STRING/GAUGE DUALITY (ADS/CFT) AND

 HIGH ENERGY SCATTERING IN QCD

 HIGH ENERGY SCATTERING IN QCD}

QCD - Old Challenges and New Opportunities

Chung-I Tan, Brown University

WE-Heraeus Physcics School
Physikzentrum, Bad Honnef, Germany Sept. 24-30, 2017

Outline

- Holographics Duality:

- Duality in Physics
- Gauge Theories and Scale Invaraince
- ADS/CFT (String-Gauge Duality)
- QCD, High Energy Scattering:
- unification of hard and soft physics - "Pomeron/Graviton"
- Glueballs under AdS/CFT — masses and decays
- DIS - BFKL vs DGLAPP
- Inclusive and Exclusive Central Production

Outline

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality,ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- unification of hard and soft physics - "Pomeron/Graviton"
- Glueballs under AdS/CFT — masses and decays
- DIS - BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production
\bullet QCD and Modern CFT/String Studies:

Duality:

"Particle-Wave Duality: Illustration: Compton Scattering

$$
\gamma+e^{-} \quad \rightarrow \quad \gamma+e^{-}
$$

Particle: $E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2} \quad$ photon: massless $\Leftrightarrow m_{0}=0, \quad E=p c$

$$
\frac{1}{E^{\prime}}-\frac{1}{E}=\frac{1}{m_{e} c^{2}}(1-\cos \theta)
$$

Wave Length: λ

$$
\frac{1}{\lambda^{\prime}}-\frac{1}{\lambda}=\frac{h}{m_{e} c}(1-\cos \theta)
$$

Wave-Particle Duality: $E=\frac{h c}{\lambda}, \quad p=\frac{h}{\lambda}$

Duality:

"Particle-Wave Duality:

Illustration: Compton Scattering

$$
\gamma+e^{-} \quad \rightarrow \quad \gamma+e^{-}
$$

Particle: $E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2} \quad$ photon: massless $\Leftrightarrow m_{0}=0, \quad E=p c$

$$
\frac{1}{E^{\prime}}-\frac{1}{E}=\frac{1}{m_{e} c^{2}}(1-\cos \theta)
$$

Wave Length: λ

$$
\frac{1}{\lambda^{\prime}}-\frac{1}{\lambda}=\frac{h}{m_{e} c}(1-\cos \theta)
$$

Wave-Particle Duality: $E=\frac{h c}{\lambda}, \quad p=\frac{h}{\lambda}$

Duality:

"High-Low Temperature Duality:"

"Ising Model:"

$$
Z(\beta)=\sum_{\sigma= \pm 1} e^{-\beta \sigma_{i} \sigma_{i+1}}
$$

$$
Z(\beta) \Leftrightarrow Z(1 / \beta)
$$

Understanding of symmetry, etc.,
leading to changed description of ground state, new effective degrees of freedom.

Duality:

"Holographic Duality: Illustration: Potential Scattering:

$$
\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{r})\right\} \Psi=E \Psi \quad \Leftrightarrow \quad \frac{d \sigma}{d \Omega}
$$

Given $V(\vec{r}) \rightarrow$ Scattering S-Matrix: $S=I+i T$
Given Scattering Matrix: $T \rightarrow$ Reconstruct $V(\vec{r})$ - Inverse Scattering problem

Physics at D dimension \Leftrightarrow Equivalent Physics at $(D-1)$ dimension

Duality:

${ }^{6}$ Holographic Duality:

AdS/CFT Correspondence for Gauge Theories

Physics at D dimension \Leftrightarrow Equivalent Physics at (D+1) dimension

Symmetry, Unification and Universality:

- Symmetry: Lorentz Invariance.
- Unification: Quantum Physic.
- Unified Maxwell, Weak Interaction, and, QCD - Gauge Theories.
- Quantum Gravity ?? (Geometrical)

Symmetry, Unification and Universality:

- Symmetry: Lorentz Invariance.
- Unification: Quantum Physic.
- Unified Maxwell, Weak Interaction, and, QCD - Gauge Theories.
- Quantum Gravity ?? (Geometrical)

Principle of equivalence \Rightarrow General coordinate invariance.

Local isometry of metric: $\quad d x^{2}=-d t^{2}+d x^{2}$

$$
\text { Gravity } \Rightarrow \text { geometrical. }
$$

Symmetry, Unification and Universality:

- Symmetry: Conformal Invariance:

$$
O(1,1) \times O(1,3) \quad \Rightarrow \quad O(2,4)
$$

- Unification: Geometrization

> symmetry as isometry of geometry of extended space-time.

$$
(t, \vec{x}) \oplus r \quad \Rightarrow \quad(t, \vec{x}, r)
$$

HIGH ENERGY SCATTERING AND SCALE INVARIANCE

Lagrangian for QED and QCD is scale invariant:

$\alpha_{q e d}, \alpha_{q c d}$, etc., are dimensionless.
exceptions: mass for fermions.

$$
\frac{E}{p c}=\frac{\sqrt{(p c)^{2}+m_{0}^{2} c^{4}}}{p c} \simeq 1, \quad p \rightarrow \infty
$$

Modern approaches to fundamental physics begins with massless fermions, and masses are generated dynamically.

Lorentz + Scale invariance lead to large symmetry: Conformal Symmetry.
CFT: Conformal Invariant Field Theory

Deep Inelastic Scattering (DIS)

$$
\begin{aligned}
& F_{2}(x, Q 2)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left[\sigma_{T}\left(\gamma^{*} p\right)+{ }_{L}\left(\gamma^{*} p\right)\right] \\
& x \equiv \frac{Q^{2}}{s}
\end{aligned}
$$

Scaling:

$$
F\left(x, Q^{2}\right) \rightarrow F(x)
$$

Small $x: \frac{Q^{2}}{s} \rightarrow 0$

Geometry of High Energy Scattering and Scale Invariance

5 kinematical Parameters:
2-d Longitudinal

$$
\mathrm{p}^{ \pm}=\mathrm{p}^{0} \pm \mathrm{p}^{3} \simeq \exp \left[\pm \log \left(\mathrm{s} / \Lambda_{q c d}\right)\right]
$$

2-d Transverse space:
$\mathrm{x}_{\perp}^{\prime}-\mathrm{x}_{\perp}=\mathrm{b}_{\perp}$
1-d Resolution:
$z=1 / Q\left(\right.$ or $\left.^{\prime} z^{\prime}=1 / Q^{\prime}\right)$

QCD EMERGENCE OF 5-DIM

"Fifth" co-ordinate is size z/z' of proj/target

b_{1}

2-d Longitudinal
5 kinematical Parameters:
2-d Transverse space:
1-d Resolution:

$$
\begin{aligned}
& \mathrm{p}^{ \pm}=\mathrm{p}^{0} \pm \mathrm{p}^{3} \simeq \exp \left[\pm \log \left(\mathrm{s} / \Lambda_{q c d}\right)\right] \\
& \mathrm{x}_{\perp}^{\prime}-\mathrm{x}_{\perp}=\mathrm{b}_{\perp} \\
& \mathrm{z}=1 / \mathrm{Q}\left(\text { or } \mathrm{z}^{\prime}=1 / \mathrm{Q}^{\prime}\right)
\end{aligned}
$$

Scale Invariance and AdS

What is the curved space?

Maldacena: UV (large r) is (almost) an $A d S_{5} \times X$ space

$$
d s^{2}=r^{2} d x_{\mu} d x^{\mu}+\frac{d r^{2}}{r^{2}}
$$

Captures QCD's approximate $U V$ conformal invariance

$$
x \rightarrow \zeta x, r \rightarrow \frac{r}{\zeta}
$$

Scale Invariance and AdS

What is the curved space?

Maldacena: UV (large r) is (almost) an $A d S_{5} \times X$ space

$$
d s^{2}=r^{2} d x_{\mu} d x^{\mu}+\frac{d r^{2}}{r^{2}}
$$

Captures $Q C D$'s approximate $U V$ conformal invariance

$$
x \rightarrow \zeta x, r \rightarrow \frac{r}{\zeta} \quad(\text { recall } r \sim \mu)
$$

Confinement: IR (small r) is cut off in some way

$$
r \sim \mu>r_{\min } \sim \Lambda_{Q C D}
$$

AdS Geometrization

The AdS/CFT is a holographic duality that equates a string theory (gravity) in high dimension with a conformal field theory (gauge) in 4 dimensions. Specifically, compactified 10 dimensional super string theory is conjectured to correspond to $\mathcal{N}=4$ Super Yang Mills theory
 in 4 dimensions in the limit of large 't Hooft coupling:

$$
\lambda=g_{s} N=g_{y m}^{2} N_{c}=R^{4} / \alpha^{\prime 2} \gg 1 .
$$

$d s^{2}=\frac{R^{2}}{z^{2}}\left[d z^{2}+d x \cdot d x\right]+R^{2} d \Omega_{5} \rightarrow e^{2 A(z)}\left[d z^{2}+d x \cdot d x\right]+R^{2} d \Omega_{5}$

principle of equivalence: allows changing gravity into study of geometry!

Gauge-String Duality: AdS/CFT

Weak Coupling:

Gluons and Quarks:

$$
\begin{aligned}
& A_{\mu}^{a b}(x), \psi_{f}^{a}(x) \\
& \bar{\psi}(x) \psi(x), \bar{\psi}(x) D_{\mu} \psi(x) \\
& S(x)=\operatorname{Tr} F_{\mu \nu}^{2}(x), \quad O(x)=\operatorname{Tr} F^{3}(x) \\
& T_{\mu \nu}(x)=\operatorname{Tr} F_{\mu \lambda}(x) F_{\lambda \nu}(x), \quad \text { etc. }
\end{aligned}
$$

Gauge Invariant Operators:

$$
\mathcal{L}(x)=-\operatorname{Tr} F^{2}+\bar{\psi} D \psi+\cdots
$$

Strong Coupling:

Metric tensor:

$$
G_{m n}(x)=g_{m n}^{(0)}(x)+h_{m n}(x)
$$

Anti-symmetric tensor (Kalb-Ramond fields):
$b_{m n}(x)$
Dilaton, Axion, etc.
$\phi(x), a(x)$, etc.
Other differential forms: $C_{m n \cdots}(x)$

$$
\mathcal{L}(x)=\mathcal{L}(G(x), b(x), C(x), \cdots)
$$

$\mathcal{N}=4$ SYM Scattering at High Energy

$$
\left\langle e^{\int d^{4} x \phi_{i}(x) \mathcal{O}_{i}(x)}\right\rangle_{C F T}=\mathcal{Z}_{\text {string }}\left[\left.\phi_{i}(x, z)\right|_{z \sim 0} \rightarrow \phi_{i}(x)\right]
$$

Bulk Degrees of Freedom from typeIIB Supergravity on AdS_{5} :

- metric tensor: $G_{M N}$
- Kalb-Ramond 2 Forms: $B_{M N}, C_{M N}$
- Dilaton and zero form: ϕ and C_{0}

$$
\lambda=g^{2} N_{c} \rightarrow \infty
$$

Supergravity limit

Strong coupling
Conformal
Pomeron as Graviton in AdS

Partial list of successes of AdS/CFT:

Address quark-gluon plasma non-perturbatively.
New perspectives for String theories.

Unified treatment for High Energy Scattering.

Strong coupling for condensed matter physics.
Topological insulators, fractional quantum Hall effect, etc.

Outline

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality,ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- "Pomeron/Graviton"
- Glueballs under AdS/CFT — masses and decays
- DIS - BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production
\bullet QCD and Modern CFT/String Studies:

Size and Shape of Hadrons

Rising of total cross sections with total energy
Shape of differential cross section

Scaling for DIS

Correlations in particle production
Dimensional scaling
Diffractive production at LHC

Deep Inelastic Scattering (DIS)

Total Cross Sections Differential Cross Sections

Near constant Size:

Diffraction Peak:

Total Cross Sections and Elastic Peaks

$$
\begin{gathered}
\sigma_{\text {total }}(s) \sim \operatorname{Im} \mathcal{A}(s, t=0) / s \sim s^{\epsilon} \\
\mathcal{A}(s, t=0) \sim s^{1+\epsilon} \\
\frac{d \sigma}{d t} \sim C(s) e^{B(s) t} \\
\epsilon \simeq 0.1 \sim 0.3
\end{gathered}
$$

Size and Shape of Hadrons

Rising of total cross sections with total energy

Shape of differential cross section

Scaling for DIS

Correlations in particle production
Dimensional scaling
Diffractive production at LHC

Why does Total Cross Section increase with Energy?

 Brief Review of Yukawa Picture:$$
\begin{aligned}
& V(r)=g^{2} \frac{e^{-\mu r}}{r} \rightarrow \frac{g^{2}}{\mu^{2}-t} \\
& A=V+V * V+V * V * V+\cdots
\end{aligned}
$$

Brief Review of Yukawa Picture:

$$
V(r)=g^{2} \frac{e^{-\mu r}}{r} \rightarrow \frac{g^{2}}{\mu^{2}-t} \quad \begin{array}{ll}
& \mu \neq 0 \leftrightarrow \text { short }- \text { range" } \\
& \mu=0 \leftrightarrow \text { "long - range" }
\end{array}
$$

$$
A=V+V * V+V * V * V+\cdots
$$

"Relativistic kinematics"
scalar exchange :

$$
\hat{V}(s, t) \sim \frac{1}{\mu^{2}-t}
$$

Brief Review of Yukawa Picture:

$$
V(r)=g^{2} \frac{e^{-\mu r}}{r} \rightarrow \frac{g^{2}}{\mu^{2}-t} \quad \begin{array}{ll}
& \mu \neq 0 \leftrightarrow \text { "short }- \text { range" } \\
& \mu=0 \leftrightarrow \text { "long }- \text { range" }
\end{array}
$$

$$
A=V+V * V+V * V * V+\cdots
$$

"Relativistic kinematics"
scalar exchange :

$$
\hat{V}(s, t) \sim \frac{1}{\mu^{2}-t}
$$

vector exchange : $\quad J_{\mu} J^{\mu} \rightarrow \hat{V}(s, t) \sim \frac{s}{\mu^{2}-t}$

Brief Review of Yukawa Picture:

$$
V(r)=g^{2} \frac{e^{-\mu r}}{r} \rightarrow \frac{g^{2}}{\mu^{2}-t} \quad \begin{array}{ll}
& \mu \neq 0 \leftrightarrow \text { "short }- \text { range" } \\
& \mu=0 \leftrightarrow \text { "long - range" }
\end{array}
$$

$$
A=V+V * V+V * V * V+\cdots
$$

"Relativistic kinematics"

scalar exchange :

$$
\hat{V}(s, t) \sim \frac{1}{\mu^{2}-t}
$$

vector exchange :

$$
J_{\mu} J^{\mu} \rightarrow \hat{V}(s, t) \sim \frac{s}{\mu^{2}-t}
$$

tensor exchange

$$
T_{\mu \nu} T^{\mu \nu} \rightarrow \hat{V}(s, t) \sim \frac{s^{2}}{\mu^{2}-t}
$$

Brief Review of Yukawa Picture:

$$
V(r)=g^{2} \frac{e^{-\mu r}}{r} \rightarrow \frac{g^{2}}{\mu^{2}-t} \quad \begin{array}{ll}
\mu \neq 0 \leftrightarrow \text { "short }- \text { range" } \\
& \mu=0 \leftrightarrow \text { "long - range" }
\end{array}
$$

$$
A=V+V * V+V * V * V+\cdots
$$

"Relativistic kinematics"

scalar exchange :

$$
\hat{V}(s, t) \sim \frac{1}{\mu^{2}-t} \quad \sigma_{t o t a l} \sim \frac{1}{s}
$$

vector exchange : $\quad J_{\mu} J^{\mu} \rightarrow \hat{V}(s, t) \sim \frac{s}{\mu^{2}-t} \quad \sigma_{\text {total }} \sim$ constant
tensor exchange : $\quad T_{\mu \nu} T^{\mu \nu} \rightarrow \hat{V}(s, t) \sim \frac{s^{2}}{\mu^{2}-t} \quad \sigma_{\text {total }} \sim s$

Total Cross Sections

effective spin exchange:
vector \sim tensor

Need "Vector \sim Tensor" exchange:

Need "none-zero Mass":

Need "Vector ~ Tensor" exchange:

Need "none-zero Mass":

Size and Shape: Dynamics of QCD

Parton Interpretation

Gauge-String Duality: AdS/CFT

Weak Coupling:

Gluons and Quarks:

$$
\begin{aligned}
& A_{\mu}^{a b}(x), \psi_{f}^{a}(x) \\
& \bar{\psi}(x) \psi(x), \bar{\psi}(x) D_{\mu} \psi(x) \\
& S(x)=\operatorname{Tr} F_{\mu \nu}^{2}(x), \quad O(x)=\operatorname{Tr} F^{3}(x) \\
& T_{\mu \nu}(x)=\operatorname{Tr} F_{\mu \lambda}(x) F_{\lambda \nu}(x), \quad \text { etc. }
\end{aligned}
$$

Gauge Invariant Operators:

$$
\mathcal{L}(x)=-\operatorname{Tr} F^{2}+\bar{\psi} D \psi+\cdots
$$

Strong Coupling:

Metric tensor:

$$
G_{m n}(x)=g_{m n}^{(0)}(x)+h_{m n}(x)
$$

Anti-symmetric tensor (Kalb-Ramond fields):
$b_{m n}(x)$
Dilaton, Axion, etc.
$\phi(x), a(x)$, etc.
Other differential forms: $C_{m n \cdots}(x)$

$$
\mathcal{L}(x)=\mathcal{L}(G(x), b(x), C(x), \cdots)
$$

HIGH ENERGY SCATTERING <=> POMERON

WHAT IS THE POMERON ?

WEAK:TWO-GLUON <=> STRONG:ADS GRAVITON

$$
J_{c u t}=1+1-1=1
$$

$$
S=\frac{1}{2 \kappa^{2}} \int d^{4} x d z \sqrt{-g(z)}\left(-\mathcal{R}+\frac{12}{R^{2}}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi\right)
$$

F.E. Low. Phys. Rev. D 12 (I975), p. I63.
S. Nussinov. Phys. Rev. Lett. 34 (I975), p. I 286.

AdS Witten Diagram: Adv.
Theor. Math. Physics 2 (I998)253

Challenge for AdS/CFT for QCD

- Spin-2 leads to too rapid an increase for cross sections

Need to consider $\lambda=g^{2} N$ finite. (stringy corrections)
-Confinement:
Conformal, therefore no scale and no particles, etc.

Short-distance: Running Coupling

"String Theory for QCD"

Need "Vector ~ Tensor" exchange:
Need "none-zero Mass":

HIGH ENERGY SCATTERING <=> POMERON

WHAT IS THE POMERON ?

WEAK:TWO-GLUON <=> STRONG:ADS GRAVITON

$$
J_{c u t}=1+1-1=1
$$

$$
S=\frac{1}{2 \kappa^{2}} \int d^{4} x d z \sqrt{-g(z)}\left(-\mathcal{R}+\frac{12}{R^{2}}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi\right)
$$

F.E. Low. Phys. Rev. D 12 (I975), p. I63.
S. Nussinov. Phys. Rev. Lett. 34 (I975), p. I 286.

AdS Witten Diagram: Adv.
Theor. Math. Physics 2 (I998)253

Conformal Invariance and Pomeron Interaction from AdS/CFT
$+$
..........

- Draw all "Witten-Feynman" Diagrams in AdS5,
- High Energy Dominated by Spin-2 Exchanges:

$$
p_{1}+p_{2} \rightarrow p_{3}+p_{4}
$$

$$
T^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime 5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) \mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)
$$

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
$$

$\mathcal{N}=4$ Strong vs Weak $g^{2} N_{c}$

Confinement

Stringy Corrections

Pomeron as

Reggeized Graviton in AdS

Pomeron intercept due to diffusion
Diffusion takes place in both Impact space and in AdS
Diffusion in AdS relates anomalous dimension and to intercept
Diffusion in Impact space relates to expansion in transverse size

Asymptotic Freedom

perturbative

$$
\alpha_{\mathrm{s}}(q) \equiv \frac{\bar{g}(q)^{2}}{4 \pi}=\frac{c}{\ln (q / \Lambda)}+\ldots
$$

Confinement

non-perturbative

$$
r \gg 1 \mathrm{fm}
$$

Force at Long Distance--Constant Tension/Linear Potential, Coupling increasing, Quarks and Gluons strongly bound <==> "Stringy Behavior"

Outline

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality, ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- "Pomeron/Graviton"
- Glueballs masses and unification of hard and soft physics
- DIS - BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production
\bullet QCD and Modern CFT/String Studies:

Comparison of strong vs weak coupling kernel at $\mathrm{t}=0$

Strong Coupling:

$$
\mathcal{K}\left(r, r^{\prime}, s\right)=\frac{s^{j 0}}{\sqrt{4 \pi \mathcal{D} \ln s}} e^{-\left(\ln r-\ln r^{\prime}\right)^{2} / 4 \mathcal{D} \ln s}
$$

Diffusion in "warped co-ordinate"

$$
j_{0}=2-\frac{2}{\sqrt{g^{2} N}}+O\left(1 / g^{2} N\right) \quad \mathcal{D}=\frac{1}{2 \sqrt{g^{2} N}}+O\left(1 / g^{2} N\right)
$$

Weak Coupling: $\quad K\left(s, k_{\perp}, k_{\perp}^{\prime}\right) \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-\left[\left(\ln k_{\perp}^{\prime}-\ln k_{\perp}\right)^{2} / 4 \mathcal{D} \ln s\right]}$

$$
j_{0}=1+\ln (2) g^{2} N / \pi^{2} \quad \mathcal{D}=\frac{14 \zeta(3)}{\pi} g^{2} N / 4 \pi^{2}
$$

Cutoff AdS $_{5}$

4-Dim Massive Graviton

5-Dim Massless Mode:

$$
0=\mathrm{E}^{2}-\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}+\mathrm{pr}^{2}\right)
$$

If, due to Curvature in fifth-dim, $\mathrm{p}_{\mathrm{r}}{ }^{2} \neq 0$,
Four-Dimensional Mass:

$$
\mathrm{E}^{2}=\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}\right)+\mathrm{M}^{2}
$$

IIA Glueball Wave Equations

$$
\begin{gathered}
-\frac{d}{d r}\left(r^{7}-r\right) \frac{d}{d r} T_{4}(r)-\left(m^{2} r^{3}\right) T_{4}(r)=0 \\
-\frac{d}{d r}\left(r^{7}-r\right) \frac{d}{d r} V_{4}(r)-\left(m^{2} r^{3}-\frac{9}{r\left(r^{6}-1\right)}\right) V_{4}(r)=0 \\
-\frac{d}{d r}\left(r^{7}-r\right) \frac{d}{d r} S_{4}(r)-\left(m^{2} r^{3}+\begin{array}{c}
432 r^{5} \\
\left(5 r^{6}-2\right)^{2}
\end{array}\right) S_{4}(r)=0 \\
-\frac{d}{d r}\left(r^{7}-r\right) \frac{d}{d r} N_{4}(r)-\left(m^{2} r^{3}-27 r^{5}+\frac{9}{r}\right) N_{4}(r)=0 \\
-\frac{d}{d r}\left(r^{7}-r\right) \frac{d}{d r} M_{4}(r)-\left(m^{2} r^{3}-27 r^{5}-\frac{9 r^{5}}{r^{6}-1}\right) M_{4}(r)=0 \\
-\frac{d}{d r}\left(r^{7}-r\right) \frac{d}{d r} L_{4}(r)-\left(m^{2} r^{3}-72 r^{5}\right) L_{4}(r)=0
\end{gathered}
$$

IIA Classification of QCD 4

States from 11-d G ${ }_{\text {MN }}$				States from 11-d $\mathrm{A}_{\mathrm{MNL}}$		
$\mathrm{G}_{\mu \nu}$	$\mathrm{G}_{\mu, 11}$	$\mathrm{G}_{11,11}$	m_{0} (Eq.)	$\mathrm{A}_{\mu v, 11}$	$\mathrm{A}_{\mu v \rho}$	m_{0} (Eq.)
$\begin{aligned} & \mathrm{G}_{\mathrm{ij}} \\ & 2^{++} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{i}} \\ & 1^{++}(-) \end{aligned}$	$\begin{aligned} & \phi \\ & 0^{++} \end{aligned}$	$4.7007\left(\mathrm{~T}_{4}\right)$	$\begin{aligned} & \mathrm{B}_{\mathrm{ij}} \\ & 1+- \end{aligned}$	$\begin{aligned} & \mathrm{C}_{123} \\ & \mathrm{O}^{+-}-(-) \end{aligned}$	$7.3059\left(\mathrm{~N}_{4}\right)$
$\begin{aligned} & \mathrm{G}_{\mathrm{it}} \\ & 1^{-+}(-) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\tau} \\ & 0^{-+} \end{aligned}$		$5.6555\left(\mathrm{~V}_{4}\right)$	$\begin{aligned} & \overline{\mathrm{B}_{\mathrm{i} \mathrm{\tau}}} \\ & 1-(-) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{ij} \tau} \\ & 1-- \end{aligned}$	9.1129(M_{4})
$\mathrm{G}_{\tau \tau}$ satbscripts	${ }^{\text {JPC refer to }}$	$\mathrm{P}_{\tau}=-$	tes $7034\left(S_{4}\right)$		$\begin{aligned} & \mathrm{G}^{\alpha}{ }_{\alpha} \\ & \mathrm{O}^{++} \end{aligned}$	10.7239(L_{4})

Bag Classification of States

Dimension	State	Operator	Supergravity
d=4	0^{++}	$\operatorname{Tr}(\mathrm{FF})=\mathrm{E}^{\mathrm{a}} \cdot \mathrm{E}^{\mathrm{a}}-\mathrm{B}^{\mathrm{a}} \cdot \mathrm{B}^{\mathrm{a}}$	ϕ
$\mathrm{d}=4$	2^{++}	$\mathrm{T}_{\mathrm{ij}}=\mathrm{E}_{\mathrm{i}}{ }^{\text {a }} \cdot \mathrm{E}_{\mathrm{j}}{ }^{\text {a }}+\mathrm{B}_{\mathrm{i}}{ }^{\text {a }} \mathrm{B}_{\mathrm{j}}{ }^{\text {a }}$ - trace	G_{ij}
$\mathrm{d}=4$	0^{+}	$\operatorname{Tr}\left(\mathrm{F}^{*} \mathrm{~F}\right)=\mathrm{E}^{\mathrm{a}} \cdot \mathrm{B}^{\mathrm{a}}$	C_{τ}
$\mathrm{d}=4$	0^{++}	$2 \mathrm{~T}_{00}=\mathrm{E}^{\mathrm{a}} \cdot \mathrm{E}^{\mathrm{a}}+\mathrm{B}^{\mathrm{a}} \cdot \mathrm{B}^{\text {a }}$	$\mathrm{G}_{\tau \tau}$
$\mathrm{d}=4$	2^{+}	$\mathrm{E}_{\mathrm{i}}{ }^{\text {a }} \mathrm{B}_{\mathrm{j}}{ }^{\text {a }}+\mathrm{B}_{\mathrm{i}}{ }^{\text {a }} \cdot \mathrm{E}_{\mathrm{j}}{ }^{\text {a }}$ - trace	absent
$\mathrm{d}=4$	2^{++}	$\mathrm{E}_{\mathrm{i}}{ }^{\text {a }} \cdot \mathrm{E}_{\mathrm{j}}{ }^{\text {a }}-\mathrm{B}_{\mathrm{i}}{ }^{\text {a }} \mathrm{B}_{\mathrm{j}}{ }^{\text {a }}$ - trace	absent
$\mathrm{d}=6$	$(1,2,3)^{ \pm+}$	$\operatorname{Tr}\left(\mathrm{F}_{\mu \nu}\left\{\mathrm{F}_{\rho \sigma}, \mathrm{F}_{\lambda \eta}\right\}\right] \sim \mathrm{d}^{\text {abc }} \mathrm{F}^{\mathrm{a}} \mathrm{F}^{\mathrm{b}} \mathrm{F}^{\mathrm{c}}$	$\mathrm{B}_{\mathrm{ij}} \mathrm{C}_{\mathrm{ij}}$
$\mathrm{d}=6$	$(1,2,3)^{ \pm+}$	$\operatorname{Tr}\left(\mathrm{F}_{\mu \nu}\left[\mathrm{F}_{\rho \sigma}, \mathrm{F}_{\lambda \eta}\right]\right] \sim \mathrm{f}^{\mathrm{abc}} \mathrm{F}^{\mathrm{a}} \mathrm{F}^{\mathrm{b}} \mathrm{F}^{\mathrm{c}}$	absent

These are all the local d=4 and d=6 operators:See Jaffe, Johnson, Ryzak (JJR), "Qualitative Features of the Glueball Spectrum", Ann. Phys. 168334 (1986)

Comparison with MIT Bag Calculation

Glueball Spectrum

The $A d S^{7}$ glueball spectrum for $Q C D_{4}$ in strong coupling (left) compared with the Morningstar/Peardon lattice spectrum for pure $\operatorname{SU}(3)$ QCD (right) with $1 / r_{0}=410 \mathrm{Mev}$.
R. Brower, S. Mathur, and C-I Tan, hep-th/0003115, "Glueball Spectrum of QCD from AdS Supergravity Duality".

Approx. Scale Invariance and the $5^{\text {th }}$ dimension

Fixed-angle Scattering (Polchinski-Strassler) and also central inclusive production. See also exhaustive work of Brodsky et al.

Quarks and Mesons

Holographic QCD

Glueballs to be identified through decay patterns, but not (yet) available from lattice \rightarrow seeking help from holographic (large- N_{c}) QCD:
Witten-Sakai-Sugimoto model (Witten 1997, Sakai \& Sugimoto 2004)

- almost parameter-free top-down construction from type-IIA superstrings:
- N_{c} D4 branes provide nonconformal dual of 4+1-dim. super-Yang-Mills
- KK compactification on circle in x_{4}
\rightarrow nonsupersymmetric 3+1-dim. Yang-Mills theory at low energies
- N_{f} chiral quarks from N_{f} D8- $\overline{\mathrm{D} 8}$ probe branes (Sakai \& Sugimoto 2004ff)
- reproduces many aspects of low-energy QCD
- chiral symmetry breaking $U\left(N_{f}\right)_{L} \times U\left(N_{f}\right)_{R} \rightarrow U\left(N_{f}\right)_{V}$ with Witten-Veneziano mass ${ }^{2} \propto 1 / N_{c}$
- effective Lagrangian: nonlinear σ-model with Skyrme term plus vector and axial-vector mesons similar to HLS models
- correct WZW terms
- fitting M_{KK} and 't Hooft coupling $\left.\lambda\right|_{M_{\mathrm{KK}}}$ yields quantitative predictions, often with only $10-30 \%$ errors:

Quantitative predictions

- Parameter-free: mass spectrum of vector and axial-vector mesons $m\left(\rho^{*}\right) / m(\rho), m\left(a_{1}\right) / m(\rho), m\left(a_{1}^{*}\right) / m(\rho)$ correct within $\lesssim 20 \%$
- Other predictions, depending on value of 't Hooft coupling λ at scale M_{KK} with
(1) $m_{\rho} \approx 776 \mathrm{MeV}$ fixes $M_{\mathrm{KK}}=949 \mathrm{MeV}$
(2) $f_{\pi}^{2}=\frac{\lambda N_{c}}{54 \pi^{4}} M_{\mathrm{KK}}^{2}$ gives $\lambda=g_{\mathrm{YM}}^{2} N_{c} \approx 16.63$ [Sakai\&Sugimoto 2005-7] (matching instead large- N_{c} lattice result [Bali et al. 2013] for $m_{\rho} / \sqrt{\sigma}$ gives $\lambda \approx 12.55$)
give (for $N_{c}=3$ and $\lambda=16.63 \ldots 12.55$):
- LO decay rate of ρ meson $\sim \lambda^{-1} N_{c}^{-1}$ $\Gamma_{\rho \rightarrow 2 \pi} / m_{\rho}=0.1535 \ldots 0.2034$ (exp.: 0.191(1))
- decay rate for $\omega \rightarrow 3 \pi$ (from Chern-Simons part of D8 action) $\sim \lambda^{-4} N_{c}^{-2}$ $\Gamma_{\omega \rightarrow 3 \pi} / m_{\omega}=0.0033 \ldots 0.0102$ (exp.: 0.0097(1))
- Witten-Veneziano mass $m_{\eta_{0}}=\frac{\sqrt{N_{f} / N_{c}}}{3 \sqrt{3} \pi} \lambda M_{\mathrm{KK}} \approx 967 \ldots 730 \mathrm{MeV}$ for $N_{f}=3$; with explicit quark mass terms and fitted $m_{\pi}, m_{K} \rightarrow m_{\eta}, m_{\eta^{\prime}}$ within 10%

Glueballs from AdS/CFT

Longstanding, still elusive prediction of QCD: Glueballs

- Spectrum of bare glueballs (prior to mixing with $q \bar{q}$ states) more or less known from lattice:
$m_{0^{++}} \sim 1.7 \mathrm{GeV}$
$m_{2++} \sim 2.4 \mathrm{GeV}$
$m_{0-+} \sim 2.6 \mathrm{GeV}$
Morningstar \& Peardon hep-lat/9901004

- Interactions, decays of glueballs and mixing with $q \bar{q}$ however largely unknown: \rightarrow no conclusive identification of any glueball in meson spectrum
- most discussed scenario for lightest scalar glueball:
various phenomenological models describe $f_{0}(1500)$ or $f_{0}(1710)$ isoscalar 0^{++}mesons

$$
\text { alternatingly as } \sim 50-70 \% \text { or } \sim 75-90 \% \text { G(lueball) }
$$

[G and two isoscalar $q \bar{q}$ states $u \bar{u}+d \bar{d}$ and $s \bar{s}$ can be shared by $f_{0}(1370), f_{0}(1500), f_{0}(1710)$]

Glueballs from supergravity background
\exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton $G_{i j}$ Csaki, Ooguri, Oz \& Terning 1999

Type-IIA supergravity compactified on x_{4}-circle many more modes: Constable \& Myers 1999; Brower, Mathur \& Tan 2000

Mode	S_{4}	$\mathrm{~T}_{4}$	$\mathrm{~V}_{4}$	$\mathrm{~N}_{4}$	M_{4}	$\mathrm{~L}_{4}$
Sugra fields	G_{44}	$\Phi, G_{i j}$	C_{1}	$B_{i j}$	$C_{i j 4}$	G_{α}^{α}
$J^{P C}$	0^{++}	$0^{++} / 2^{+}$	0^{-+}	1^{+-}	1^{--}	0^{++}
$\mathrm{n}=0$	7.30835	22.0966	31.9853	53.3758	83.0449	115.002
$\mathrm{n}=1$	46.9855	55.5833	72.4793	109.446	143.581	189.632
$\mathrm{n}=2$	94.4816	102.452	126.144	177.231	217.397	277.283
$\mathrm{n}=3$	154.963	162.699	193.133	257.959	304.531	378.099
$\mathrm{n}=4$	228.709	236.328	273.482	351.895	405.011	492.171

Lowest mode not from dilaton, but from "exotic polarization" - in 11D notation:

$$
\begin{aligned}
\underline{\delta g_{44}} & =-\frac{r^{2}}{L^{2}} f H(r) G(x), \quad \delta g_{\mu \nu}=\frac{r^{2}}{L^{2}}\left[\frac{1}{4} H(r) \eta_{\mu \nu}-\left(\frac{1}{4}+\frac{3 R^{6}}{5 r^{6}-2 R^{6}}\right) H(r) \frac{\partial_{\mu} \partial_{\nu}}{M^{2}}\right] G(x) \\
\delta g_{11,11} & =\frac{r^{2}}{L^{2}} \frac{1}{4} H(r) G(x), \quad \delta g_{r r}=-\frac{L^{2}}{r^{2}} f^{-1} \frac{3 R^{6} H(r) G(r)}{5 r^{6}-2 R^{6}}, \quad \delta g_{r \mu}=\frac{90 r^{7} R^{6} H(r) \partial_{\mu} G(x)}{M^{2} L^{2}\left(5 r^{6}-2 R^{6}\right)^{2}}
\end{aligned}
$$

Quarks and Mesons and Glueball Production/ Decays in AdS/CFT

Glueball- $\bar{q} q$ couplings in Sakai-Sugimoto model

Gravitational modes stable in confined background, but can calculate effective action for glueball- $\bar{q} q$ interactions
done for lowest (exotic) mode by
Hashimoto, Tan \& Terashima, Phys.Rev. D77 (2008) 086001 [arXiv:0709.2208]
revisited and extended to other modes by
Brünner, Parganlija \& AR, Phys.Rev. D91 (2015) 106002 [arXiv:1501.07906]
For example: Vertices of one glueball and two (massless) pions
for "exotic" mode:

$$
S_{G_{E} \pi \pi}=\operatorname{Tr} \int d^{4} x \frac{1}{2} \partial_{\mu} \pi \partial_{\nu} \pi\left(\breve{c}_{1} \eta^{\mu \nu}-c_{1} \frac{\partial^{\mu} \partial^{\nu}}{M_{E}^{2}}\right) G_{E}
$$

for "predominantly dilatonic" mode:

$$
S_{G_{D} \pi \pi}=\operatorname{Tr} \int d^{4} x \frac{1}{2} \partial_{\mu} \pi \partial_{\nu} \pi \tilde{c}_{1}\left(\eta^{\mu \nu}-\frac{\partial^{\mu} \partial^{\nu}}{M_{D}^{2}}\right) G_{D}
$$

with $\left\{c_{1}, \breve{c}_{1}, \tilde{c}_{1}\right\}=\{62.66,16.39,17.23\} \times \lambda^{-1 / 2} N_{c}^{-1} M_{\mathrm{KK}}^{-1}$
and many more: $S_{G \rho \rho} \propto \lambda^{-1 / 2} N_{c}^{-1}, S_{G \rho \pi \pi} \propto \lambda^{-1} N_{c}^{-3 / 2}$,

Comparison with $f_{0}(1710)$

decay	「/M (PDG)	$\Gamma / M\left[G_{D}\right]$ (chiral)	$\Gamma / M\left[G_{D}\right]$ (massive)
$f_{0}(1710)$ (total)	$0.081(5)$	0.059..0.076	0.083 . 0.106
$f_{0}(1710) \rightarrow 2 K$	(*) 0.029 (10)	0.012 $\ldots 0.016$	$0.029 \ldots 0.038$
$f_{0}(1710) \rightarrow 2 \eta$	$0.014(6)$	0.003..0.004	0.009...0.011
$f_{0}(1710) \rightarrow 2 \pi$	$0.012\left({ }_{-6}^{+5}\right)$	0.009...0.012	0.010...0.013
$f_{0}(1710) \rightarrow 2 \rho, \rho \pi \pi$		0.024...0.030	$0.02 \ldots \ldots 0.030$ $0.011 \ldots 0.014$
	$0.010\left({ }_{-7}{ }^{\text {? }}\right.$?	0.011..0.014	,
			0.35
$\Gamma(\eta \eta) / \Gamma(K \bar{K})$	0.48 ± 0.15	1/4	0.28

* PDG ratios for decay rates $+\operatorname{Br}\left(f_{0}(1710) \rightarrow K K\right)=0.36(12)$ [Albaladejo 80 Oler 2008]
- decays into 2 pseudoscalars: massive WSS perfectly compatible with PDG datal
significant decay into 4 pions (after extrapolation to beyond 2ρ threshold)
$\left(f_{0}(1710) \rightarrow 2 \rho^{\circ}\right.$ forthcoming from CMS-TOTEM!)

Summary - Glueballs in Witten-Sakai-Sugimoto model

After fitting just m_{ρ} to fix $M_{\mathrm{KK}}=949 \mathrm{MeV}$

- good prediction of higher vector and axial vector mesons masses,
- good prediction of higher vector and axial vector mesons masses,
after fitting f_{π} or $m_{\rho} / \sqrt{\sigma}$ to also fix 't Hooft coupling at $\lambda=16.63 \ldots 12.55$
- good prediction of ρ and ω decay rates
- good prediction of anomalous $m_{n}^{\prime} \propto N_{c}^{-\frac{1}{2}} \lambda M_{\mathrm{KK}}$

Holographic glueball decay rates:

- narrow partial width $G_{D} \rightarrow \pi \pi$,
quite compatible with experimental data for $f_{0}(1710)$ as nearly pure glueball
- much stronger decay of $f_{0}(1710)$ into $K \bar{K}$ need not be indicative of $s \bar{s}$ nature
well reproduced if (so far unobserved) decay into $\eta \eta^{\prime}$ small
- predictions for decay to 4π, $\eta \eta^{\prime}$ falsifiable by CMS-TOTEM, BESIII,
- tensor glueball broad if at $\gtrsim 2 \mathrm{GeV}$
- pseudoscalar glueball again narrow (in prep.)

Outline

- Holographics Duality:
- Duality in Physics
- Gauge Theories and Scale Invaraince
- ADS/CFT (String-Gauge Duality)
- QCD, High Energy Scattering:
- unification of hard and soft physics - "Pomeron/Graviton"
- Glueballs under AdS/CFT — masses and decays
- DIS - BFKL vs DGLAPP
- Inclusive and Exclusive Central Production
- QCD and Modern CFT/String Studies:

BPST PROGRAM HE SCATTERING

VI. Synthesis of Hard (BFKL) \& Soft (Regge) Pomeron

Analytic Structure of
 Pomeron Propagator

Conformal UV, Confining IR (large N)

Unified Hard (conformal) and Soft (confining) Pomeron

At finite λ, due to Confinement in AdS, at $t>0$ aymptotical linear Regge trajectories

(Strong) Running Coupling

BASIC BUILDING BLOCK

-Elastic Vertex:

\rightarrow

- Pomeron/Graviton Propagator:
$\mathcal{K}\left(s, b, z, z^{\prime}\right)=-\left(\frac{\left(z z^{\prime}\right)^{2}}{R^{4}}\right) \int \frac{d j}{2 \pi i}\left(\frac{1+e^{-i \pi j}}{\sin \pi j}\right) \widehat{s}^{j} G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp} ; j\right)$
conformal:

$$
G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp}\right)=\frac{1}{4 \pi z z^{\prime}} \frac{e^{(2-\Delta(j)) \xi}}{\sinh \xi},
$$

$$
\Delta(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}\right)}
$$

confinement: $\quad G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\perp \perp} ; j\right) \longrightarrow$ discrete sum

ADS BUILDING BLOCKS BLOCKS

For 2-to-2

$$
A(s, t)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * \Phi_{24}
$$

$$
A(s, t)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} e^{i \mathbf{q} \perp \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \Phi_{13}(z) \mathcal{K}\left(s, \mathbf{x}-\mathbf{x}^{\prime}, z, z^{\prime}\right) \Phi_{24}\left(z^{\prime}\right)
$$

$$
d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad \text { where } g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}
$$

For 2-to-3
$A\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * V * \widetilde{\mathcal{K}}_{P} * \Phi_{24}$

Outline

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality,ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- "Pomeron/Graviton" - unification of hard and soft physics
- Glueballs under AdS/CFT — masses and decays
- DIS - BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production
\bullet QCD and Modern CFT/String Studies:

$$
\begin{aligned}
& F_{2}(x, Q 2)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left[\sigma_{T}\left(\gamma^{*} p\right)+_{L}\left(\gamma^{*} p\right)\right] \\
& x \equiv \frac{Q^{2}}{s}
\end{aligned}
$$

Small $x: \frac{Q^{2}}{s} \rightarrow 0$
Optical Theorem

$$
\sigma_{\text {total }}\left(s, Q^{2}\right)=(1 / s) \operatorname{Im} A\left(s, t=0 ; Q^{2}\right)
$$

ELASTICVS DIS ADS BUILDING BLOCKS

$$
\begin{aligned}
& A\left(s, x_{\perp}-x_{\perp}^{\prime}\right)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} \Phi_{12}(z) G\left(s, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) \Phi_{34}\left(z^{\prime}\right) \\
& \sigma_{T}(s)=\frac{1}{s} \operatorname{Im} A(s, 0)
\end{aligned}
$$

$$
\text { for } \quad F_{2}(x, Q)
$$

$$
\Phi_{13}(z) \rightarrow \Phi_{\gamma^{*} \gamma^{*}}(z, Q)=\frac{1}{z}[Q z)^{4}\left(K_{0}^{2}(Q z)+K_{1}^{2}(Q z)\right]
$$

$d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad$ where $\quad g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}$

High Energy Scattering and DIS in String Theory

AdS space continued

- We are interested in calculating the structure function $F_{2}\left(x, Q^{2}\right)$, which is simply the cross section for an off-shell photon. Using the optical theorem we obtain

$$
\sigma_{t o t} \simeq 2 \int d^{2} b \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right) \operatorname{Im} \chi\left(s, b, z, z^{\prime}\right)
$$

- For DIS, P_{13} should present a photon on the boundary that couples to a spin 1 current in the bulk. This current then propagates through the bulk, and scatters off the target.
- The wave function, in the conformal limit, is

$$
P_{13}(z) \rightarrow P_{13}(z, Q)=\frac{1}{z}(Q z)^{4}\left(K_{0}^{2}(Q z)+K_{1}^{2}(Q z)\right)
$$

- For the proton, one for now treats it as a glueball of mass $\sim \Lambda=1 / Q^{\prime}$.

Conformal Invariance as Isometry of $A d S$

Longitudinal Boost: $\tau=\log \left(\rho z z^{\prime} s / 2\right) \quad \mathcal{K}\left(s, \vec{b}, z, z^{\prime}\right)=\int \frac{d j}{2 \pi i}\left(\frac{e^{-i \pi j}+1}{\sin \pi j}\right) e^{j \tau} \mathcal{K}\left(j, \vec{b}, z, z^{\prime}\right)$
Conformal Invariance in Transverse $A d S_{3}: \quad \xi=\sinh ^{-1}\left(\frac{b^{2}+\left(z-z^{\prime}\right)^{2}}{2 z z^{\prime}}\right)$

$$
\mathcal{K}\left(j, \vec{b}, z, z^{\prime}\right)=\int \frac{d \nu}{2 \pi}\left(\frac{e^{i \nu \xi}}{\sinh \xi}\right) G(j, \nu)
$$

Pomeron as a pole in AdS:

$$
G(j, \nu)=\frac{1}{j-j_{0}+\nu^{2} / 2 \sqrt{\lambda}}
$$

Full Conformal Invariance:

$$
\operatorname{Im} \mathcal{K}\left(s, \vec{b}, z, z^{\prime}\right)=\int \frac{d j}{2 \pi i} \int \frac{d \nu}{2 \pi}\left(\frac{e^{j \tau} e^{i \nu \xi}}{\sinh \xi}\right) G(j, \nu)
$$

$$
\Delta(j)=2+2 \sqrt{\left(j-j_{0}\right) / \rho}
$$

$\mathcal{K}\left(j, \vec{b}, z, z^{\prime}\right) \sim \frac{e^{(2-\Delta(j)) \xi}}{\sinh \xi} \quad \mathcal{K}\left(s, b, z, z^{\prime}\right) \sim e^{j_{0}}\left(\frac{\xi}{\sinh \xi} \frac{\exp \left(-\frac{\xi^{2}}{\rho \tau}\right)}{\tau^{3 / 2}}\right)$

$$
F_{2}\left(x, Q^{2}\right) \sim(1 / x)^{\epsilon_{e f f e c t i}}
$$

The structure function $F_{2}\left(x, Q^{2}\right)$ plotted for farious values of Q^{2}. The data points are from the H1-Zeus collaboration and the solid lines are the soft wall fit values.
/12/1
ソく

Questions on HERA DIS small-x data:

- Why $\alpha_{e f f}=1+\epsilon_{e f f}\left(Q^{2}\right)$?
- Confinement? (Perturbative vs. Non-perturbative?)
- Saturation? (evolution vs. non-linear evolution?)

Pomeron as Reggeized Grviton in AdS vs BFKL and DGLAPP

Nice Features of BPST Pomeron

- Λ controls the strength of the soft wall and in the limit $\Lambda \rightarrow 0$ one recovers the conformal solution

$$
\operatorname{Im} \chi_{P}^{\text {conformal }}(t=0)=\frac{g_{0}^{2}}{16} \sqrt{\frac{\rho^{3}}{\pi}}\left(z z^{\prime}\right) \frac{e^{(1-\rho) \tau}}{\tau^{1 / 2}} \exp \left(\frac{-\left(\log z-\log z^{\prime}\right)^{2}}{\rho \tau}\right)
$$

where $\tau=\log \left(\rho z z^{\prime} s / 2\right)$ and $\rho=2-j_{0}$. Note: this has a similar behavior to the weak coupling BFKL solution where

$$
\operatorname{Im} \chi\left(p_{\perp}, p_{\perp}^{\prime}, s\right) \sim \frac{s^{j_{0}}}{\sqrt{\pi \mathcal{D} \operatorname{Logs}}} \exp \left(-\left(\log p_{\perp}^{\prime}-\log p_{\perp}\right)^{2} / \mathcal{D} \log s\right)
$$

- If we look at the energy dependence of the pomeron propagator, we can see a softened behavior in the forward regge limit.

$$
\chi_{\text {conformal }} \sim-s^{\alpha_{0}} \log ^{-1 / 2}(s) \rightarrow \chi_{H W} \sim-s^{\alpha_{0}} / \log ^{-3 / 2}(s)
$$

Analytically, this corresponded to the softening of a j-plane singularity from $1 / \sqrt{j-j_{0}} \rightarrow \sqrt{j-j_{0}}$. Again, we see this same softened behavior in the soft wall model.

- (Possibly) interesting limit: conformal quantum mechanics. Here the EOM simplifies and takes the form of a model with $1+1$ dimensional conform symmetry[Fubini]

More Plots: Saturation in DIS

Contour plots of $\operatorname{Im}[\chi]$ as a function of $1 / \mathrm{x}$ vs Q^{2} (Gev) for conformal, hardwall, and softwall models. These plots are all in the forward limit, but the impact parameter representation can tell us about the onset of non-linear eikonal effects. The similar behavior for the softwall implies a similar conclusions about confinement vs saturation.

full conformal invariance

$$
\begin{gathered}
M_{2 n}=\int_{0}^{1} d x x^{2 n-2} F_{2}\left(x, Q^{2}\right) \sim Q^{-\gamma(2 n)} \\
\gamma(j)=\Delta(j)-j-\tau_{t w i s t} \quad \gamma(2)=\Delta(2)-2-2=4-4=0
\end{gathered}
$$

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

$$
\gamma_{2}=0
$$

$$
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)}
$$

$$
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation built-in automatically.

Outline

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality,ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- "Pomeron/Graviton" - unification of hard and soft physics
- Glueballs under AdS/CFT — masses and decays
- DIS - BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production
- QCD and Modern CFT/String Studies:

ADS BUILDING BLOCKS BLOCKS

For 2-to-2

$$
A(s, t)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * \Phi_{24}
$$

$$
A(s, t)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} e^{i \mathbf{q} \perp \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \Phi_{13}(z) \mathcal{K}\left(s, \mathbf{x}-\mathbf{x}^{\prime}, z, z^{\prime}\right) \Phi_{24}\left(z^{\prime}\right)
$$

$$
d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad \text { where } g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}
$$

For 2-to-3
$A\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * V * \widetilde{\mathcal{K}}_{P} * \Phi_{24}$

Central Inclusive and Exclusive Production:

Conformal Invariance? Confinement? Satuation?

R. Nally, T. Raben, C-I Tan, (to appear).

Total Cross Section and Optical Theorem in AdS/CFT

$\sigma_{\text {total }}\left(s, Q^{2}\right) \sim(1 / s) \sum_{X}|\langle X \mid p, q\rangle|^{2} \sim \sum_{X} \int d x e^{-i q \cdot x}\left\langle p \mid J^{\dagger}(x) X^{\dagger}\right\rangle\langle X J(0) \mid p\rangle \sim(1 / s) \operatorname{Im} T\left(s, t=0 ; Q^{2}\right)$

Single-Particle Inclusive Distribution and AdS/CFT

$$
\begin{aligned}
\frac{d \sigma}{d q} & \sim(1 / s) \sum_{X}\left|\left\langle q, X \mid p_{1}, p_{2}\right\rangle\right|^{2} \sim \sum_{X} \int e^{i q x}\left\langle p_{1}, p_{2} \mid J^{\dagger}(x) X^{\dagger}\right\rangle X J(0)\left|p_{1}, p_{2}\right\rangle \\
& \sim \int e^{i q x}\left\langle p_{1}^{\prime}\right| J^{\dagger}(x) J(0)\left|p_{1} p_{2}\right\rangle \sim \operatorname{Disc}_{M^{2}} \int e^{i q x}\left\langle p_{1}^{\prime}\right| T\left\{J^{\dagger}(x) J(0)\right\}\left|p_{1} p_{2}\right\rangle
\end{aligned}
$$

$\mathcal{V}_{P P \phi}$

Two-particle Correlation and AdS/CFT; Energy Correlations, etc.

$$
\left.\frac{d \sigma}{d q} \sim(1 / s) \sum_{X}\left|\left\langle q_{1}, q_{2}, X \mid p_{1}, p_{2}\right\rangle\right|^{2} \sim \operatorname{Disc}_{M^{2}}\left\langle p_{1}^{\prime}, p_{2}^{\prime} ; q_{1}, q_{2} \mid p_{1} p_{2}, q_{1}^{\prime} q_{2}^{\prime}\right\rangle\right|_{p^{\prime}=p ; q^{\prime}=q}
$$

$$
\mathcal{V}_{P P \phi_{1} \phi_{2}}=\mathcal{V}_{P P \phi_{1}} \mathcal{V}_{P P \phi_{2}}+\Delta \mathcal{V}_{P P \phi_{1} \phi_{2}}
$$

CFT-based Prediction:
 $$
\rho\left(p_{\perp}, y, s\right)=\frac{1}{\sigma_{\text {total }}} \frac{d^{3} \sigma_{a b \rightarrow X}}{d \mathbf{p}_{\perp}^{2} d y} \sim p_{\perp}^{-8}
$$

Figure 5.2: Fit of inclusive double-differential charged hadron production cross sections obtained in proton-lead collisions at center of mass energy $\sqrt{s}=5.02$ by the ALICE Collaboration, presented in [93]. Two of the datasets are rescaled by factors of four and sixteen for visual clarity. The data are displayed alongside fits to the model in Eq. (5.2).

$$
\frac{1}{2 \pi p_{T}} \frac{d^{2} \sigma}{d p_{\mathrm{T}} d \eta}=\sum_{i} \frac{A_{i}}{\left(p_{T}+C\right)^{B_{i}}}
$$

Figure 5.3: Fit of inclusive double-differential charged hadron production cross sections obtained in proton-proton collisions at center of mass energy $\sqrt{s}=8$ and $\sqrt{s}=13 \mathrm{TeV}$ by the ATLAS Collaboration, presented in [94] and [91], respectively. The 13 TeV dataset is rescaled by a factor of four for visual clarity. The data are displayed alongside fits to the model in Eq. (5.2)

Dataset	$\mathrm{A} / 10\left(\mathrm{GeV}^{-2}\right)$	B	$\mathrm{C} /(1 \mathrm{GeV})$
ALICE 5.02 TeV, $\|\eta\|<0.3[93]$	38.48 ± 8.26	7.23 ± 0.09	1.32 ± 0.04
ALICE 5.02 TeV, $-0.8<\eta<-0.3[93]$	37.60 ± 7.97	7.22 ± 0.08	1.30 ± 0.04
ALICE 5.02 TeV, $-1.3<\eta<-0.8[93]$	43.00 ± 9.29	7.30 ± 0.09	1.31 ± 0.04
ATLAS 8 TeV $[94]$	4.46 ± 2.60	7.03 ± 0.264	1.07 ± 0.123
ATLAS 13 TeV $[91]$	5.77 ± 3.38	6.96 ± 0.265	1.12 ± 0.126

Table 1: Fitted values of parameters in Eq. (5.2) for three data sets. Both central values and statistical errors are quoted.

Summary and Outlook

- Provide meaning for Pomeron non-perturbatively from first principles.
-Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
-First principle description of elastic/total cross sections, DIS at small-x, Central Diffractive Glueball production at LHC, etc.
- Inclusive Production and Dimensional Scalings.

Part-II

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality,ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- "Pomeron/Graviton" - unification of hard and soft physics
- Glueballs under AdS/CFT — masses and decays
- DIS — BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production

Outline

- Holographics Duality - Historical Perspective:
- Duality in Physics, Holographic Duality, etc.
- Gauge Theories, Massless Limit and Scale Invaraince
- Holographic Duality,ADS/CFT (String-Gauge Duality)
- Size and Shape of hadrons: QCD, High Energy Scattering
- "Pomeron/Graviton" - unification of hard and soft physics
- Glueballs under AdS/CFT — masses and decays
- DIS - BPST Pomeron vs BFKL and DGLAPP
- Inclusive and Exclusive Central Production
\bullet QCD and Modern CFT/String Studies:

Pomeron, OPE and Anomalous Dimensions

$$
G_{m n}=g_{m n}^{0}+h_{m n}
$$

Massless modes of a closed string theory:
Need to keep higher string modes

As CFT, equivalence to OPE in strong coupling: using AdS
Anomalous Dimensions for leading twist operators

Conformal Invariance and Pomeron Interaction from AdS/CFT
$+$
..........

- Draw all "Witten-Feynman" Diagrams in AdS5,
- High Energy Dominated by Spin-2 Exchanges:

$$
p_{1}+p_{2} \rightarrow p_{3}+p_{4}
$$

$$
T^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime 5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) \mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)
$$

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
$$

Higher Orders Witten Diagrams:

$$
A_{4}(s, t) \simeq \int d^{2} b e^{-i \mathbf{b} \cdot \mathbf{q}_{\perp}} \int d \mu(z) \int d \mu\left(z^{\prime}\right)
$$

$$
\times \quad \phi_{1}(z, \mathbf{b}) \phi_{3}(z, \mathbf{b}) \mathcal{K}\left(s, \mathbf{b}-\mathbf{b}^{\prime}, z, z^{\prime}\right) \phi_{2}\left(z^{\prime}, \mathbf{b}^{\prime}\right) \phi_{4}\left(z^{\prime}, \mathbf{b}^{\prime}\right)
$$

$$
A(s, t)=g_{0}^{2} \int d z \int d z^{\prime}\left(\sqrt{-g(z)} e^{-2 A(z)} \phi_{1}(z) \phi_{3}(z)\right) \times\left(\left(\alpha^{\prime} s\right)^{2} G^{(0)}\left(z, z^{\prime} ; t\right)\right)\left(\sqrt{-g\left(z^{\prime}\right)} e^{-2 A\left(z^{\prime}\right)} \phi_{2}\left(z^{\prime}\right) \phi_{4}\left(z^{\prime}\right)\right)
$$

Scalar Bulk-Bulk Propagator:

$$
s \rightarrow \infty, t=-q_{\perp}^{2}<0
$$

$$
G^{(0)}\left(z, z^{\prime} ; t\right)=\left(\frac{z z^{\prime}}{R^{2}}\right)^{2} \int_{0}^{\infty} k d k \frac{J_{2}(k z) J_{2}\left(k z^{\prime}\right)}{k^{2}-t}
$$

Scalar Bulk-Boundary Propagator:

$$
G^{(0)}\left(z, z^{\prime} ; t\right): \text { limit } z^{\prime} \rightarrow 0
$$

$$
A(s, t)=g_{0}^{2} \int d z \int d z^{\prime}\left(\sqrt{-g(z)} e^{-2 A(z)} \phi_{1}(z) \phi_{3}(z)\right) \times\left(\left(\alpha^{\prime} s\right)^{2} G^{(0)}\left(z, z^{\prime} ; t\right)\right)\left(\sqrt{-g\left(z^{\prime}\right)} e^{-2 A\left(z^{\prime}\right)} \phi_{2}\left(z^{\prime}\right) \phi_{4}\left(z^{\prime}\right)\right)
$$

Scalar Bulk-Bulk Propagator:

$$
s \rightarrow \infty, t=-q_{\perp}^{2}<0
$$

$$
G^{(0)}\left(z, z^{\prime} ; t\right)=\left(\frac{z z^{\prime}}{R^{2}}\right)^{2} \int_{0}^{\infty} k d k \frac{J_{2}(k z) J_{2}\left(k z^{\prime}\right)}{k^{2}-t}
$$

Scalar Bulk-Boundary Propagator:

$$
G^{(0)}\left(z, z^{\prime} ; t\right): \text { limit } z^{\prime} \rightarrow 0
$$

Discrete Spectrum

$$
\begin{aligned}
& G^{(0)}\left(z, z^{\prime} ; t\right)=R^{-1} \sum_{n} \frac{\phi_{n}(z, 2) \phi_{n}\left(z^{\prime}, 2\right)}{m_{n}^{2}-t} \\
& \sqrt{\sqrt{-g}(z / R)^{2} \sum_{n} \phi_{n}(z, 2) \phi_{n}\left(z^{\prime}, 2\right)=\delta\left(z-z^{\prime}\right) \quad \int_{0}^{z_{I R}} d z \sqrt{-g} e^{-2 A} \phi_{n}(z) \phi_{m}(z)=\delta_{m n}}
\end{aligned}
$$

ELASTIC, DIS, 2-TO-3, ETC. ADS BUILDING BLOCKS

$A(s, t)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} e^{i \mathbf{q} \perp \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \Phi_{13}(z) \mathcal{K}\left(s, \mathbf{x}-\mathbf{x}^{\prime}, z, z^{\prime}\right) \Phi_{24}\left(z^{\prime}\right)$
$\sigma_{T}(s)=\frac{1}{s} \operatorname{Im} A(s, 0)$

$$
d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad \text { where } \quad g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}
$$

for $\quad F_{2}(x, Q)$

$$
\Phi_{13}(z) \rightarrow \Phi_{\gamma^{*} \gamma^{*}}(z, Q)=\frac{1}{z}[Q z)^{4}\left(K_{0}^{2}(Q z)+K_{1}^{2}(Q z)\right]
$$

For Double Diffractive Higgs
$A\left(s_{1}, s_{2}, s, t_{1}, t_{2}\right)=\Phi_{13} * \mathcal{K}_{1} * \mathcal{V}_{H} * \mathcal{K}_{2} * \Phi_{24}$

$$
\mathcal{V}_{H} \rightarrow V_{H} \Phi_{H}=V_{H}\left(m_{H} z\right)^{2} K_{2}\left(m_{H} z\right)
$$

Comparison of strong vs weak coupling kernel at $\mathrm{t}=0$

Strong Coupling:

$$
\mathcal{K}\left(r, r^{\prime}, s\right)=\frac{s^{j_{0}}}{\sqrt{4 \pi \mathcal{D} \ln s}} e^{-\left(\ln r-\ln r^{\prime}\right)^{2} / 4 \mathcal{D} \ln s}
$$

Diffusion in "warped co-ordinate"

$$
j_{0}=2-\frac{2}{\sqrt{g^{2} N}}+O\left(1 / g^{2} N\right) \quad \mathcal{D}=\frac{1}{2 \sqrt{g^{2} N}}+O\left(1 / g^{2} N\right)
$$

Weak Coupling: $\quad K\left(s, k_{\perp}, k_{\perp}^{\prime}\right) \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-\left[\left(\ln k_{\perp}^{\prime}-\ln k_{\perp}\right)^{2} / 4 \mathcal{D} \ln s\right]}$

$$
j_{0}=1+\ln (2) g^{2} N / \pi^{2}
$$

$$
\mathcal{D}=\frac{14 \zeta(3)}{\pi} g^{2} N / 4 \pi^{2} .
$$

Impact Representation:

$$
\begin{aligned}
T^{(1)}\left(s ; x_{\perp}-y_{\perp}\right) & =(1 / 2 \pi)^{2} \int d^{2} q_{\perp} e^{i\left(x_{\perp}-y_{\perp}\right) \cdot q_{\perp}} T^{(1)}\left(s,-q_{\perp}^{2}\right) \\
T^{(1)}\left(s ; x_{\perp}-y_{\perp}\right) & =g_{s}^{2} \int \frac{d z d z^{\prime}}{z^{5} z^{\prime 5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z^{\prime}\right) \mathcal{K}\left(s, x_{\perp}-y_{\perp}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)
\end{aligned}
$$

j-plane Representation:

$$
\mathcal{K}\left(s, x_{\perp}-y_{\perp}, z, z^{\prime}\right)=\left(z z^{\prime}\right) \int \frac{d j}{2 \pi i} \frac{\left(1+e^{-i \pi j}\right)}{\sin \pi j}(\tilde{s})^{j} G_{\Delta_{2}}^{(3)}\left(j, x_{\perp}-y_{\perp}, z, z^{\prime}\right)
$$

Reduction to AdS-3:

$$
G_{\Delta_{2}}^{(3)}\left(j, x_{\perp}-y_{\perp}, z, z^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} q_{\perp} e^{i\left(x_{\perp}-y_{\perp}\right) \cdot q_{\perp}} \tilde{G}_{\Delta_{2}}^{(3)}\left(j,-q_{\perp}^{2}, z, z^{\prime}\right)
$$

D.E. for Propagator:

$$
\left\{2 \sqrt{\lambda}(j-2)-z^{3} \partial_{z} z^{-1} \partial_{z}-z^{2} \partial_{x^{\perp}}^{2}+3\right\} G_{(\Delta(j)-1)}^{(3)}\left(x_{\perp}, x_{\perp}^{\prime}, z, z^{\prime}\right)=z^{3} \delta\left(z-z^{\prime}\right) \delta^{(2)}\left(x_{\perp}-x_{\perp}^{\prime}\right)
$$

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation built-in automatically.

$$
\gamma_{2}=0
$$

$$
\begin{gathered}
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \\
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
\end{gathered}
$$

Balitsky, Fadin, Kuraev, Lipatov (BFKL): perturbative Pomeron. Large logs get in the way of usual perturabtion theory: resum $\alpha_{s} \log (s)$ to all orders. Bfkl equation - integral equation for Green's function in Mellin space

$$
G\left(\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}, Y\right)=\int_{-i \infty}^{+i \infty} \frac{d \omega}{2 \pi i} e^{\gamma \omega} f_{\omega}\left(\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}\right) \rightarrow \int_{-i \infty}^{+i \infty} \frac{d \omega}{2 \pi i} e^{\gamma \omega} \sum_{n \in \mathcal{Z}_{\frac{1}{2}}-i \infty} \int_{-\frac{1}{2}+i \infty} \frac{d \gamma}{2 \pi i} \frac{E_{\gamma, n}(k) E_{\gamma, n}^{*}\left(k^{\prime}\right)}{\omega-\bar{\alpha}_{s} \chi(\gamma, n)}
$$

where in Leading Log (LL)

$$
\chi(\gamma, n)=2 \psi(1)-\psi\left(\gamma+\frac{|n|}{2}\right)-\psi\left(1-\gamma+\frac{|n|}{2}\right) \quad \text { and } \quad \omega_{0}=\frac{4 \alpha_{s} N_{c}}{\pi} \ln (2)
$$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

Anomalous dimensions

$$
\gamma(j)=\Delta(j)-j-\tau_{\text {twist }}
$$

DGLAPP

BFKL

BPST Pomeron

Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

- Operators that contribute are the twist 2 operators
- Dual to string theory spin J field in leading Regge trajectory

$$
\begin{gathered}
\left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \\
m^{2}=\Delta(\Delta-4)-J, \quad \Delta=\Delta(J)
\end{gathered}
$$

- Diffusion limit
$J(\Delta)=J_{0}+\mathcal{D}(\Delta-2)^{2} \Rightarrow m^{2}=\frac{2}{\alpha^{\prime}}(J-2)-\frac{J}{L^{2}}$

Pomeron and Odderon Intercepts in the conformal Limit

Massless modes of a closed string theory:
metric tensor, $\quad G_{m n}=g_{m n}^{0}+h_{m n}$ Kolb-Ramond anti-sym. tensor, $\quad b_{m n}=-b_{n m}$ dilaton, etc. ϕ, χ, \cdots

Gauge-String Duality: AdS/CFT

Weak Coupling:

Gluons and Quarks:

$$
\begin{aligned}
& A_{\mu}^{a b}(x), \psi_{f}^{a}(x) \\
& \bar{\psi}(x) \psi(x), \bar{\psi}(x) D_{\mu} \psi(x) \\
& S(x)=\operatorname{Tr} F_{\mu \nu}^{2}(x), \quad O(x)=\operatorname{Tr} F^{3}(x) \\
& T_{\mu \nu}(x)=\operatorname{Tr} F_{\mu \lambda}(x) F_{\lambda \nu}(x), \quad \text { etc. }
\end{aligned}
$$

Gauge Invariant Operators:

$$
\mathcal{L}(x)=-\operatorname{Tr} F^{2}+\bar{\psi} D \psi+\cdots
$$

Strong Coupling:

Metric tensor:

$$
G_{m n}(x)=g_{m n}^{(0)}(x)+h_{m n}(x)
$$

Anti-symmetric tensor (Kalb-Ramond fields):
$b_{m n}(x)$
Dilaton, Axion, etc.
$\phi(x), a(x)$, etc.
Other differential forms: $C_{m n \cdots}(x)$

$$
\mathcal{L}(x)=\mathcal{L}(G(x), b(x), C(x), \cdots)
$$

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation built-in automatically.

$$
\gamma_{2}=0
$$

$$
\begin{gathered}
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \\
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
\end{gathered}
$$

Balitsky, Fadin, Kuraev, Lipatov (BFKL): perturbative Pomeron. Large logs get in the way of usual perturabtion theory: resum $\alpha_{s} \log (s)$ to all orders. Bfkl equation - integral equation for Green's function in Mellin space

$$
G\left(\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}, Y\right)=\int_{-i \infty}^{+i \infty} \frac{d \omega}{2 \pi i} e^{\gamma \omega} f_{\omega}\left(\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}\right) \rightarrow \int_{-i \infty}^{+i \infty} \frac{d \omega}{2 \pi i} e^{\gamma \omega} \sum_{n \in \mathcal{Z}_{\frac{1}{2}}-i \infty} \int_{-\frac{1}{2}+i \infty} \frac{d \gamma}{2 \pi i} \frac{E_{\gamma, n}(k) E_{\gamma, n}^{*}\left(k^{\prime}\right)}{\omega-\bar{\alpha}_{s} \chi(\gamma, n)}
$$

where in Leading Log (LL)

$$
\chi(\gamma, n)=2 \psi(1)-\psi\left(\gamma+\frac{|n|}{2}\right)-\psi\left(1-\gamma+\frac{|n|}{2}\right) \quad \text { and } \quad \omega_{0}=\frac{4 \alpha_{s} N_{c}}{\pi} \ln (2)
$$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

Anomalous dimensions

$$
\gamma(j)=\Delta(j)-j-\tau_{\text {twist }}
$$

DGLAPP

BFKL

BPST Pomeron

Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

- Operators that contribute are the twist 2 operators
- Dual to string theory spin J field in leading Regge trajectory

$$
\begin{gathered}
\left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \\
m^{2}=\Delta(\Delta-4)-J, \quad \Delta=\Delta(J)
\end{gathered}
$$

- Diffusion limit
$J(\Delta)=J_{0}+\mathcal{D}(\Delta-2)^{2} \Rightarrow m^{2}=\frac{2}{\alpha^{\prime}}(J-2)-\frac{J}{L^{2}}$

POMERON AND ODDERON IN STRONG COUPLING:

$$
\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

POMERON $a_{0}=2-\frac{2}{\lambda / 2}$
Brower, Polchinski, Strassler, Tan Kotikov, Lipatov, et al.

Solution-a: $\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}-$
Solution-b: $\quad \alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}-$
Brower, Djuric, Tan \nearrow
Avsar, Hatta, Matsuo

POMERON AND ODDERON IN STRONG COUPLING:

$$
\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

B.Basso, 1109.3154v2

$$
\text { POMERON } \quad \alpha_{p}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\frac{6 \zeta(3)+2}{\lambda^{2}}+\frac{18 \zeta(3)+\frac{361}{64}}{\lambda^{5 / 2}}+\frac{39 \zeta(3)+\frac{447}{32}}{\lambda^{3}}+\cdots
$$

Gromov et al.

ODDERON

Kotikov, Lipatov, et al. Costa, Goncalves, Penedones (1209.4355) Kotikov, Lipatov (1301.0882)
Solution-a: $\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}$
Solution-b:

$$
\alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}-
$$

Brower, Djuric, Tan \nearrow
Avsar, Hatta, Matsuo
Brower, Costa, Djuric, Raben, Tan

POMERON AND ODDERON IN STRONG COUPLING:

$$
\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

B.Basso, 1109.3154v2

$$
\text { POMERON } \quad \alpha_{p}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\frac{6 \zeta(3)+2}{\lambda^{2}}+\frac{18 \zeta(3)+\frac{31}{\lambda^{5 / 2}}}{61}+\frac{39 \zeta(3)+\frac{474}{\lambda^{3}}}{\lambda^{32}}+\cdots
$$

$$
\stackrel{\uparrow}{\text { Brower, Polchinski, Str\&ssler, Tan }}
$$

Gromov et al.

ODDERON

 Kotikov, Lipatov (1301.0882)Solution-a: $\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}-\frac{4}{\lambda}+\frac{13}{\lambda^{3 / 2}}+\frac{96 \zeta(3)+41}{\lambda^{2}}+\frac{288 \zeta(3)+\frac{1823}{16}}{\lambda^{5 / 2}}+\frac{720 \zeta(5)+1344 \zeta(3)-\frac{3585}{4}}{\lambda^{3}}$

$$
\alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}-
$$

Brower, Djuric, Tan \nearrow
Avsar, Hatta, Matsuo
Brower, Costa, Djuric, Raben, Tan

POMERON AND ODDERON IN STRONG COUPLING:

$$
\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

B.Basso, 1109.3154v2

$$
\text { POMERON } \quad \alpha_{p}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\frac{6 \zeta(3)+2}{\lambda^{2}}+\frac{18 \zeta(3)+\frac{361}{\lambda^{5 / 2}}}{64}+\frac{39 \zeta(3)+\frac{474}{\lambda^{3}}}{\lambda^{32}}+\cdots
$$

$\stackrel{\uparrow}{i}$ Brower, Polchinski, Strфssler, Tan

Gromov et al.

ODDERON

 Kotikov, Lipatov, et al. Costa, Goncalves, Penedones (1209.4355) Kotikov, Lipatov (1301.0882)Solution-a: $\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}-\frac{4}{\lambda}+\frac{13}{\lambda^{3 / 2}}+\frac{96 \zeta(3)+41}{\lambda^{2}}+\frac{288 \zeta(3)+\frac{1823}{16}}{\lambda^{5 / 2}}+\frac{720 \zeta(5)+1344 \zeta(3)-\frac{3585}{4}}{\lambda^{3}}$.
Solution-b:

$$
\alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}-\frac{0}{\lambda}+\frac{0}{\lambda^{3 / 2}}+\frac{0}{\lambda^{2}}+\frac{0}{\lambda^{5 / 2}}+\frac{0}{\lambda^{3}}+\cdots
$$

Brower, Djuric, Tan
Avsar, Hatta, Matsuo
Brower, Costa, Djuric, Raben, Tan

$\mathcal{N}=4$ Strong vs Weak $g^{2} N_{c}$

Graviton

Formal Treatment via World-Sheet OPE

$$
\left(L_{0}-1\right) V_{P}=\left(\bar{L}_{0}-1\right) V_{P}=0
$$

- Flat Space Pomeron Vertex Operator

$$
\mathcal{V}_{P}^{ \pm}=\left(2 \theta X^{ \pm} \bar{\partial} X^{ \pm} / \alpha^{\prime}\right)^{1+\alpha^{\prime} t / 4} e^{\text {Fik. }} .
$$

- Flat Space Odderon Vertex Operator

$$
\nu_{o}^{ \pm}=\left(2 \epsilon_{\varepsilon_{+}, 1} \theta X^{ \pm} \bar{\partial} X^{ \pm} / / \alpha^{\prime}\right)\left(2 \theta X^{ \pm} \bar{\partial} X^{ \pm} / \alpha \alpha^{\prime}\right)^{t} / / e^{\text {Fiik } x}
$$

- Pomeron Vertex Operator in AdS

$$
\mathcal{V}_{P}(j, \nu, k, \pm) \sim\left(\partial X^{ \pm} \bar{\partial} X^{ \pm}\right)^{\frac{1}{2}} e^{\text {Fik. } \cdot x} e^{(j-2) \mathrm{s}} K_{ \pm 2 i,}\left(|t|^{1 / 2} e^{-\infty}\right)
$$

- Odderon Vertex Operator in AdS

$$
\nu_{o}(j, \nu, k, \pm) \sim\left(\theta X^{ \pm} \bar{\partial} X^{\perp}-\theta X^{\perp} \bar{\partial} X^{ \pm}\right)\left(\theta X^{ \pm} \bar{\partial} X^{ \pm}\right)^{\frac{1-1}{2}} e^{7 i \cdot x} e^{(j-1) u} K_{ \pm 2 v}\left(|t|^{1 / 2} e^{-u}\right)
$$

CFT, OPE, and Regge Limit

Symmetry \leftrightarrow Isometry

full $O(4,2)$ conformal group as isometries of $A d S_{5}$
15 generators: $P_{\mu}, M_{\mu \nu}, D, K_{\mu}$
collinear group $S L_{L}(2, R) \times S L_{R}(2, R)$ used in DGLAP generators: $D \pm M_{+-}, P_{ \pm}, K_{\mp}$
$S L(2, C) \quad$ Möbius invariance
generators: $i D \pm M_{12}, P_{1} \pm i P_{2}, K_{1} \mp i K_{2}$
isometries of the Euclidean (transverse) $A d S_{3}$ subspace of $A d S_{5}$

CFT correlate function - coordinate representation

$\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right)\right\rangle$
OPE: $\quad \phi\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \simeq \sum_{k} C_{1,2 ; k}\left(x_{12}, \partial_{1}\right) \mathcal{O}_{k}\left(x_{1}\right)$
Bootstrap: \quad s-channel OPE $=\mathrm{t}$-channel OPE unitarity, positivity, locality, analyticity, etc.

Dynamics:
$\mathcal{O}_{(\Delta, j)_{k}}(x)$
Conformal Dimension, Spin

Conformal Partial-Wave Expansion

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v)
$$

Conformal inv. cross-ratios $\quad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$
t-Channel partial-wave $\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left(34, \Delta_{(k, j))}\right.} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)$

$$
\text { Conformal Block } \quad \mathcal{G}_{(\Delta, j)}(u, v)
$$

Dynamics: $\quad\left\{\left(\Delta_{k}(j), j\right)\right\}, k=1,2, \cdots, j=0,1, \cdots \quad$ Conformal Data

Conformal Partial-Wave Expansion

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v)
$$

Conformal inv. cross-ratios $\quad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$
t-Channel partial-wave $\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left.\left(34, \Delta_{(k}, j\right)\right)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)$

$$
\text { Conformal Block } \quad \mathcal{G}_{(\Delta, j)}(u, v)
$$

Dynamics: $\quad\left\{\left(\Delta_{k}(j), j\right)\right\}, k=1,2, \cdots, j=0,1, \cdots \quad$ Conformal Data

$$
\mathcal{N}=4 \quad S Y M \quad \text { Integrability } \quad \text { AdS-Dual, Large-N, etc. }
$$

Conformal Partial-Wave Expansion and Regge Limit:

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v)
$$

Conformal inv. cross-ratios

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

t-Channel partial-wave $\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{(34, \Delta(k, j))} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)$

$$
\text { Conformal Block } \quad \mathcal{G}_{(\Delta, j)}(u, v)
$$

Dynamics: $\quad\left\{\left(\Delta_{k}(j), j\right)\right\}, k=1,2, \cdots, j=0,1, \cdots \quad$ Conformal Data

$$
\mathcal{N}=4 \quad \text { SYM } \quad \text { Integrability } \quad \text { AdS-Dual, Large-N, etc. }
$$

Regge Limit: $\quad u \rightarrow 0, \quad v \rightarrow 1, \quad$ with $\sqrt{u} /(1-v)$ fixed

Conformal Partial-Wave Expansion and Regge Limit:

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v)
$$

Conformal inv. cross-ratios $\quad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$
t-Channel partial-wave $\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left(34, \Delta_{(k, j)}\right)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)$

$$
\text { Conformal Block } \quad \mathcal{G}_{(\Delta, j)}(u, v)
$$

Dynamics: $\quad\left\{\left(\Delta_{k}(j), j\right)\right\}, k=1,2, \cdots, j=0,1, \cdots \quad$ Conformal Data

$$
\mathcal{N}=4 \quad \text { SYM } \quad \text { Integrability } \quad \text { AdS-Dual, Large-N, etc. }
$$

Regge Limit: $\quad u \rightarrow 0, \quad v \rightarrow 1, \quad$ with $\sqrt{u} /(1-v) \quad$ fixed Euclidean vs Minkowski?

Conformal Partial-Wave Expansion and Regge Limit:

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v) \\
\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left(34, \Delta_{(k, j))} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)\right.}
\end{gathered}
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal Block $\mathcal{G}_{(\Delta, j)}(u, v)$
Regge Limit: $\quad u \rightarrow 0, v \rightarrow 1$, with $\sqrt{u} /(1-v)$ fixed

Euclidean Regge limit:

$$
\mathcal{G}_{(\Delta, j)}(u, v) \sim u^{\Delta / 2} g\left(\tilde{b}^{2}\right) \quad \tilde{b}^{2} \sim \frac{1-v}{\sqrt{u}} \sim \cos \theta
$$

Minkowski Regge limit:

$$
\begin{array}{rlrl}
\mathcal{G}_{(\Delta, j)}(u, v) & \sim u^{(1-j) / 2} \mathcal{Y}\left(\tilde{b}^{2}\right) & \\
\sqrt{u} & \sim s^{-1} & \mathcal{Y}\left(\tilde{b}^{2}\right) \sim \tilde{b}^{-2(\Delta-1)} & \tilde{b}^{2} \sim \frac{1-v}{\sqrt{u}} \quad \text { large }
\end{array}
$$

$S O(4,2)=S O(1,1) \times S O(3,1)$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

Euclidean CFT

$$
\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left.\left(34, \Delta_{(}, j\right)\right)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)
$$

$S O(4,2)=S O(1,1) \times S O(4)$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

Euclidean CFT
$S O(4,2)=S O(1,1) \times S O(4)$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \sum_{j} \quad a_{j}(\Delta) G_{\Delta, j}(u, v)
$$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

Euclidean CFT

$$
S O(5,1)=S O(1,1) \times S O(4)
$$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \sum_{j} \quad a_{j}(\Delta) G_{\Delta, j}(u, v)
$$

Dynamics

$$
a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}}
$$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} \frac{d j}{2 \pi i} \quad a(\Delta, j) \mathcal{G}(u, v ; \Delta, j)
$$

Euclidean CFT
$S O(4,2)=S O(1,1) \times S O(4)$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \sum_{j} \quad a_{j}(\Delta) G_{\Delta, j}(u, v)
$$

Dynamics

$$
a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}}
$$

Full $O(4,2)$ Conformal Group

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} \frac{d j}{2 \pi i} a(\Delta, j) \mathcal{G}(u, v ; \Delta, j)
$$

Euclidean CFT
$S O(4,2)=S O(1,1) \times S O(4)$

$$
\mathcal{A}(u, v) \leftrightarrow \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} \sum_{j} \quad a_{j}(\Delta) G_{\Delta, j}(u, v)
$$

Dynamics

$$
a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}} \rightarrow \frac{1}{\Delta-\Delta(j)}
$$

Conformal Partial-Wave Expansion and Regge Limit:

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v) \\
\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left(34, \Delta_{(k, j)}\right)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)
\end{gathered}
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal Block $\mathcal{G}_{(\Delta, j)}(u, v)$
Regge Limit: $\quad u \rightarrow 0, v \rightarrow 1$, with $\sqrt{u} /(1-v)$ fixed

Minkowski Regge limit:

"Sommerfeld-Watson resummation" $\mathcal{A}(u, v)=\sum_{\xi= \pm} \int \frac{d \Delta}{2 \pi i} \int \frac{d j}{2 \pi i} \frac{1+\xi e^{-i \pi j}}{\sin \pi j} a_{\xi}(\Delta, j) \mathcal{G}_{(\Delta, j)}(u, v)$
Conformal Data:

$$
a_{ \pm} \sim \sum_{k} \frac{c_{k}(j)}{\Delta-\Delta_{k}^{ \pm}(j)}
$$

$$
\mathcal{A}(u, v)=\sum_{\xi} \sum_{k} \int \frac{d j}{2 \pi i} \frac{1+\xi e^{-i \pi j}}{\sin \pi j} c_{k}(j, \xi) \mathcal{G}_{\left(\Delta_{k}^{\xi}(j), j\right)}(u, v)
$$

$$
a_{j}(\Delta) \sim \frac{1}{\Delta-\Delta_{j}} \rightarrow \frac{1}{\Delta-\Delta(j)}
$$

Single Trace Gauge Invariant Operators of $\mathcal{N}=4$ SYM,

$$
\operatorname{Tr}\left[F^{2}\right], \quad \operatorname{Tr}\left[F_{\mu \rho} F_{\rho \nu}\right], \quad \operatorname{Tr}\left[F_{\mu \rho} D_{ \pm}^{S} F_{\rho \nu}\right], \quad \operatorname{Tr}\left[Z^{\tau}\right], \quad \operatorname{Tr}\left[D_{ \pm}^{S} Z^{\tau}\right], \cdots
$$

Super-gravity in the $\lambda \rightarrow \infty$:

$$
\operatorname{Tr}\left[F^{2}\right] \leftrightarrow \phi, \quad \operatorname{Tr}\left[F_{\mu \rho} F_{\rho \nu}\right] \leftrightarrow G_{\mu \nu}, \quad \cdots
$$

Symmetry of Spectral Curve:

$$
\Delta(j) \leftrightarrow 4-\Delta(j)
$$

Conformal Partial-Wave Expansion and Regge Limit:

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{c}=\frac{1}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta_{0}}} \mathcal{A}(u, v) \\
\mathcal{A}(u, v)=\sum_{k} \sum_{\Delta_{k}, j} c_{\left(12,\left(\Delta_{k}, j\right)\right)} c_{\left(34, \Delta_{(k, j)}\right)} \mathcal{G}_{\left(\Delta_{k}, j\right)}(u, v)
\end{gathered}
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal Block $\mathcal{G}_{(\Delta, j)}(u, v)$
Regge Limit: $\quad u \rightarrow 0, v \rightarrow 1$, with $\sqrt{u} /(1-v)$ fixed

Minkowski Regge limit:

"Sommerfeld-Watson resummation" $\mathcal{A}(u, v)=\sum_{\xi= \pm} \int \frac{d \Delta}{2 \pi i} \int \frac{d j}{2 \pi i} \frac{1+\xi e^{-i \pi j}}{\sin \pi j} a_{\xi}(\Delta, j) \mathcal{G}_{(\Delta, j)}(u, v)$
Conformal Data:

$$
a_{ \pm} \sim \sum_{k} \frac{c_{k}(j)}{\Delta-\Delta_{k}^{ \pm}(j)}
$$

$$
\mathcal{A}(u, v)=\sum_{\xi} \sum_{k} \int \frac{d j}{2 \pi i} \frac{1+\xi e^{-i \pi j}}{\sin \pi j} c_{k}(j, \xi) \mathcal{G}_{\left(\Delta_{k}^{\xi}(j), j\right)}(u, v)
$$

Regge Limit:

$$
\mathcal{A} \sim u^{\left(1-j_{0}\right) / 2}
$$

j_{0} is the leading singularity of "anomalous dimensions", $\Delta(j)-j-\tau_{0}$.

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation built-in automatically.

$$
\gamma_{2}=0
$$

$$
\begin{gathered}
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \\
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
\end{gathered}
$$

VII. Summary and Outlook

- Provide meaning for Pomeron non-perturbatively from first principles.
-Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
-First principle description of elastic/total cross sections, DIS at small-x, Central Diffractive Glueball production at LHC, etc.
- Inclusive Production and Dimensional Scalings.
-"non-perturbative" (e.g., blackhole physics, locality in the bulk).

Partial list of successes of AdS/CFT:

Address quark-gluon plasma non-perturbatively.
New perspectives for String theories.

Unified treatment for High Energy Scattering.

Strong coupling for condensed matter physics.
Topological insulators, fractional quantum Hall effect, etc.

SYK Model for Chaos Bound and Falling into Black Holes

Stephen H. Shenker and Douglas Stanford. Stringy effects in scrambling. JHEP, 05:132, 5322015.

Jeff Murugan, Douglas Stanford, and Edward Witten. More on Supersymmetric and 2d Analogs of the SYK Model. JHEP, 08:146, 2017.

Greatest Equations Ever:

Euler's Equation:

$$
e^{i \pi}+1=0
$$

Greatest Equations Ever:

Maxwell:

$$
d * F=* j \quad d F=0
$$

Euler's Equation:

$$
e^{i \pi}+1=0
$$

Greatest Equations Ever:

Maxwell:

$$
d * F=* j \quad d F=0
$$

Euler's Equation:

$$
e^{i \pi}+1=0
$$

Gauge/String Duality:

$$
A d S=C F T
$$

according to J. Polchinski

For High Energy Collisions

What is AdS/CFT in the context of High Energy Scattering?

From perturbative QCD, dominance of two gluon exchange at HE.

CFT = AdS

For High Energy Collisions

2-GLUONS in 4d = GRAVITON in 5d

For High Energy Collisions

2-GLUONS in 4d = GRAVITON in 5d

Dominant "Quasi-particle" exchange for High Energy is Graviton propagating in AdS

