WE-Heraeus Physics School

QCD - Old Challenges and

 New Opportunities
Bad Honnef, Sept 24-30, 2017

What (rye Cosmic Rays?!

QCD processes in Cosmic Rays air showers

- Cosmic Rays
- Extensive air showers
- Interplay between CR Physics and accelerators
- The LHCf experiments

What are Cosmics Rays

Brief history of Cosmic Rays Detecton

Primary cosmic rays

$$
\Phi \propto E^{-2.7}
$$

Deviations from this power law

- knee ($4.10^{15} \mathrm{eV}$)
- ankle ($5.10^{18} \mathrm{eV}$)

Very different techniques are necessary to cover these huge differences of:

- Fluxes
- Energies

LHC Beam Energy LHC CM Energy

CR Detection

HE-UHECR

Air Shower simulation

Air Shower simulation

Electrons

Air Shower simulation

Muons

Hajo Drescher, Frankfurt U.

Air Shower simulation

Hajo Drescher, Frankfurt U.

Indirect measurements

If the energy of the CR is too big to be directly measured, indirect measurements are necessary.

The atmosphere is used as 'PASSIVE CALORIMETER'
Object of the measurements:
Measuring cosmic-ray and gamma-ray air showers

1. Charged particles: $\mu^{ \pm}, \mathrm{e}^{ \pm}, \mathrm{p}$ (Extended Air Sø̌́ower detectors, EAS)
2. Cherenkov light
3.Fluorescence light

Charged component: EAS vs Atmospheric Depth

Analytic Shower Model - EM Showers

Simplified model [Heitler]:
shower development governed by X_{0}
e- loses $[1-1 / e]=63 \%$ of energy in $1 X_{0}$ (Brems.)

Assume:

$\mathrm{E}>\mathrm{E}_{\mathrm{c}}$: no energy loss by ionization/excitation
$\mathrm{E}<\mathrm{E}_{\mathrm{c}}$: energy loss only via ionization/excitation
Simple shower model:

- 2^{XX} particles after $\mathrm{t}=\mathrm{X} / \lambda$ splittings
- each with energy $E_{0} / 2^{t}$
- stops if $\mathrm{E}<\mathrm{E}_{\mathrm{C}}$
- number of particles $N_{\max }=E_{0} / E_{C}$

This model is reasonably valid for EM showers
~ roughly valid for Hadronic showers

Analytic Shower Model - Hadronic Showers

Heitler model is reasonably valid for EM showers and only roughly valid for hadronic showers

Assume:

- Only the first interaction contribute to shower size

$$
\begin{aligned}
& X_{\max }=X_{0} \ln \left[\frac{2\left(1-K_{e l}\right) E_{0}}{(\langle m\rangle / 3) \varepsilon_{0}}\right]+\lambda_{N}\left(E_{0}\right), \\
& N_{e}^{\max }=\frac{1}{2} \frac{\langle m\rangle}{3} \frac{\left(1-K_{e l}\right) E_{0}}{\varepsilon_{0}},
\end{aligned}
$$

m is the effective meson multiplicity K_{el} is the elasticity coefficient of the first interaction (roughly $1 / 2$)
$\varepsilon_{0}=\mathrm{E}_{\mathrm{c}}$ of the electrons in air (81 MeV)

Analytic Shower Model - Hadronic Showers

Heitler model is reasonably valid for EM showers and only roughly valid for hadronic showers

Assume:

- Only the first interaction contribute to shower size
- Superposition principle is valid \rightarrow Nucleus with mass A and energy E_{0} is equivalent to A nucleons $\mathrm{E}=10^{14} \mathrm{eV} \quad \begin{array}{r}\text { iron } \\ \text { nucle }\end{array}$ with energy $\mathrm{E}_{0} / \mathrm{A}$

$$
X_{\max }=X_{\max }-X_{0} \ln A
$$

$$
\begin{gathered}
\text { CORSIKA } \\
\text { Simulation } \\
\text { QGSJET/EGS4 }
\end{gathered}
$$

$$
N_{\mu} / N_{e}=A^{1-\beta}\left(N \mu / N_{e}\right)^{p}
$$

Hadronic showers: life is more complicated

Hadronic interaction:

Elastic:

$p+$ Nucleus $\rightarrow p+$ Nucleus
Inelastic:
$p+$ Nucleus \rightarrow

$$
\pi^{+}+\pi^{-}+\pi^{0}+\ldots+\text { Nucleus }{ }^{*}
$$

$$
\left[\begin{array}{rl}
\text { Nucleus }^{*} & \rightarrow \text { Nucleus A }+n, p, \alpha, \ldots \\
& \rightarrow \text { Nucleus } \mathrm{B}+5 p, n, \pi, \ldots \\
& \rightarrow \text { Nuclear fission }
\end{array}\right.
$$

$1^{\text {st }}$ stage:

- hard collision
- particle multplication (i.e. string model)
$2^{\text {nd }}$ stage: spallation
- Inter and intra-nuclear cascade
- Nuclear de-excitation

Courtesy of H. C. Schoultz Coulon *

Charged component of EAS

Density Sampling

the particle density is observed in an array of detectors (sampling), and it is used to identify the shower core and the total number of particles in the shower \rightarrow reconstruction of the energy of the primary CR

Fast Timing

by measuring the different arrival times of the particles on the different detectors of the array \rightarrow the arrival direction of the primary CR (shower's axis)

‘Complete’ EAS detection

Fluorescence detector to
reconstruct the longitudinal
development
:---
for the lateral distribution
measurement $\left(\alpha \cong 6^{0}\right)$.

A typical hybrid event

Hadronic Interaction Models

Several models available: QGSJET DPMJET, EPOS, SYBILL, PYTHIA

- Theoretical concepts similar (multip le scattering of Gribov-Regge type, strings), but the practical impleme ntation quite different
- Prediction significantly different

EPOS:
strings always connected to sea quarks; bags of sea and valence quarks fragmented statistically
SIBYLL 2.I, DPMJET III:
strings connected to valence quarks first fragmentation step with harder fragmentation function

QGSJET II, SIBYLL 2.3:

fixed probability of strings connected to valence quarks or sea quarks;
explicit construction of remnant hadron
SIBYLL
as well multiple scattering of GribovRegge type

EPOS, QGSJET

Multiple scattering of Gribov-Regge type

Ultra High Energy Cosmic Rays

Hadronic Interactions

H. Drescher, G. Farrar

Cascade equations (1d!) Phys.Rev.D67:116001,2003

$$
\frac{\partial h_{n}(E, X)}{\partial X}=-h_{n}(E, X) \frac{1}{\lambda_{n}(E)} \frac{B_{n}}{E X}
$$

Mean free path $\rightarrow \sigma_{\text {tot }}(h+$ air $\rightarrow X)$ See TOTEM's talk
h_{n} :number of hadrons n per dE
E: Energy X: slant depth
B_{n} : decay constant
λ_{n} :interaction length
W_{m} : collision function
D_{m} : decay function
initial condition:
$h_{n}(E, X)=\delta\left(E-E_{0}\right)$ for a given particle

Energy distribution of secondaries $\rightarrow \mathrm{dN} /$ dx_{F} (pt integrated !)

HECR Spectrum: more than ten years of debates...

HECR Mass Composition

HECR Physics at LHC: LHCf Physics

Model-originated uncertainties or even discrepancies

$$
p-p+p-P b
$$

- Energy
$-E_{S D}>E_{F D}$:
discrepancy
- missing energy (μ, v) in FD :
uncertainty
- Mass
- Mass vs. $X_{\max }$ in FD:
uncertainty
- Mass vs. e/ μ or μ excess in SD : discrepancy

(1) Inelastic cross section

If large σ : rapid development If small σ : deep penetrating

Forward energy spectrum
If softer shallow development If harder deep penetrating
(3) Inelasticity $\mathbf{k}=1-\mathrm{E}_{\text {lead }} / \mathrm{E}_{\text {avail }}$

If large k ($\pi^{0} \mathrm{~s}$ carry more energy) rapid development If small k (baryons carry more energy) deep penetrating

LHCf —>use LHC

6.5 TeV $+6.5 \mathrm{TeV} \Rightarrow \mathrm{Eab}=9^{*} 10^{16} \mathrm{eV}$
$3.5 \mathrm{TeV}+3.5 \mathrm{TeV} \Rightarrow 巨_{a b}=2.6^{\star} 10^{16} \mathrm{eV}$
$450 \mathrm{GeV}+450 \mathrm{GeV} \Rightarrow \mathrm{Eab}_{a \mathrm{~b}}=2^{*} 10^{14} \mathrm{eV}$
to calibrate MCs
In addition: p-Pb collision at 5.02\&8TeV to study nuclear effect

First models tuning after the first LHC data (EPOS and QGSJET)

Mean depth of shower maximum:

Number of muons on ground:

Significant reduction of differences btw different hadronic interaction models!!!

But not everything is perfect....

(Riehn 2015)

But...

General purpose detectors (ATLAS, CMS,...) cover only the central region
Special detectors to access forward particles are necessary

How to access Very Forward Physics at LHC?

Charged particles

Neutral particles
Beam pipe

Surrounding the beam pipe with detectors
Simple way, but still miss very very forward particles

How to access Very Forward Physics at LHC?

Install detectors inside the beam pipe
Challenging but ideal for charged particle
(TOTEM)

How to access Very Forward Physics at LHC?

Charged particles

Neutral particles
Beam pipe

Y shape chamber enables us whole neutral measurements Zero Degree Calorimeters

LHC phase space coverage

LHCf: location and detector layout

Energy resolution:
< 5% for photons 30\% for neutrons
Position resolution:
< 200 $\mu \mathrm{m}$ (Arm\#1)
40 mm (Arm\#2)
Pseudo-rapidity range:
$\eta>8.7$ @ zero Xing angle
$\eta>8.4$ @ 140urad

Arm\#2 Detector 25mmx25mm+32mmx32mm $4 X-Y$ Silicon strip tracking layers

Event category in LHCf

Event category in LHCf

LHCf Data Taking and Analysis matrix

y energy spectra 7 vs 13 TeV

High energy data covers up to larger рт
Similar trend in 7 TeV and 13 TeV , but differences look enhanced in 13 TeV results

Photon spectra - Feynman Scaling

Feynman scaling: differential cross section as a function of X_{F} independent of $\sqrt{ } s$ for X_{F}
Feynman scaling holds within systematic uncertainties

LHCf Type I and Type II π^{0} analysis

LHCf @ pp 7 TeV: Π^{0} рт spectra

PRD 94 (2016) 032007

LHCf @ pp 7 TeV: π^{0} pz spectra

PRD 94 (2016) 032007

DPMJET and Pythia overestimate over all E-pt range

LHCf @ pp 7 TeV: π^{0} pz spectra SiBYLL 2.1

PRD 94 (2016) 032007

$\begin{array}{cc}\text { (c) } 0.4<\mathrm{p}_{\mathrm{T}}[\mathrm{GeV}]<0.6 \\ 1000 & 2000 \\ \mathrm{p}_{\mathrm{z}} & 3000\end{array}$

- DPMJET 3.06 EPOS LHC
---- QGSJET II-04
SIBYLL 2.1
PYTHIA8.185
- LHCf (stat.+syst.)
- Underestimate in low рт, overestimate in high рт
- Totally overestimate because of larger phase space in high p_{T}

LHCf @ pp 7 TeV: π^{0} pz spectra EPOS-LHC

PRD 94 (2016) 032007

- Very good agreement at mid-energy (large cross-section range)
- Slightly overestimate at higher energy (small cross-section range)

LHCf @ pp 7 TeV: π^{0} pz spectra QGSJET II-04

PRD 94 (2016) 032007

- Very good agreement in shape, slightly underestimate at high p_{T}
- Totally slightly underestimate

LHCf @ pp 7 TeV: π^{0} data vs models

LHCf @ pp 7 TeV: neutron analysis

Motivations:

Inelasticity measurement $\mathrm{k}=1$ - ${ }^{\text {leading }} / \mathrm{Pbeam}$ Muon excess at Pierre Auger Observatory

- cosmic rays experiment measure PCR energy from muon number at ground and florescence light
- 20-100\% more muons than expected have been observed

Number of muons depends on the energy fraction of produced hadron
Muon excess in data even for Fe primary MC EPOS predicts more muon due to larger baryon production
importance of baryon measurement

[J.Allen, et al. ICRC2011 Proceedings]

LHCf @ pp 7 TeV: neutron spectra

- LHCf Arm1 and Arm2 agree with each other within systematic error, in which the energy scale uncertainty dominates.
- In $\eta>10.76$ huge amount of neutron exists. Only QGSJET2 reproduces the LHCf result. - In other rapidity regions, the LHCf results are enclosed by the variation of models.

LHCf @ pp 7 TeV: neutron spectra SIBYLL 2.1

PLB 750 (2015) 360-366

- Lowest neutron yield, especially at zero degree

LHCf @ pp 7 TeV: neutron spectra QGSJET II-03

PLB 750 (2015) 360-366

- Qualitatively nice agreement, only model, at zero degree
- Lower yield at non-zero angle

LHCf @ pp 7 TeV: neutron spectra EPOS 1.99

PLB 750 (2015) 360-366

- Generally lower yield

Preliminary ARM2 unfolded neutron spectra @ 13 TeV

Differential production cross section

$$
d \sigma_{n} / d E=\frac{d N(\Delta \eta, \Delta E)}{E} \frac{1}{L} \times \frac{2 \pi}{d \varphi}
$$

Measurement of interesting quantities for CR Physics

EPOS-LHC and SIBYLL 2.1 reproduce enough well the measured total differential cross section except in the most forward region
$\mathrm{dE} / \mathrm{d} \mathrm{\eta}$ VS η

Very preliminary overview of the p-Pb run

- 5 TeV

- Fills 5007 and 5010 (100_200ns_702p_548Pb_81_389_54_20inj)
- 26M common events (LHCf-ATLAS)

- 8 TeV
- Fill 5519 (Single_20p_20Pb_10_10_9_1non_coll) $\rightarrow 5.5 \mathrm{M}$ events (LHCf-ATLAS)
- Fill 5538 (100_200ns_684p_540Pb_432_427_89_20inj) \rightarrow 15M events (LHCf-ATLAS)

Physics cases with ATLAS joint taken data

- In p+p collisions
- Forward spectra of Diffractive/ Non-diffractive events
- Measurement of proton- π collisions

n \quad p-п measurement at LHC
- In p+Pb collisions
- Measurement of UPC in the forward region.

Both are important for precise-
understanding of CR air shower development

Leading neutron can be
tagged by LHCf detectors
-> total cross section
multiplicity measurement Leading neutron can be
tagged by LHCf detectors
-> total cross section
multiplicity measurement Leading neutron can be
tagged by LHCf detectors
-> total cross section
multiplicity measurement Leading neutron can be
tagged by LHCf detectors
-> total cross section
multiplicity measurement

ATLAS-LHCf combined data analysis

- Operation in 2013
- $\quad \mathrm{p}+\mathrm{Pb}, \sqrt{ } \mathrm{s}_{\mathrm{NN}}=5 \mathrm{TeV}$
\rightarrow about 10 M common events.
- Operation in 2015
- $\quad p+p, \sqrt{ } s=13 \mathrm{TeV}$
\rightarrow about 6 M common events.
- Operation in 2016
\square
$\mathrm{p}+\mathrm{Pb}, \sqrt{ } \mathrm{s}_{\mathrm{NN}}=5 \mathrm{TeV}$
\rightarrow about 26 M common events
\square $\mathrm{p}+\mathrm{Pb}, \sqrt{ } \mathrm{s}_{\mathrm{NN}}=8 \mathrm{TeV}$
\rightarrow about 16 M common events
Off-line event matching
Important to separate the
contributions due to diffractive and non-
 diffractive collisions

WG active meeting every 2 weeks

Diffractive studies

- MC studies
- Contributions on
forward photon/neutron spectra from diffractive/ non-diffractive collisions.

Very forward photon energy spectra predicted by four models with total/ diffractive/non-diffractive

- Total: Very similar spectra in EPOS,QGSJET and SIBYLL (LHCf alone)
- Diffractive/Non-diffractive: Very big difference between models (ATLAS-LHCf)

Diffractive studies

- Event selection for Diffractive/ Non-diffractive
by using $\mathrm{N}_{\text {charged }}$ with
$p_{T}>100 \mathrm{MeV}$ in $|\eta|<2.5$
Expected efficiencies

By using ATLAS-tracker information, We can separate diffractive/nondiffractive contribution with high efficiency and purity

Forward neutron spectra

From the LHC to RHIC

$\sqrt{ }$ s scaling, or breaking?

LHCf 2.76TeV and 7 TeV data shows scaling of forward π^{0}

Very preliminary overwiew of the RHICf run

24 June 2017!!!

$$
\begin{aligned}
& \text { Hadron shower hitmap } \\
& 0 \text { degree well defined! }
\end{aligned}
$$

The Near-Far Future at LHC

- The most promising future at LHC for LHCf involve the proton-light ion collisions
- To go from p-p to p-Air is not so simple....
- Comparison of $\mathrm{p}-\mathrm{p}, \mathrm{Pb}-\mathrm{Pb}$ and $\mathrm{p}-\mathrm{Pb}$ is useful, but model dependent extrapolations are anyway necessary
- Direct measurements of p-O or p-N could significantly reduce some systematic effects
- Still make sense to take data if intermediate ion (like Ar) will be available

Slide back-up

Analysis of hadron production in p-p collisions at 13 TeV

Data set

12 July 2015, 22:32-1:30 (3 hours)
Fill \# 3855
$\mu=0.01$
L dt $=0.19 \mathrm{nb}^{-1}$
$\sigma_{\text {ine }}=78.53 \mathrm{mb}$

Same as 7 TeV analysis PLB 750 (2015) 360-366

Beam Center
Estimated using 2D fit on high energy ha dron hitmap distribu tion

Event selection criteria:

software trigger

at least 3 consecutive layers with deposit above threshold $\mathrm{dE}>\mathrm{dE}{ }^{\text {thr }}$ PID selection
$L_{2 D}>L_{2 D}{ }^{\text {thr }}$ where $L_{2 D}$ is a variable related to shower longitudinal profile pseudorapidity acceptance 3 different pseudorapidity regions

Reconstructed ARM2 hadron energy spectra

Events / $N_{\text {ine }} / d E$

Feynman scaling in neutron production cross-section

Feynman scaling hypothesis holds within the error bars
Consistency is good especially in the region $0.2<x_{F}<0.75$

LHCf @ pPb 5.02 TeV: Π^{0} рт spectra

LHCf @ pPb 5.02 TeV:
Nuclear modification factor

$R_{\mathrm{pPb}}\left(p_{\mathrm{T}}\right) \equiv \frac{d^{2} N_{\pi^{0}}^{\mathrm{pPb}} / d y d p_{\mathrm{T}}}{\left\langle N_{\text {coll }}\right\rangle d^{2} N_{\pi^{0}}^{\mathrm{pp}} / d y d p_{\mathrm{T}}}$
Both LHCf and MCs show strong suppression But LHCf grows as increasing ${ }^{\mathrm{T}}$, understood by the softer ${ }^{\mathrm{p}}$ T spectra in $\mathrm{p}-\mathrm{p}$ at 5 TeV than those in $\mathrm{p}-\mathrm{Pb}$.

LHCf @ pPb 5.02 TeV vs RHIC:
Nuclear modification factor

π^{0} average рт for different cm energies

PT spectra vs best-fit function

<pT> is inferred in 3 ways:

1. Thermodynamical approach
2. Gaussian distribution fit
3. Numerical integration
up to the histogram upper bound

From scaling considerations (projectile fragmentation region) we can expect that $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ vs rapidity loss should be independent from the c.m. energy

[^0]
Limiting fragmentation in forward π^{0} production

Limiting fragmentation hypothesis: rapidity distribution of the secondary particles in the forward rapidity region (target's fragment) should be independent of the center-of-mass energy.

This hypothesis for π^{0} is true at the level of $\pm 15 \%$

Feynman scaling in forward π^{0} production

Feynman scaling hypothesis: cross sections of secondary particles as a function of $\mathrm{XF} \equiv$ $2 \mathrm{p}_{z} / \sqrt{ }$ s are independent from the incident energy in the forward region ($X_{F}>0.2$).

This hypothesis for π^{0} is true at the level of $\pm 20 \%$

LHCf @ pp 7 TeV: neutron spectra

n / γ ratio

Data $(\eta>10.76)$	3.05 ± 0.19
DPMJET3.04	1.05
EPOS 1.99	1.80
PYTHIA 8.145	1.27
QGSJET II-03	2.34
SYBILL 2.1	0.88
Data (8.99< $<9.22)$	1.26 ± 0.08
DPMJET3.04	0.76
EPOS 1.99	0.69
PYTHIA 8.145	0.82
QGSJET II-03	0.65
SYBILL 2.1	0.57

- LHCf Arm1 and Arm2 agree with each other within systematic error, in which the energy scale uncertainty dominates.
- In $\eta>10.76$ huge amount of neutron exists. Only QGSJET2 reproduces the LHCf result.
- In other rapidity regions, the LHCf results are enclosed by the variation of models.

LHCf spectra in p-Pb collisions with Atlas tagging on tracks

Nsel:

number of good charged ATLAS tracks

- $p_{\text {т }}>100 \mathrm{MeV}$
- vertex matching
- $|n|<2.5$.

Impact of common ATLAS-LHCf trigger

PYTHIA MC study @ 14 TeV. Diffractive event selection efficiency and purity:dropping events with (PT > $100 \mathrm{MeV} / \mathrm{c}$ \& $\mathrm{Nch}>1$ in $\mathrm{I} \mid<2.5$) @ATLAS

key: low mass diffraction (Ostapchenko)

Physics discussed in detail for HERA (HI and ZEUS) measurements (see, for example, Khoze et al. Eur. Phys. J. C48 (2006), 797 and Refs. therein)

Diffractive vs. non diffractive at $\eta>8.2$ with $\sqrt{ } s=510 \mathrm{GeV} p+p$ collisions

BLUE: inclusive spectra expected by RHICf only
RED: diffractive only ("RHICf + no central track in STAR" will be similar => TBC) BLACK: non diffractive ("RHICf $+>=1$ central track in STAR" => TBC)

[^0]: Reasonable scaling can be inferred from the data

