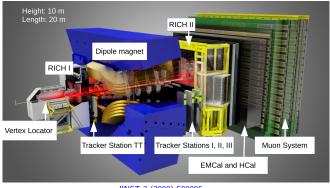
#### Soft and hard QCD processes in LHCb

#### Michael Winn on behalf of the LHCb Collaboration

Laboratoire de l'Accélérateur Linéaire, Orsay



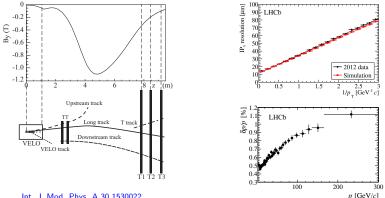

Bad Honnef, 29.09.2017

### Outline

- 1. LHCb: detector capabilities
- 2. Spectroscopy: new (un)conventional bound states of QCD
- 3. The partons in the proton and ions: insights at low and high x
- 4. Tests of factorisation and effective field theory
- 5. Soft and collective particle production: precise measurements and (un)expected features
- 6. Outlook and Conclusions

### LHCb designed as heavy-flavour precision experiment

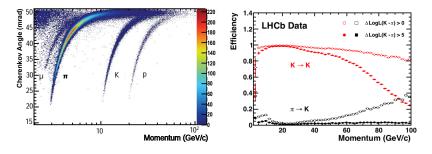



JINST 3 (2008) S08005.

#### collect large number of B-hadrons in small angular acceptance: about 27% of b-quarks within acceptance in pp collisions

Example: first observation of rare  $B_S \rightarrow \mu^+ \mu^-$  decay together with CMS Nature 522 (2015) 68, most precise

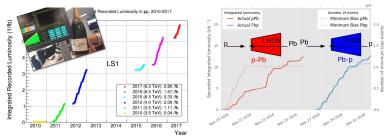
single experiment measurement of the  $\gamma$  angle in the CKM matrix JHEP 12 (2016) 087


### LHCb Tracking



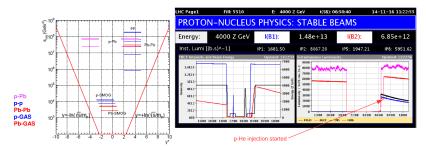
Int. J. Mod. Phys. A 30 1530022.

- $\triangleright$  VELO: silicon strip telescope down to radial distance to beam  $r = 0.8 \ cm$
- VELO+RICH1+silicon strip+ 4Tm dipole + straw tubes/silicon strips
- tracker with  $\approx 30\% X_0$
- momentum resolution below 1% in wide range
- topological ID of charm and beauty hadrons down to 0  $p_T$ : longitudinal boost


### LHCb particle identification

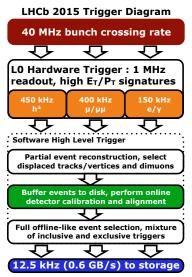





- 2 RICH systems with 2 radiators for charged track PID
- muon-ID behind calorimetry:  $\varepsilon_{\mu \to \mu} \approx 97\%$  for  $\varepsilon_{\pi \to \mu} \approx 1-3\%$  Mis-ID
- ▶ photon measurement & electron/photon-ID with calorimetry and preshower  $\Delta m(\mu^+\mu^-, \mu^+\mu^-\gamma)$ -resolution: 5 MeV/ $c^2$  from  $\chi_{c1,c2} \rightarrow J/\psi + \gamma$ -decay with calorimeter

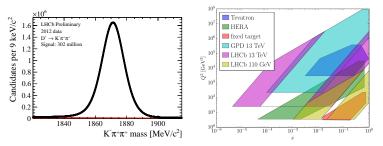
### Collision systems and running conditions in collider mode




- luminosity levelling with  $\approx 1$  visible collisions per beam-beam encounter every 25 ns in pp:  $L \approx 4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- $6fb^{-1}$  from 2010-now at  $\sqrt{s} = 0.9, 2.76, 5, 7, 8, 13$  TeV
- ▶ *p*Pb/Pb*p* 2016: running at  $\leq$  200 kHz interaction rate with  $\leq$  0.1 visible collisions per beam-beam encounter: 34.4 nb<sup>-1</sup> in two beam configurations at  $\sqrt{s_{NN}} = 8.16$  TeV, 0.5 nb<sup>-1</sup> at  $\sqrt{s_{NN}} = 5$  TeV in one configuration
- ▶ 1.6 nb<sup>-1</sup> at  $\sqrt{s_{NN}} = 5$  TeV in both beam configurations accumulated in 2013
- ▶ in PbPb 2015: luminosity equivalent to about 50 million hadronic CCD physics school Michael Winn, LHCb Collaboration

### Collision systems and running conditions in fixed-target collisions

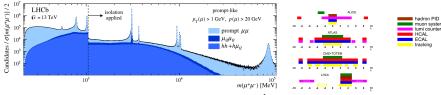



- noble gas injected in interaction region: improve luminosity measurement by beam imaging J. Instrum. 9 (2014) P12005
- residual gas pressure in beam pipe increased by 2 orders of magnitude: O(10<sup>-7</sup>) mbar
- $\blacktriangleright$  used for fixed target with proton and Pb beams: LHCb  $\approx$  midrapidity rapidity coverage at lower collision energies
- pHe, pAr, pNe, PbNe and PbAr data samples available
- ► pAr and pHe O(nb<sup>-1</sup>) integrated luminosities QCD physics school Michael Winn, LHCb Collaboration

### LHCb trigger system, data acquisition and calibration



- offline quality at the software trigger level since 2015
- analysis directly with trigger reconstruction output
- used for e.g. charm cross section measurement at 13 TeV JHEP 10 (2015) 172, JHEP 03 (2016) 159
- *p*Pb/Pb*p* conditions: able to process all events in HLT
- ▶ PbPb conditions: recorded all events on tape; tracking up to ≈ 50 % centrality
- p-Ar,p-He fixed target: able to process all events in HLT


### Why QCD studies with LHCb?

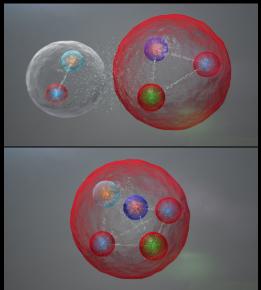


Left: LHCb-CONF-2016-005.

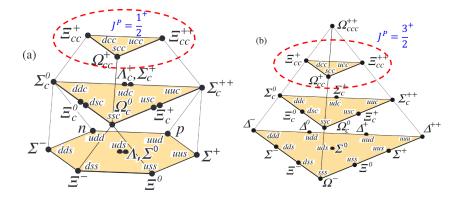
- largest recorded c, b-hadron yields hard quark mass scale as opportunity for QCD studies:
  - effective field theory for bound state properties
  - test diagrammatic approaches & factorisation schemes as low as possible in  $Q^2\,$
- forward acceptance at the LHC: unique kinematics in  $Q^2 x$ -plane
- the only fixed-target programme at the LHC: unique kinematics

### Why QCD studies with LHCb?




dimuon mass spectrum for dark photon search trigger line with 1.6fb<sup>-1</sup>(2016 statistics, arXiv:1709.XXX).

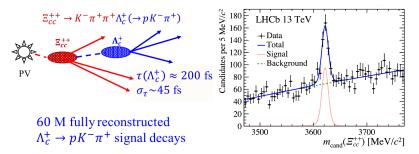
- highest software trigger rate at the LHC: flexible high-rate selections down to low p<sub>T</sub>
- only detector at the LHC with charged hadron-id, muon-id and calorimeters in same acceptance
- ▶ about 1 collision per bunch crossing in pp: clean events also for low- $Q^2$  & possibility of exclusive production studies
- "overdesigned" trigger for heavy-ion beam rates


### Not possible to cover all QCD@LHCb results:

 $\rightarrow$  examples to illustrate the different possibilities.

### Spectroscopy: looking for (un)conventional bound states and their properties



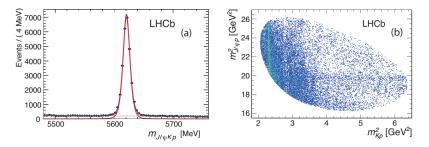

### Search for double charm baryons



► A  $J^{P}\frac{1}{2}^{+}$  and a  $J^{P} = \frac{3}{2}$  flavour SU(3)-triplet with two charm quarks:  $\Xi_{cc}^{+}(ccd), \Xi_{cc}^{+}(ccu), \Omega_{cc}^{+}(ccs)$ 

•  $\frac{1}{2}^+$ -states weakly decaying

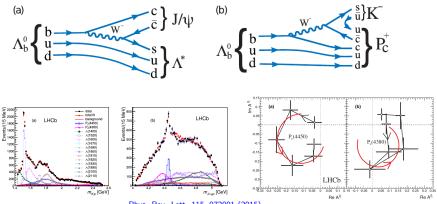
### A new conventional state: $\Xi_{cc}^{++}$




PRL 119 (2017) 112001, see also CERN seminar by Yanxi Zhang.

- rare process with 6 tracks in final state
- first unambiguous discovery of a double charm baryon
- signal yield:  $313 \pm 13$
- resolution 6.6  $\pm$ 0.8 MeV/ $c^2$
- local significance  $> 14\sigma$

• it is a weak decay: signal remains prominent with cut  $t/\sigma_t > 5$ QCD physics school Michael Winn, LHCb Collaboration

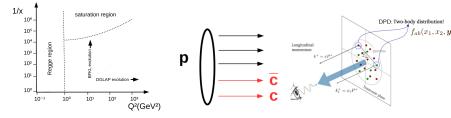

#### Unconventional bound states of QCD



Phys. Rev. Lett. 115, 072001 (2015)

- qq̄ mesons and qqq baryons in accordance with quark-model keep being discovered
- no reason not having exotic strongly interacting bound states
- ▶ pentaquark (qqqqqq) often discovered and always refuted until 2015
- Interesting features in  $\Lambda_b \rightarrow J/\psi Kp$ : need full partial-wave analysis to dissect QCD physics school Michael Winn, LHCb Collaboration

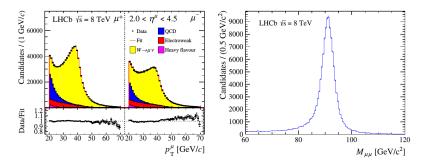
### Spectroscopy: Pentaquark discovery




Phys. Rev. Lett. 115, 072001 (2015)

- partial wave analysis with 14 considered Λ\* resonances with 4 angles and the pK-mass
- pattern not explanable without additional structure in  $J/\psi p$  system
- 2 Breit-Wigners with statistical significances of 8 and 12, best fit with J<sup>P</sup> (3/2<sup>-</sup>, 5/2<sup>+</sup>) acceptable also (3/2<sup>+</sup>, 5/2<sup>-</sup>) (5/2<sup>+</sup>,3/2<sup>-</sup>)

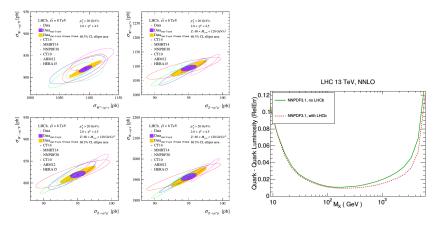
Confirmed with model-indepedent analysis Phys. Rev. Lett. 117, 082002 (2016), evidence seen in Cabibbo-surpressed analogue decay  $\Lambda_b \rightarrow J/\psi\pi\rho$  Phys. Rev. Lett. 117, 082003 (2016) QCD physics school Michael Winn, LHCb Collaboration


### The partons inside hadrons



left: adapted from R. Ellis, W. Stirling, and B. Webber. QCD and collider physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 8:1–435, 1996; right: from Matteo Rinaldi@MPI 2015

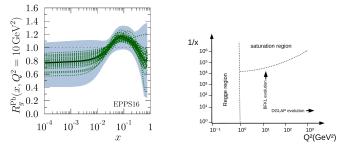
- H1 and ZEUS at HERA: high-precision benchmark of perturbative DGLAP evolution in deep inelastic scattering
- LHCb at LHC: unique opportunity to dive deep at low-x checking the limits and at high-x looking for "exotic" compounds
- "Counting more than one": multi-parton scattering at moderate/low- $Q^2$  with charm and beauty  $\rightarrow$  towards more exclusive observables and their understanding


### W and Z measurements in pp collisions



#### JHEP 01 (2016) 155.

- ▶ precision meausurement with uncoloured final state with high mass scale down to  $x = 10^{-4}$  and up to high x in pp collisions
- constraining parton distribution functions including flavour separation via W in phase space not accessible to other experiments

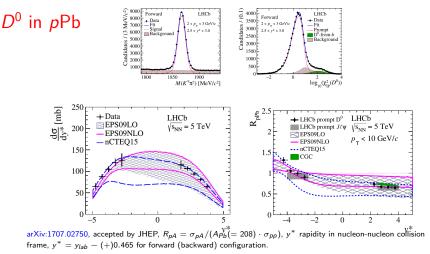

### W and Z measurements in pp collisions



Left: JHEP 01 (2016) 155; right: taken from arXiv:1795.04468; new measurements at 13 TeV with both  $Z \rightarrow e^+e^-$  and  $Z \rightarrow \mu^+\mu^-$  JHEP 09 (2016) 136 also available, see back-up.

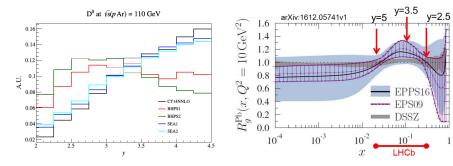
- precision measurement with impact
- relevant for high-mass object production

### Charm production in pPb collisions: limits of collinear factorisation




Right: modified version of graphic in "QCD and collider physics", Ellis, Stirling, Webber; Left: Eur.Phys.J. C77 (2017) no.3, 163.

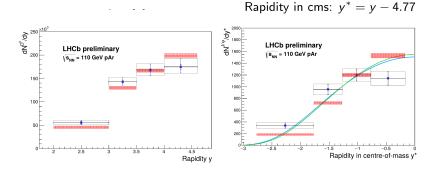
no HERA equivalent for lepton-nuclei: parton flux unconstrained for LHC heavy-ion low-p<sub>T</sub> heavy-quark production


total charm, beauty production in p-nucleus vital input for AA

- ▶ saturation scale  $Q_s^2 \propto A_{nucleus}^{1/3} \rightarrow$  linear parton evolution break-down?
- Which framework if collinear factorisation no longer valid? color glass condensate Ann.Rev.Nucl.Part.Sci. 60?
- Are there further effects like energy loss by enhanced small-angle gluon radiation JHEP 1303 (2013) 122 ? QCD physics school Michael Winn, LHCb Collaboration



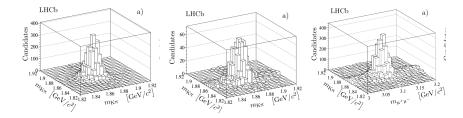
- sensitive to gluons down to  $x = 10^{-6}$
- consistency between Color Glass Condensate and nuclear PDF predictions: to be investigated
- more precise than present nPDF-based calculations: looking forward for global fit and consistency tests with prompt and non-prompt J/ψ-data from LHCb arXiv:1706.07122, accepted by PLB


### Charm production in fixed-target collisions: unique constraints



Left: Figure by Philip Ilten link, considered pdfs models based on CT14 from: Phys. Rev. D 93, 074008, Right: Figure from talk by Emilie Maurice at QM 2017

### sensitive to nuclear modification of parton distribution function & intrinsic charm


### Charm production in fixed target collisions: first results

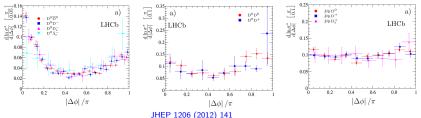




- normalised distributions compared with pythia 8 with CT09MCS and with parameterisation of world-data by Arleo et al. for charmonium
- final analysis together with p-He result soon

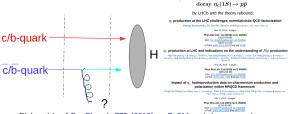
### Double charm production involving open charm




355 pb<sup>-1</sup> with 2 <  $y_{D,J/psi}$  < 4 and 3 <  $p_{T,D}$  < 12 GeV/c  $p_{T,J/\psi}$  < 12 GeV/c JHEP 1206 (2012) 141.

- detection of c + c or  $J/\psi(c\bar{c}) + c$ -events sensitive to multiple parton scattering
- $\triangleright$  Q<sup>2</sup> small: large cross sections, also relative to single parton scattering

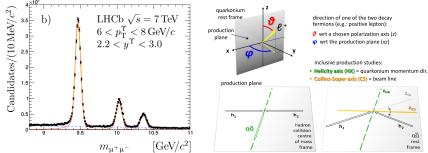
### Double charm production involving open charm


| Mode                    | $\sigma$ [nb]          | $\sigma_{CC}/\sigma_{CC}$ [%] | $\sigma_{C_1}\sigma_{C_2}/\sigma_{C_1C_2}$ [mb] |   |
|-------------------------|------------------------|-------------------------------|-------------------------------------------------|---|
| $D^0 D^0$               | $690 \pm 40 \pm 70$    | $10.9 \pm 0.8$                | $2 \times (42 \pm 3 \pm 4)$                     |   |
| $D^0\overline{D}^0$     | $6230 \pm 120 \pm 630$ | $10.9 \pm 0.8$                | $2 \times (4.7 \pm 0.1 \pm 0.4)$                |   |
| $D^0D^+$                | $520 \pm 80 \pm 70$    | $12.8 \pm 2.1$                | $47 \pm 7 \pm 4$                                |   |
| $D^0D^-$                | $3990 \pm 90 \pm 500$  | 12.0 1 2.1                    | $6.0 \pm 0.2 \pm 0.5$                           |   |
| $D^0D_s^+$              | $270 \pm 50 \pm 40$    | $15.7 \pm 3.4$                | $36 \pm 8 \pm 4$                                |   |
| $D^0 D_s^-$             | $1680 \pm 110 \pm 240$ | 10.1 ± 0.4                    | $5.6 \pm 0.5 \pm 0.6$                           | 1 |
| $D^0 \bar{\Lambda}_c^-$ | $2010 \pm 280 \pm 600$ |                               | $9 \pm 2 \pm 1$                                 | _ |
| $D^+D^+$                | $80 \pm 10 \pm 10$     | $9.6 \pm 1.6$                 | $2 \times (66 \pm 11 \pm 7)$                    | J |
| $D^+D^-$                | $780 \pm 40 \pm 130$   | 5.0 ± 1.0                     | $2 \times (6.4 \pm 0.4 \pm 0.7)$                | J |
| $D^+D_s^+$              | $70 \pm 15 \pm 10$     | $12.1 \pm 3.3$                | $59 \pm 15 \pm 6$                               |   |
| $D^+D_s^-$              | $550 \pm 60 \pm 90$    | $12.1 \pm 0.0$                | $7 \pm 1 \pm 1$                                 | J |
| $D^+\Lambda_c^+$        | $60 \pm 30 \pm 20$     | $10.7 \pm 5.9$                | $140 \pm 70 \pm 20$                             | J |
| $D^+\bar{\Lambda}$      | $530 \pm 130 \pm 170$  | 10.7 ± 0.9                    | $15 \pm 4 \pm 2$                                |   |

| Mode                    | $\sigma_{\rm J/\psiC} / \sigma_{\rm J/\psi} \ [10^{-3}]$ | $\sigma_{\mathrm{J/\psi}\mathrm{C}}/\sigma_{\mathrm{C}}~[10^{-4}]$ | $\sigma_{\rm J/\psi} \sigma_{\rm C} / \sigma_{\rm J/\psi C} ~[{\rm mb}]$ |
|-------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|
| $J\!/\psiD^0$           | $16.2 \pm 0.4 \pm 1.3^{+3.4}_{-2.5}$                     | $6.7\pm0.2\pm0.5$                                                  | $14.9\pm0.4\pm1.1^{+2.3}_{-3.1}$                                         |
| $J\!/\!\psiD^+$         | $5.7 \pm 0.2 \pm 0.6^{+1.2}_{-0.9}$                      | $5.7\pm0.2\pm0.4$                                                  | $17.6 \pm 0.6 \pm 1.3^{+2.8}_{-3.7}$                                     |
| $J\!/\!\psiD_{\rm s}^+$ | $3.1 \pm 0.3 \pm 0.4^{+0.6}_{-0.5}$                      | $7.8\pm0.8\pm0.6$                                                  | $12.8 \pm 1.3 \pm 1.1^{+2.0}_{-2.7}$                                     |
| $J\!/\psi\Lambda_c^+$   | $4.3\pm0.7\pm1.2^{+0.9}_{-0.7}$                          | $5.5\pm1.0\pm0.6$                                                  | $18.0\pm3.3\pm2.1^{+2.8}_{-3.8}$                                         |



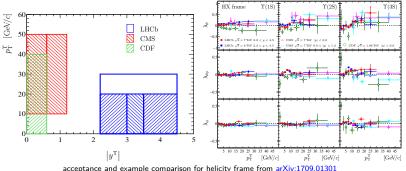
- about  $\sigma_{cc}$  10% of  $\sigma_{c\bar{c}}$  in LHCb acceptance
- ► assuming only double parton scattering contribution for  $J/\psi + c$ : similar  $\sigma_{eff} = \frac{\sigma_1 \cdot \sigma_2}{\sigma_{12}}$  as in extractions at ATLAS/CMS/CDF at higher  $Q^2$
- production ratios & correlations: information about process contributions
- bb
   bb
   correlation analysis using B-hadrons decaying to J/ψ addressing beauty production: arXiv:1708.05994
   QCD physics school Michael Winn, LHCb Collaboration


# Factorisation and effective field theory in quarkonium production Measurement of the $\eta_c(15)$ production collisions via the



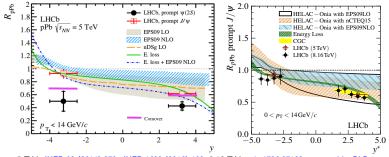
Right: title of Eur.Phys.J. C75 (2015) no.7, 311 and theory reactions.

- ▶ hadro-quarkonium production endeavour started '93: 1st silicon vertex detector at hadron collider → unexpected large prompt production of  $J/\psi/\psi(2S)$
- non-relativistic QCD (NRQCD) applied: effective field theory separating the production scale with the scale of the quarkonium structure, long-distance elements universal
- ► NLO NRQCD & "NNLO\*" Color Singlet Model today ≈ ok for ψ/Υ production rates: but complete picture of all observables not fully understood within one framework
- LHCb: see for example talk by Andrii about unique  $\eta_c$ -measurements, unique measurement of J/ $\psi$  in Jets Phys. Rev. Lett. 118, 192001, details in back-up QCD physics school Michael Winn, LHCb Collaboration


# Tests of factorisation approaches: $\Upsilon\mbox{-}polarisation$ in pp collisions



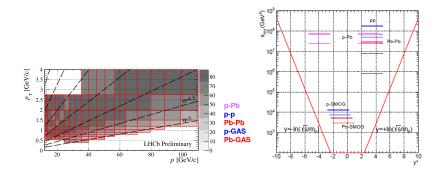
Left: signal peaks from arXiv:1709.01301; Right: from Pietro Faccioli 2010 CERN seminar


- ▶ precision measurement of ↑ polarisation down to 0 p<sub>T</sub>
- valuable input for tests of NRQCD and Color-Singlet Model
- important measurement also to eliminate dominating uncertainty of rate measurements

### $\Upsilon$ -polarisation in *pp* collisions



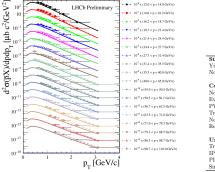
- measurement in complementary phase space compared to previous measurements
- in 3 different reference frames
- only statistically limited & different frames consistent w.r.t. each other
- agreement with CMS results at midrapidity
- another input to progress in the understanding of quarkonium hadroproduction


Break-down of factorisation in nuclear collisions



5 TeV: JHEP 02 (2014) 072, JHEP 1603 (2016) 133; 8.16 TeV arxiv:1706.07122, accepted by PLB.

- ▶ J/ $\psi$  result compatible with nuclear PDFs, coherent energy loss model, recent Color Glass Condensate calculations
- ▶ additional suppression for  $\psi(2S)$  not explained by nuclear PDFs nor by coherent energy loss
- 'comover' model with no precisely specified secondary interactionPhys.Lett.
   B749 (2015) 98-103: additional suppression also with Hadron Resonance Gas + QGP ansatz by Du & Rapp Nucl.Phys. A 943 (2015)
- calculation from gluon-kicks estimated with Color Glass Condensate approach and Colour Evaporation model can explain the data arXiv:1707.07299 QCD physics school Michael Winn, LHCb Collaboration 27/:

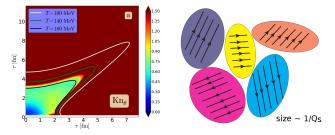

### Soft and collective particle production



Left kinematic bins of  $\bar{p}$ -cross section measurement in pHe LHCb-CONF-2017-002

- ▶ forward spectrometer geometry allows low p<sub>T</sub> measurements at moderate track momenta
- in fixed-target mode: production studies close to midrapidity well suited for cosmic-ray physics references

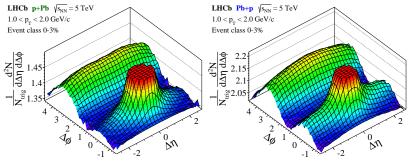
### $\bar{p}$ -production in pHe collisions




| Statistical:                       |                                        |
|------------------------------------|----------------------------------------|
| Yields in data and PID calibration | 0.7 - 10.8% (< 3% for most bins)       |
| Normalization                      | 2.5%                                   |
| Correlated Systematic:             |                                        |
| Normalization                      | 6.0%                                   |
| Event and PV requirements          | 0.3%                                   |
| PV reco                            | 0.8%                                   |
| Tracking                           | 2.2%                                   |
| Nonprompt background               | 0.3 - 0.7%                             |
| Residual vacuum background         | 0.1%                                   |
| Uncorrelated Systematic:           |                                        |
| Tracking                           | 3.2%                                   |
| IP cut efficiency                  | 1.0%                                   |
| PID                                | 2.0 - 28% (< 10% for most bins)        |
| Simulated sample size              | $0.8 - 15\%$ (< 4% for $p_T < 2$ GeV/c |

LHCb-CONF-2017-002, EPOS in solid lines.

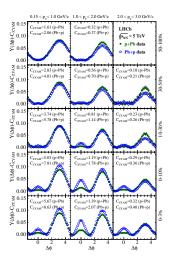
- precise measurement demonstrates the feasibility of primary particle spectra measurements in fixed-target events
- luminosity determined via elastic e-proton scattering
- EPOS-LHC underestimates the cross sections by about 50 %
- starting point for comparative studies for other particle species and collision systems: crucial input for MC-modelling with relevance for heavy-ion and cosmic-ray physics QCD physics school Michael Winn, LHCb Collaboration

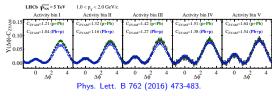

### *p*-nucleus/*pp* high multiplicity events: interesting questions



Left: taken from arXiv:1404.7327 Kn =  $L_{micro}/L_{macro}$ , already dN/d $\eta$ =270! Right: taken from arXiv:1611.00329.

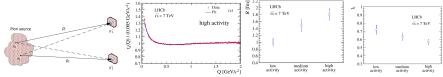
- correlations & bulk production@low-p<sub>T</sub> & large multiplicity:
   'same' patterns as in PbPb, where sign for locally thermalised system
- hydro in large multiplicity pPb: set-up as in PbPb describing data despite precondition doubts arXiv:1705.03177
- color class condensate & color reconnections explanations not ruled out arXiv:1607.02496, arXiv:1705.00745
- recently explanation via interference of multi-parton scatterings arXiv:1708.08241


### LHCb di-hadron correlations in pPb collisions




Phys. Lett. B 762 (2016) 473-483.

- unique forward acceptance with full tracking
- qualitative agreement with mid-rapidity findings by ALICE, ATLAS and CMS in high multiplicity events
- ▶ significant difference between lead and proton fragmentation side, when comparing same fraction of events based on multiplicity in experimental acceptance  $2.0 < \eta < 4.9$


### LHCb di-hadron correlations in pPb collisions



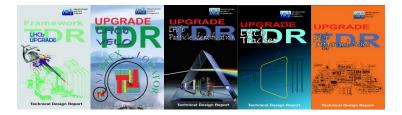


- increase of near-side correlation towards larger multiplicities and lower p<sub>T</sub> after pedestal subtraction
- results at forward and backward rapidity at same estimated absolute multiplicity in acceptance: similar results of correlation strength after pedestal subtraction
- looking forward to phenomenological models: kinematics should be favourable for better control in CGC calculations

# Bose-Einstein correlations: probing the particle emission source



arXiv:1709.01769, R: source size parameter from an exponential fit;  $\lambda$  chaoticity/correlation strength parameter.


• correlating particles with 4-momenta  $q_1, q_2$  with small  $Q = \sqrt{-(q_1 - q_2)^2}$ : information on coordinate space via Fourier transformation

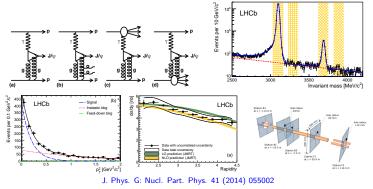
 $\rightarrow$  for same-charged pions: interference following Bose-Einstein-statistics used to extract particle emission source information

method first developped for photons in astrophysics, well established in heavy-ion physics review

- complementary to large scale  $\phi$ ,  $\eta$ -correlations
- first measurement by LHCb in pp: starting point for measurements at forward rapidity
- increase of source size and decrease of correlation strength as function of charged particle multiplicity: qualitatively in agreement with ALICE/ATLAS/CMS at midrapidity

### The LHCb upgrade

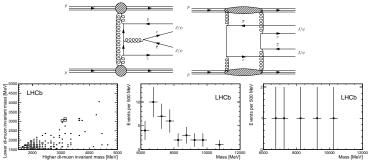



Framework TDR, Velo TDR, PID TDR, Tracker TDR, Trigger & Online TDR

- LHCb detector upgrade in 2019/2020
- run at L<sub>inst</sub> = 2 × 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>: on average 5.2 visible pp collisions per bunch crossing
- process full pp input rate in HLT without hardware trigger
- tracker fully replaced: increased granularity
- silicon vertex locator from strip to pixel detector

### Conclusions

- LHCb: fully instrumented spectrometer with unique kinematics with flexible trigger system in collider and fixed-target mode
- important QCD results in several areas:
  - conventional and unconventional QCD bound states and their properties
  - unique constraints on parton densities at large  $\boldsymbol{x}$  and low  $\boldsymbol{x}$  in the proton and nuclei
  - tests of effective field theory and factorisation
  - soft & correlation studies in unique phase-space
- ambitious upgrade programme for higher luminosity and processing of all events in software trigger

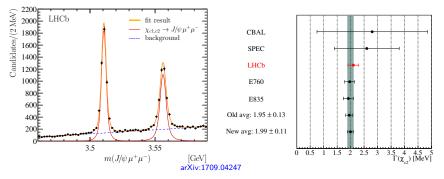

### Central exclusive production with LHCb: J/ $\psi$ and $\psi$ (2S) production at $\sqrt{s} = 7$ TeV



- average collision numbers of about 1: central exclusive studies with high statistics
- vector meson production via γ-P
- ▶ forward acceptance: low-x leverage

purity improvements: Herschel scintillators since 2015

Double J/ $\psi$  production in central exclusive events at  $\sqrt{s}=7$  and 8 TeV




J. Phys. G: Nucl. Part. Phys. 41 (2014) 11500; middle (right): double-J/ $\psi$  (J/ $\psi$ - $\psi$ (2S)) masses.

- first observation of this experimental signature from both energies
- ▶ veto of tracks in  $\eta \in$  (-3.5,-1.5) and  $\eta \in$  (1.5,5.0)
- cross section for exclusive double  $J/\psi$  production:  $58 \pm 10(stat) \pm 6(syst)$  pb within 2.0 < y < 4.5
- cross section for exclusive  $J/\psi \psi(2S)$  production:  $63^{+27}_{-18}(stat) \pm 10(syst)$  pb within y < 2.0 < 4.5

 $\blacktriangleright$  upper limits on double  $\psi(2S)$  and double  $\chi_c\text{-production}$  QCD physics school Michael Winn, LHCb Collaboration

### Precision $\chi_c$ spectroscopy with new decay channel



- ► first observation of muonic dalitz decay  $\chi_{c1,c2} \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\gamma^*(\rightarrow \mu^+\mu^-)$  $\rightarrow$  demanding pure  $\mu$ -PID down to p = 3 GeV/c
- among the most precise single experiment determinations of  $\chi_{c2}$ -width and masses with different systematic uncertainties

past experiments beam energy scans with  $p\bar{p}$ 

► starting point for more studies with this precision resolution channel QCD physics school Michael Winn, LHCb Collaboration