Geant 4

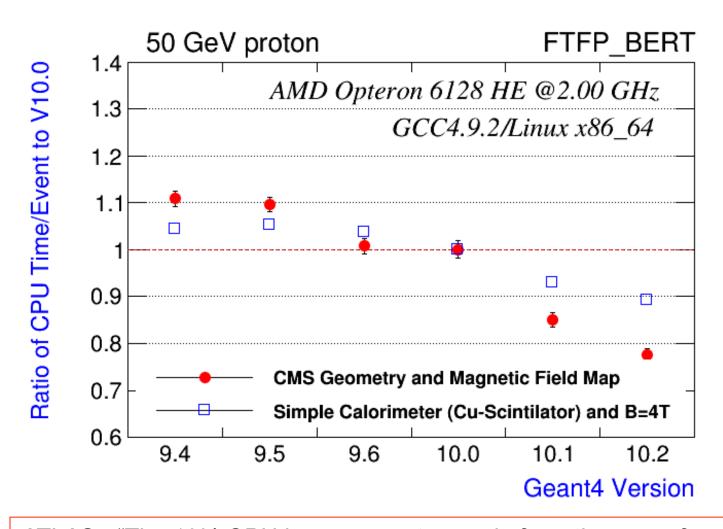
Geant4 general status and prospects

Makoto Asai (SLAC SD/EPP)

On behalf of the Geant4 Collaboration

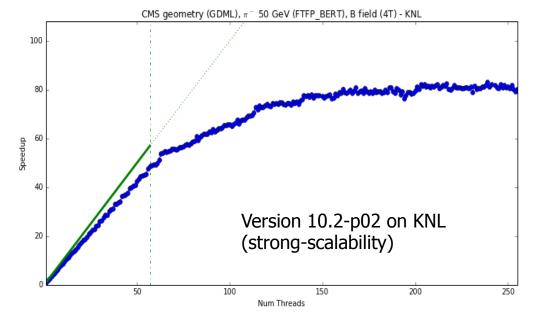
June 27th, 2017

@ LPCC Detector Simulation Workshop


- Released on December 9th, 2016
 - Feb 24th, 2017 Geant4 10.3-patch01 release
- Compilation using the C++11 Standard is now mandatory.
- CMake 3.3 or higher is required.
- Platforms:
 - Linux, gcc-4.8.5.
 - Tested on 64 bit architectures (Intel or AMD) with CERN CentOS Linux 7 (CC7) (based on CentOS Linux 7).
 - MacOSX 10.12 Sierra with clang-3.8 (Apple LLVM/Clang-8.0.0)
 - Windows-10 with Visual C++ 14.0 (Visual Studio 2015)
- More verified and tested configurations (64 bits):
 - Linux, gcc-4.9.3, gcc-5.3.0, gcc-6.2.0, clang-3.9
 - Linux, Intel-icc 16.0
 - Linux for Intel Xeon Phi with Intel-icc 16.0 (gcc-4.9 compatibility layer)
 - MacOSX 10.10 with clang-3.6, MacOSX 10.11 with clang-3.7
 - Windows-7 with Visual C++ 14.0 (Visual Studio 2015)
 - Note: Windows platforms are supported/verified only for the sequential mode.
 Multithreading capability is not yet supported on Windows.

Recent retroactive patch releases

- Dec 5th, 2014 Geant4 version 10.1 release
 - Feb 5th, 2016 Geant4 10.1-patch03 release
- Dec 4th, 2015 Geant4 version 10.2 release
 - Jun 17th, 2016 Geant4 10.2-patch02 release
- Versions 10.1 and 10.2 will be supported with necessary patches at least for 2017.
 - Version 10.1 is kept compliant with C++98.



ATLAS: "The 10% CPU improvement we gain from the move from G4 9.6 to 10.1 is invaluable to the collaboration."

Many core, many thread

- For three years we have provided support for running Geant4 on KNC.
 - ATLAS, CMS successfully multithreaded
- We will soon extend our support to KNL.
 - With KNL, thanks to x86 binary compatibility including the use of gcc, work-flow is tremendously simplified.

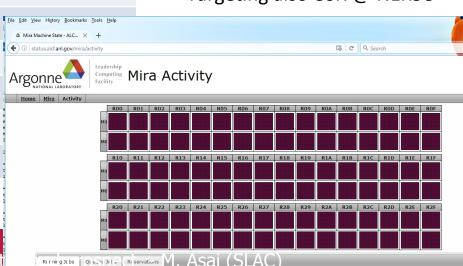
System	Time to completion (5k events)
Xeon E5-2620 @ 2.1 GHz (12 cores, 24 threads)	570 s
KNC (31s1P) @ 1.0 GHz (228 threads)	1000 s
KNL (7210, quadrant mode, MCDRAM only) @ 1.3 GHz (255 threads)	378 s (x3 improvement w.r.t. KNC)
KNL (shared library)	480 s (25% slower than static library)

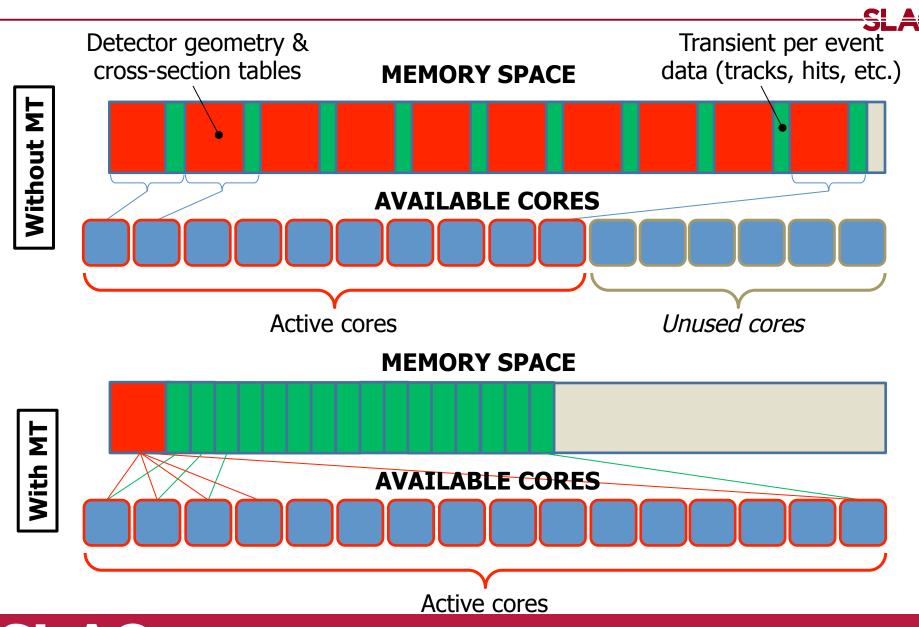
More memory-efficient, more HPC friendly

	40
_	_==

Version	Intercept	Memory/thread
9.6 (seq.)	113 MB	(113 MB)
10.0.p02-seq	170 MB	(170 MB)
10.0.p02-MT	151 MB	28 MB
10.3.beta-MT	148 MB	9 MB

Memory space required for Intel Xeon Phi 3120A Full-CMS geometry (GDML), 4 Tesla field, 50 GeV pi- (FTFP_BERT)


# of CPU	# of threads	Speed-up factor	efficiency
10	80	79	98. 8%
20	160	158	98. 8%
40	320	317	99. 0%
80	640	626	97. 8%
160	1280	1251	97. 7%
320	2560	2297	89. 7%
640	5120	3555	69. 4%


Tachyon-2 supercomputer @ KISTI (South Korea) FTFP_BERT physics validation benchmark

SLAC

Geant4 has successfully run with a combination of MT and MPI on Mira Bluegene/Q Supercomputer (@ANL) with all of its 3 million threads

- Full-CMS geometry & field
- I/O is the limiting factor to scale large concurrent threads:
 - Granular input data files, output data/histograms, etc.
 - 2017 work item
 - Targeting also Cori @ NERSC

Other new features in kernel, Vis/GUI

- Introduced new utility class G4MTBarrier implementing a synchronization point between threads
- Multiple user actions, multiple sensitive detectors
 - Allows experiments to add temporal user hooks without dropping existing ones
- Introduced G4ExtendedMaterial and G4VMaterialExtension for specific extensions to G4Material.
 - First concrete extension G4CrystalExtension is also introduced
 - E.g. for simulation of channeling effect in crystal
- Introduced new floating level base to ions and related classes
 - Adapted nuclide table to conform to the new scheme
- Biasing scheme has been unified for all biasing options
 - New biasing options: e.g. forced interaction, forced passage, etc.
 - Ability of defining geometry-based biasing in a parallel world
- Built-in analysis tools (G4tools) for thread- and MPI-transparent histogramming
- Significant improvements in the Qt interface and graphics
- Significant speed up for OpenGL viewers (including Qt) on some platforms due to better use
 of the graphics pipeline
- New fly through feature for saved views with associated UI command /vis/viewer/ interpolate

New geometry features

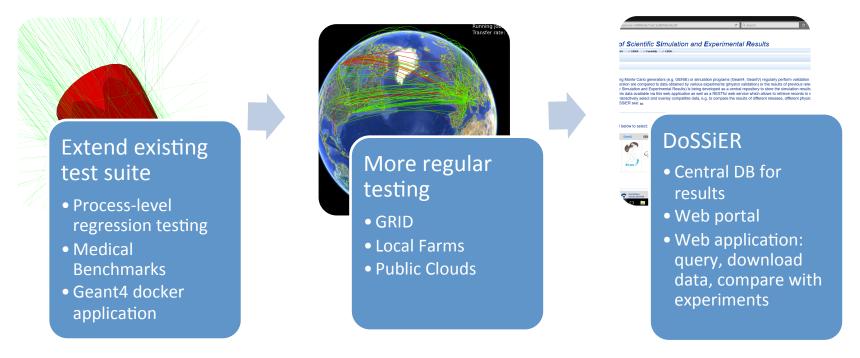
- Updated VecGeom library (USolids)
 - Optional replacement of original Geant4 solids
 - Selection made at configuration
 - External library VecGeom v00.03.00
 - https://gitlab.cern.ch/VecGeom/VecGeom/tree/v00.03.00
 - Possibility to choose replacement of all available shapes or only selected primitives
 - Selection specified at configuration by shape name
 - Available shapes for replacement:
 Most of CSG solids and some special solids (e.g. polycone, polygon)
- G4ScaledSolid
 - Ability to scale dimensions of a shape along Cartesian axes
- New minor release of GDML schema: GDML-3.1.4
 - fully compatible with old schema versions with supports for scaled solids
- New 3rd and 5th order Runge Kutta steppers
- Fully revised algorism for navigating tessellated solid, boolean solid, general trapezoid, etc.

Developer Application

- Unit tests
- Single model validation
- Partially
 Integrated
 with nightly
 system

Large-scale application

- "LHC-style" calorimeters
- On GRID or local resources
- Monthly regression testing


Release

- Results
 published in
 several sub pages of
 Geant4 web site
- Userfeedback (e.g. LPCC)

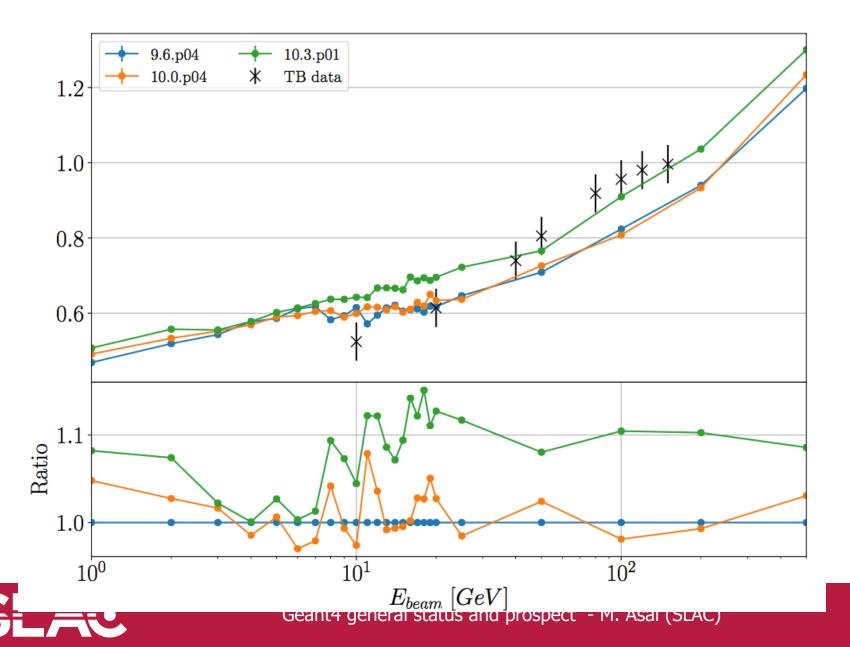
Geant4 Validation: Under development

DoSSiER

- Hosted and developed at FNAL in collaboration with SLAC and CERN
- Status: Geant4 results and experimental data being added
- Extended to other toolkits in addition to Geant4:
 - Adopted by GENIE (neutrino-interaction simulation system)
 - Being evaluated by Geant-V R&D

Dossier

★ Home	- 1	Geant4 Colla	borators 🛂 🤇	GeantV 🛂 GENIE	Fermilab	☑ CERN				Mon Jun 26 (03:28:34 CD
Left	4	★ Selection	t Geant 4 test								
Main			Meta data								
■ Display exp. data		ID	ID Name Description				Responsible Workin		ng group Ke		
■ Display Geant4 data■ Display GeantV data■ Display GENIE data		2001	simplifiedCalo	Test of Shower shape				Andrea Dotti (SLAC) Alberto Ribon (CERN)	Geant4 hadronic working grou		shower pro energy res energy res calorimeter Atlas CMS
■ Display Statistics											
■ Display Dictionaries					Refer	ences to experimental	data used to	validate this test			
RESTful web service		Reference	Reference				Journal/URL	Authors L			
		60	GEANT4: A Simulation toolkit			Nucl.I	nstrum.Meth. A506 (2003), p: 2	Agostinelli, S.	et al. <u>lir</u>		
		61	Validation of Geant4 Releases with distributed resources			J.Phy	s.Conf.Ser. 396 (2012) , p: 0320	Dotti, Andrea	et al. <u>lir</u>		
		62	Simulation of Showers with Geant4				(2013) , p: 247-253	Dotti, Andrea et al.		
		63	Description of hadron-induced showers in calorimeters using the GEANT4 simulation too			on too (2011) , p: 2128-2134	Dotti, Andrea	et al. <u>lir</u>		
		MCdetail	Target •	energy response	•	Submit					


energy response

Print

LAr/Pb Cal. Results: resolution

- Releases
 - Next public release: version 10.4 on December 8th, 2017
 - Next beta release: June 30th, 2017
 - Patch releases for versions 10.1, 10.2 and 10.3 will be made as needed
- As announced, 2017 work plan is listed here.
 - http://geant4.cern.ch/collaboration/working groups.shtml
- Some highlights (physics highlights in next presentations)
 - New design of threading to allow threads to join/leave workers pool with migration from posix threads to std::thread
 - Workspace and memory cleanup in MT
 - Progressive adoption of shapes from VecGeom
 - Muonic atom and its decay
 - Enrich event biasing options: leading particle biasing, DXTRAN-like biasing, implicit
 - Prototype: biasing of charged particles (with cross-section changing over the step); occurrence biasing (continuous density change inside a same volume); material/isotope biasing; Woodcock tracking
 - New driver for export to format readable by Paraview

Prospects and summary

- Given Geant4 is nowadays mission-critical for many users including all HEP experiments, space missions, medical applications, etc., Geant4 is to be kept maintained and still evolving for at least next decade.
- New physics models for coming experiments
 - e.g. EM physics coverage in multi-tens of TeV, hadronic model for multi-TeV regime, specialized EM model for noble liquid (e.g. liq.Xe), neutrino physics model
- More HPC-friendly
 - e.g. MPI-friendly input data files, sophisticated output reduction mechanisms transparent to user code
 - Allowing HPC's as the main MC production platforms
- We re-invite you to contribute to
 - Technical Forum meetings
 - Requirement tracking system
 - Physics validation database

