymbol{s}) = \Omega_0(oldsymbol{s}) \left[lpha_0 + eta_0 oldsymbol{s} + \gamma_0 oldsymbol{s}^2 + rac{oldsymbol{s}^2}{\pi} \int_{4M_\pi^2}^\infty doldsymbol{s}' rac{\hat{M}_0(oldsymbol{s}') \sin \delta_0^0(oldsymbol{s}')}{|\Omega_0(oldsymbol{s}')| oldsymbol{s}'^2(oldsymbol{s}' - oldsymbol{s})}
ight]$$

How we fit the data

- our dispersive amplitude, linear in the subtraction constants ($\alpha_0, \beta_0, \ldots$) (corrected for isospin breaking)
- (we use linear combinations of the $\alpha_0, \beta_0, \ldots \longrightarrow H_{0,1,\ldots,5}$ dividing by H_0 we get $h_i \equiv H_i/H_0, \quad i = 1, 2, \ldots, 5$)
- ▶ the invariants h_1 , h_2 and h_3 are constrained by the χ PT NLO calculation: (theoretical χ^2 added to the experimental)

$$h_1 = 4.52(36), \quad h_2 = 16.4(4.9), \quad h_3 = 6.3(1.9)$$

- ▶ the invariants h_4 and h_5 are treated as free parameters
- available data are from:
 - ► KLOE (2016)
 - WASA@COSY (2014)
 - Crystal Ball@MAMI (2007)
 - several values for α are in the PDG

How we fit the data

- our dispersive amplitude, linear in the subtraction constants (α_0 , β_0 , ...) (corrected for isospin breaking)
- (we use linear combinations of the $\alpha_0, \beta_0, \ldots \longrightarrow H_{0,1,\ldots,5}$ dividing by H_0 we get $h_i \equiv H_i/H_0, \quad i = 1, 2, \ldots, 5$)
- ▶ the invariants h_1 , h_2 and h_3 are constrained by the χ PT NLO calculation: (theoretical χ^2 added to the experimental)

$$h_1 = 4.52(36), \quad h_2 = 16.4(4.9), \quad h_3 = 6.3(1.9)$$

- ▶ the invariants h_4 and h_5 are treated as free parameters
- available data are from:
 - ► KLOE (2016) ←
 - WASA@COSY (2014)
 - Crystal Ball@MAMI (2007)
 - several values for α are in the PDG

KLOE data

KLOE data

KLOE JHEP collab. 2016

Fit results

$$h_1^{NLO} = 4.52(36), \quad h_2^{NLO} = 16.4(4.9), \quad h_3^{NLO} = 6.3(1.9)$$

 $s_A^{LO} = \frac{4}{3}M_\pi^2 \qquad s_A^{NLO} = 1.40M_\pi^2$

Fit outcomes:

3-parameter fit — w/o
$$\chi^2_{th}$$

$$\chi^2_{\rm exp} =$$
 385.3 for 371 data points

$$h_1 = 4.53, h_2 = 12.6, h_3 = 6.4,$$

Adler zero:

$$s_A = 1.43 M_\pi^2$$

Fit results

$$h_1^{NLO}=4.52(36), \quad h_2^{NLO}=16.4(4.9), \quad h_3^{NLO}=6.3(1.9)$$
 $s_A^{LO}=\frac{4}{3}M_\pi^2 \qquad s_A^{NLO}=1.40M_\pi^2$

Fit outcomes:

5-parameter fit — w/o
$$\chi^2_{\rm th}$$
 $\chi^2_{\rm exp}=370.3$ for 371 data points $h_1=0.93,\ h_2=16.3,\ h_3=52.0,$ $h_4=77.9,\ h_5=-56.7$

Adler zero: none!

Fit results

$$h_1^{NLO}=4.52(36), \quad h_2^{NLO}=16.4(4.9), \quad h_3^{NLO}=6.3(1.9)$$
 $s_A^{LO}=\frac{4}{3}M_\pi^2 \qquad s_A^{NLO}=1.40M_\pi^2$

Fit outcomes:

5-parameter fit — w/
$$\chi^2_{th}$$

$$\chi^2_{\rm exp} =$$
 380.2 for 371 data points

$$h_1 = 4.49(14), h_2 = 21.2(4.3), h_3 = 7.1(1.7),$$

 $h_4 = 76.4(3.4), h_5 = 47.3(5.8)$

Adler zero:

$$s_A = 1.34(10)M_\pi^2$$

Momentum dependence

Momentum dependence

Dalitz plot in the neutral channel Having fixed the subtraction constants, the Dalitz plot in the $\chi^2 = 22.5$ neutral channel can be predicted:

Dalitz plot in the neutral channel

Dalitz plot in the neutral channel: value of α Comparison with other determinations:

Determination of Q

$$H_0^{\rm NLO} = 1.176(53)$$
 and $\Gamma(\eta \to \pi^+\pi^-\pi^0) = (300 \pm 12)$ eV yield:

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = 6.27(38)10^{-3}\,\text{GeV}^2$$

which implies:

$$(M_{K^0}^2 - M_{K^+}^2)_{\rm QED} = -2.38(38)10^{-3}\,{\rm GeV}^2$$

This corresponds to

$$\epsilon = 0.9(3)$$

in agreement with recent lattice determinations:

$$\epsilon = \left\{ \begin{array}{ll} 0.74(18) & \text{BMW} \\ 0.73(14) & \text{MILC} \\ 0.50(6) & \text{QCDSF/UKQCD} \\ 0.801(110) & \text{RM123} \end{array} \right.$$

Determination of Q

 $H_0^{\rm NLO}=$ 1.176(53) and $\Gamma(\eta \to \pi^+\pi^-\pi^0)=$ (300 \pm 12) eV yield:

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = 6.27(38)10^{-3}\,\text{GeV}^2$$

which implies: (upon use of)

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = \frac{M_K^2 (M_K^2 - M_\pi^2)}{Q^2 M_\pi^2} (1 + \mathcal{O}(m^2))$$

$$Q = 22.0(7)$$

somewhat lower than recent lattice determinations

$$Q = \begin{cases} 23.40(64) & \text{BMW} \\ 23.8(1.1) & \text{RM}123 \end{cases}$$

Unexpectedly large $\mathcal{O}(m^2)$ effects?

Ratio of decay rates

The ratio of decay rates for the two channels can also be calculated and with remarkable accuracy

Gasser-Leutwyler (85)

The normalization H_0 also drops out in this ratio

As it turns out most uncertainties cancel out, giving:

$$B \equiv \frac{\Gamma(\eta \to 3\pi^0)}{\Gamma(\eta \to \pi^+\pi^-\pi^0)} = 1.44(4)$$

which agrees perfectly with the measured value

$$B_{\rm PDG}({\rm our\ fit}) = 1.426(26), \qquad B_{\rm PDG}({\rm our\ average}) = 1.48(5)$$

Outline

 $\pi\pi$ scattering beyond LO Experimental tests

$$\eta
ightarrow 3\pi$$
 and $Q \equiv rac{m_S^2 - \hat{m}^2}{m_d^2 - m_u^2}$
How to determine $m_u - m_d$

Summary

Summary

As an illustration of the effective field theory method I have discussed a two applications:

- the analysis of the $\pi\pi$ scattering amplitude beyond one loop
- the determination of Q from $\eta \to 3\pi$