

Recent results from ALICE

LPCC forward physics meeting 3/19/17

C. Mayer, J. Nystrand

Overview

- Forward physics in ALICE in pp
- ALICE diffractive (AD) detector
- Forward physics in ALICE in p-Pp and in Pb-Pb

Main ALICE detectors used for MB data taking

progress

Forward physics in ALICE (in pp)

- Measurement of diffractive and inelastic cross sections
 - − √s = 2.76 and 7 TeV: Eur. Phys. J. C (2013 73:2456)
 - $\sqrt{s} = 13$ TeV: work in progress
- Central exclusive production
 - Proton dissociation in p-p collisions using ZDCs

In 2016 ALICE has collected $\approx 0.5/\text{pb}$ with a double-gap trigger

- Challenging background (25ns bunch trains), however µ≈0.5% in ALICE
 → unique opportunity for ALICE to collect central production data
- Central production can be measured up to high masses; one of the aims of on-going analyses: χ_c
- At least the same amount of data expected for this year

ullet

work in

Proton dissociation in pp collisions

- Goal: study correlations between ZDC activity and track multiplicity
- Very low μ (<0.2%) is needed for this kind of analysis
- There is interest from several theorists in such measurements
- Special run required: half crossing angle (total=external+internal):
 <+85 μrad (<-32 μrad) for positive (negative) crossing

ALICE ALICE diffractive (AD) detector

- Installed during LS1
- Two layers of scintillator pads on each side of the IP
- Coincidence between adjacent pads
- Scintillator \rightarrow clear fibers \rightarrow PMTs \rightarrow FEE

ADA

1

3

Laver 3

Layer 2

ADC

Layer 0

Laver

ALICE diffractive (AD) detector – time resolution

Excellent rejection of beam-gas

~120 ns separation between beam-beam and beam-gas for the same bunch

satellite bunches can be nicely seen

ALICE diffractive (AD) detector as a luminometer

- 3rd luminometer in ALICE, complementing VZERO and TO
- AD_{AND} rate vs. separation: left (right) for horizontal (verical) scan
- Background is negligible (→ coincidence between adjacent modules)
 3/19/17

ALICE diffractive (AD) detector

ALI-SIMUL-88858

p, Pb

Vector meson: ρ⁰, J/ψ, ψ(2S), ..

Photo-production in p-Pb

- Impact parameter $b > R_1 + R_2$ hadronic interactions are suppressed experimental signature: clean events with only few tracks There are two sources and two targets: p, Pb gamma-nucleus and gamma-proton interactions Cross section is the convolution of photon flux \leftarrow QED - photon-target cross section \leftarrow QCD R_2 = Relation between rapidity and gamma-proton energy: $W_{\nu p}^2 = 2 E_p M_{J/\psi} \exp(-y)$ Highest accessible $W_{\nu\rho}$ energies in ALICE (Pb-p):
 - $580 < W_{\gamma p} < 950 \text{ GeV} (RUN1)$
 - $-700 < W_{\gamma p} < 1480 \text{ GeV} (RUN2)$

J/ψ photo-production in p-Pb (2013)

- Agreement with HERA data where there is overlap.
- Power law fit of ALICE data yields same parameters as found by H1 and ZEUS.
- No change in the behavior of the cross section seen from HERA energies to the highest ALICE measurement 3/19/17

J/ψ photo-production in p-Pb (2016)

ρ⁰ photo-production in Pb-Pb (2015)

SPD topological trigger (LO)

· Trigger vetees on AD and a

- Trigger: vetoes on AD and on VZERO & SPD topological trigger
- Pion PID using TPC dE/dX
- Invariant-mass spectrum: ρ^0 with ω interference
- Acceptance × efficiency: STARLIGHT^{*} MC and a flat (in M_{inv} , p_T) MC

ρ^0 photo-production in Pb-Pb (2015)

- 1st and 2nd diffractive peaks can be clearly seen
- Very small like-sign bkgd.
- STARLIGHT description of the coherent peak in the p_T spectrum is too broad (as seen before in RUN1)

J/ψ photo-production in Pb-Pb (2015)

About 50 times more statistics than in RUN1

- Vetoes: ADA, ADC (offline), VOA offline. VOC empty or in beam timing, ≤2 hits in VOC, no SPD tracklets
- Shape of bkgd in the invariant-mass spectrum is described by MC
- Dimuon p_T templates for different processes come from STARLIGHT 3/21/17

J/ψ photo-production in Pb-Pb (2015)

Three rapidity ranges: -4.0 < y < -3.5 -3.5 < y < -3.0 -3.0 < y < -2.5

References:

 Comp. Phys. Comm. 212 (2017) 258
 Phys. Rev. C93 (2016) 055206
 Phys. Rev. C83 (2011) 065202, 87 (2013)
 032201, and private communication,
 arxiv:1612.06254; arxiv:1411.7918; arxiv:1407.4148

ALI-PREL-117502 Predictions:

STARLIGHT (1) and an Impulse Approximation with no nuclear effects using STARLIGHT

Leading-order EPS09 and using the Leading Twist Approximation (Guzey, Kryshen and Zhalov) (2)

IPSat12 (Lappi and Mäntysaari) (3)

Gonçalves, Machado (4) et al.: using two models for the dipole cross section (IIM/BCGC) and two different wave functions for the J/ ψ (LC/BG)

000

$J/\psi \rightarrow ppbar photo-production in Pb-Pb (2015)$

Summary

- Forward physics in ALICE in pp
 - measurement of INEL+diff. cross sections
 - central production (double-gap trigger)
 - proton dissociation measurements (ZDC)
- ALICE diffractive (AD) detector
 - improved exclusivity (veto)
 - coverage down to small diff. masses
 - 3rd luminometer in ALICE
- Forward physics in ALICE in p-Pp and Pb-Pb
 - photo-production of vector mesons
 - p-Pb allows to study gluon saturation
 - many new results from RUN2

Appendix

FoCal in ALICE

- main challenge: separate γ/π^0 at high energy
- need small Molière radius, high-granularity read-out
 - Si-W calorimeter, granularity $\approx 1 \text{mm}^2$

electromagnetic calorimeter for γ and π^0 measurement

preferred scenario:

• at $z \approx 7m$ (outside magnet) 3.3 < η < 5.3

(space to add hadr. calorimeter)

under internal discussion possible installation in LS3

Thomas Peitzmann, <u>"Performance and upgrade of ALICE"</u> LHC days in Split 19-24 September 2016 Split, Croatia