

LHC Working Group on Forward Physics and Diffraction, Tue. 21/03/2017

# FCC study & Forward Physics

by Helmut Burkhardt (CERN)



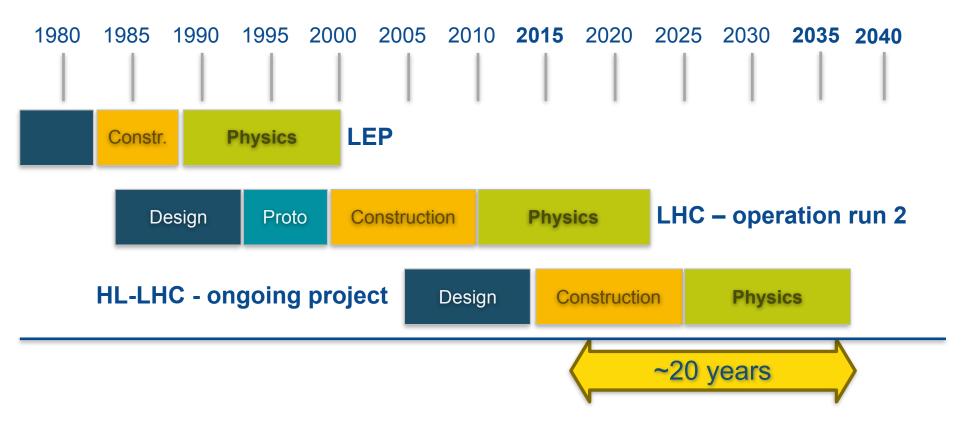
1

Future Circular Collider Study, FCChttp://fcc.web.cern.chIndico / Projects / FCCstatus : good progress - goals and timescale as planned and presented last time

The Future Circular Collider study has an emphasis on proton-proton and electron-positron (lepton) high-energy frontier machines. It is exploring the potential of hadron and lepton circular colliders, performing an in-depth analysis of infrastructure and operation concepts and considering the technology research and development programs that would be required to build a future circular collider.

2017 : finalizing baseline designs FCC-hh & ee; start preparation of FCC CDR

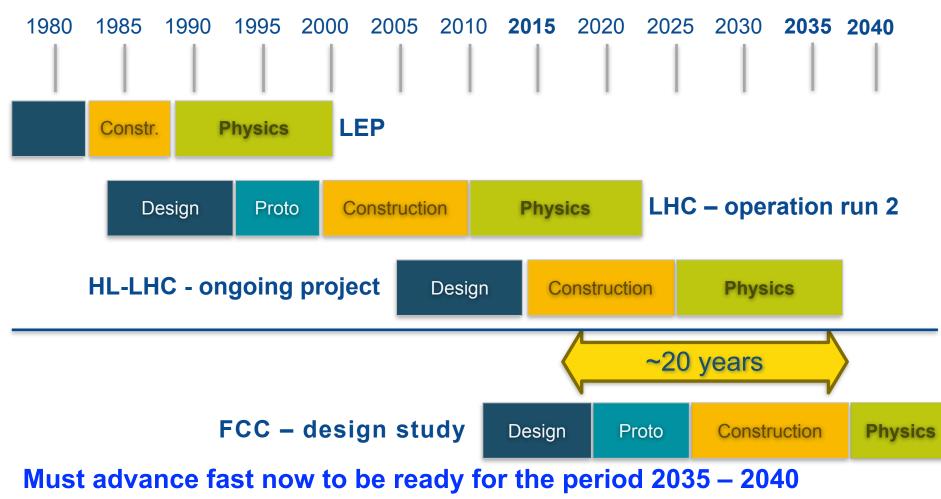
Studies on the accelerator and <u>machine-detector interface</u> for 2 high luminosity interaction regions & detector concepts well advanced


FCC week <u>April 2016 Rome</u> 468 registered participants, <u>Phys Workshop Jan. 2017</u> <u>May 2017 Berlin</u>, registration open (379 so far, collaboration still growing)

Acknowledgment : discussion with <u>FCC-hh design team</u>, Daniel Schulte, Xavier Buffat, Michael Hofer et al. On status using slides from M. Benedikt + F. Zimmermann, Physics workshop 1/2017



Time scale

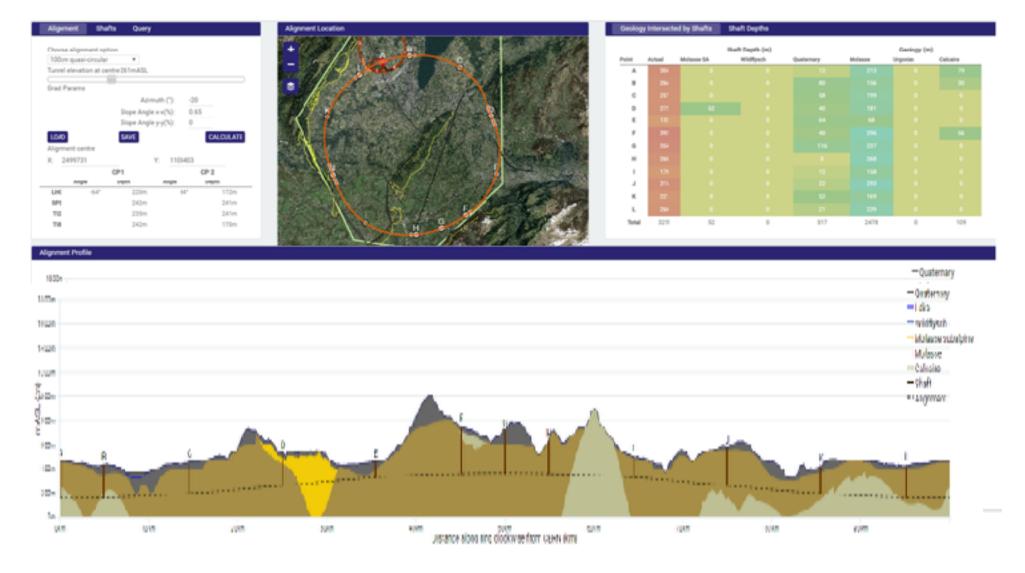







Time scale






Goal of phase 1: CDR by end 2018 for next update of European Strategy



## **Progress on site investigations**









| Algement Shafts Query                        | Alignment Location                      | Geology Intersected by Shafts Shaft Depths                                                             |
|----------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|
| Chusa algoment option<br>100m-quasi-circular | · · · · · · · · · · · · · · · · · · ·   | Shaft Dapith (m) Garingy (m)<br>Point Actual Molasse DA Wildfyrch Queternery Molasse Urgenies Galcuiru |
| Tunnel elevation at centre 15 Im ASL         |                                         | A 201 E E E 12 213 E 20                                                                                |
| Grad Parama                                  |                                         | <b>1</b> 26 1 1 8 8 16 1 20                                                                            |
| Azimuth (*): -20                             |                                         | 6 27 6 6 14 119 6 6                                                                                    |
| Rope Angle x=(%): 0.65                       |                                         | 9 271 12 0 40 181 0 0                                                                                  |
| Dope Angle y-y(%): 0                         |                                         | E 12 0 0 64 48 0 0                                                                                     |
| LOAD SAVE CALOULATE                          |                                         | F 22 8 8 8 40 2% 8 8                                                                                   |
| Aligment centre                              |                                         | 6 354 6 6 116 237 6 6                                                                                  |
| X: 2499731 Y: 110403                         |                                         | R 26 R R R R R 26 R R R                                                                                |
| CP1 CP 2                                     |                                         | E 170 B B 12 156 B B                                                                                   |
| Angle Light Angle Lingth                     |                                         | J 2% 8 8 22 285 8 8                                                                                    |
| LHC -64" 220m 64" 172m                       |                                         | K 22 0 0 52 169 0 0                                                                                    |
| BPI 242m 241m                                |                                         | L 20 0 0 21 20 0 0                                                                                     |
| TQ 235m 241m                                 |                                         | Tetal 3211 52 0 517 2478 0 109                                                                         |
| TH 142m 170m                                 | H A A A A A A A A A A A A A A A A A A A |                                                                                                        |

90 – 100 km fits geological situation well
LHC suitable as potential injector
The 97.75 km version, tangent to LHC, is now being studied in more detail



Hadron collider parameters (pp)



| parameter                                                          | FCC-hh  |                   | HE-LHC*           | (HL) LHC    |
|--------------------------------------------------------------------|---------|-------------------|-------------------|-------------|
| collision energy cms [TeV]                                         | 100     |                   | 25                | 14          |
| dipole field [T]                                                   | 16      |                   | 16                | 8.3         |
| circumference [km]                                                 | 100     |                   | 27                | 27          |
| beam current [A]                                                   | 0.5     |                   | 1.27              | (1.12) 0.58 |
| bunch intensity [10 <sup>11</sup> ]                                | 1 (0.2) | 1 (0.2)           | 2.5               | (2.2) 1.15  |
| bunch spacing [ns]                                                 | 25 (5)  | 25 (5)            | 25 (5)            | 25          |
| <b>ΙΡ</b> β <sup>*</sup> <sub>x,y</sub> [m]                        | 1.1     | 0.3               | 0.25              | (0.15) 0.55 |
| luminosity/IP [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 5       | 30                | 34                | (5) 1       |
| peak #events/bunch crossing                                        | 170     | <b>1020</b> (204) | <b>1070</b> (214) | (135) 27    |
| stored energy/beam [GJ]                                            | 8.4     |                   | 1.4               | (0.7) 0.36  |
| synchrotron rad. [W/m/beam]                                        | 30      |                   | 4.1               | (0.35) 0.18 |
| transv. emit. damping time [h]                                     | 1.1     |                   | 4.5               | 25.8        |
| initial proton burn off time [h]                                   | 17.0    | 3.4               | 2.3               | (15) 40     |

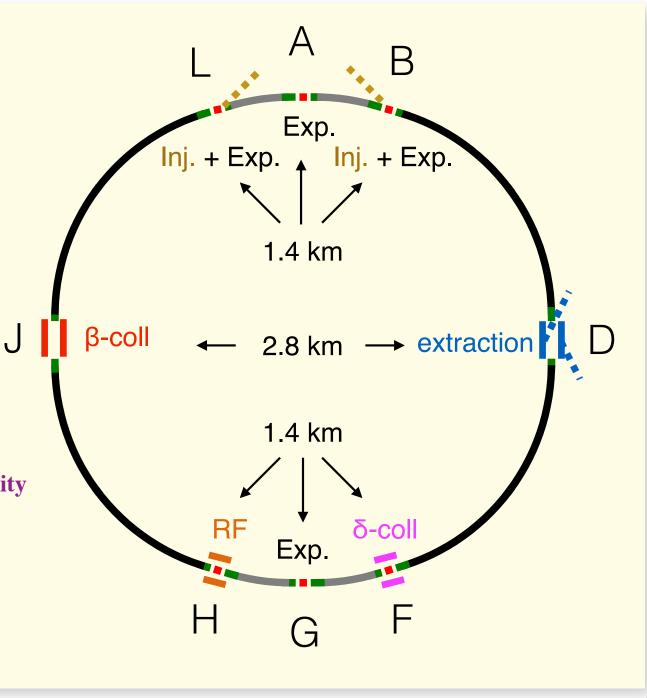
compared to LHC : 3× in size, 7× in energy



Layout, new Nov. 2016



8 straight sections
6× 1.4 km 4 with collisions
2× 2.8 km collimation & dump


L = 97.75 km 16.14 km arc length 3.2 km short arcs 0.4 km long DS

Baseline: round beams

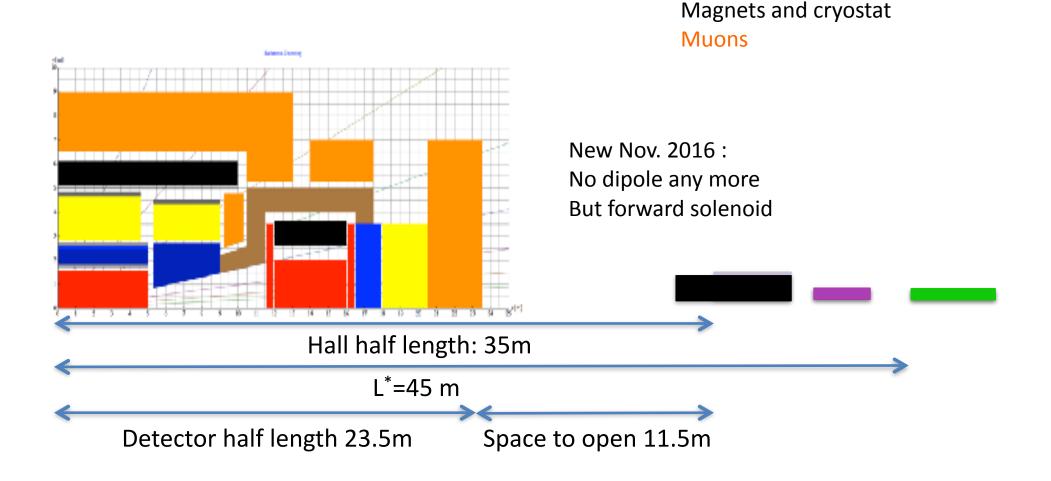
**4 interaction regions** 

A, G dedicated to high luminosity H-V crossing (IR1, 5 in LHC)

L, B shared with injection (~IR1, IR8 in LHC) here half or 700 m for injection



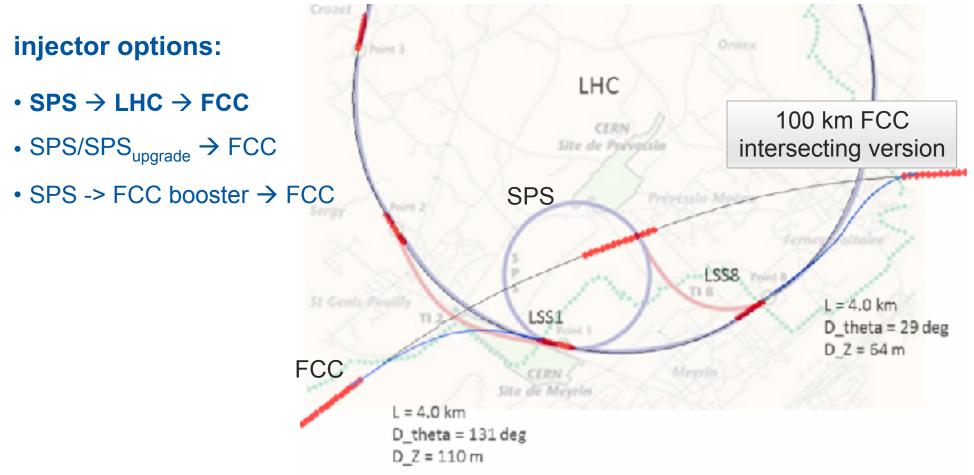



Tracking

Ecal

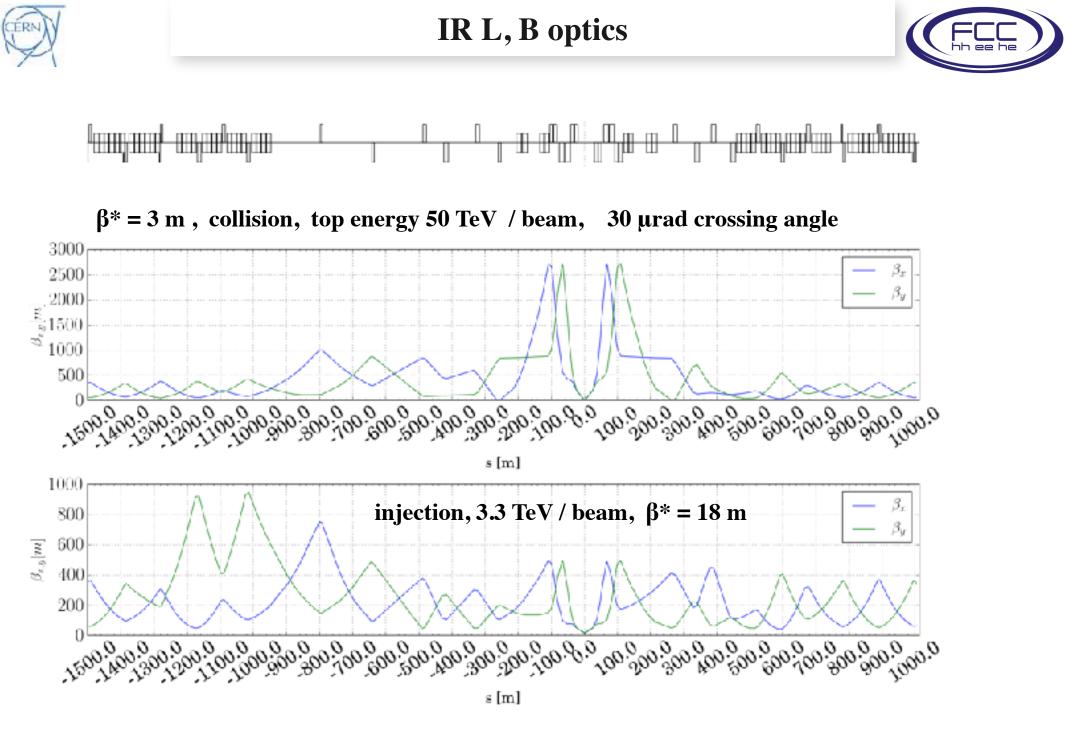
**HCAL** 




Experiments like to stay at  $L^*$ =45m to allow for other solutions But high cost for this



FCC, MDI, Werner Riegler, Daniel Schulte et al.

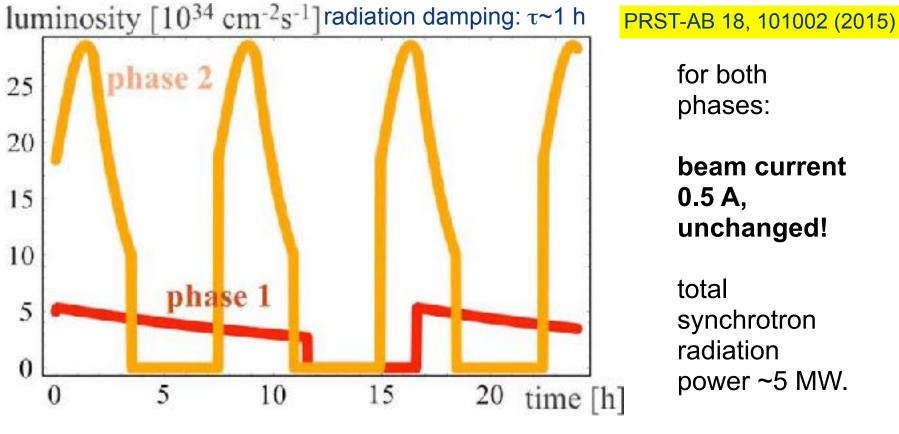







current baseline is to fully re-use the existing CERN accelerator complex

injection energy 3.3 TeV from LHC




**Optics / plots : Michael Hofer** 



## Luminosity evolution over 24h

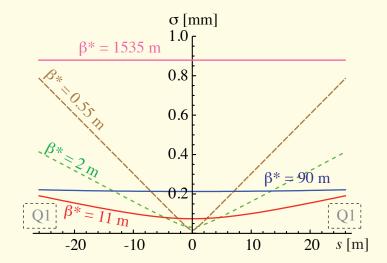




# phase 1: $\beta^*=1.1 \text{ m}, \xi_{tot}=0.01, t_{ta}=5 \text{ h}, 250 \text{ fb}^{-1} / \text{ year}$ phase 2: $\beta^*=0.3 \text{ m}, \xi_{tot}=0.03, t_{ta}=4 \text{ h}, 1000 \text{ fb}^{-1} / \text{ year}$

FCC accelerator parameters, Frank Zimmermann, 1st FCC Physics Workshop Jan. 2017

Damping time ~ 1h, shrinking beam size potentially very useful for forward physics, follow with Roman pots ?




Some principles, high vs low  $\beta^*$ 

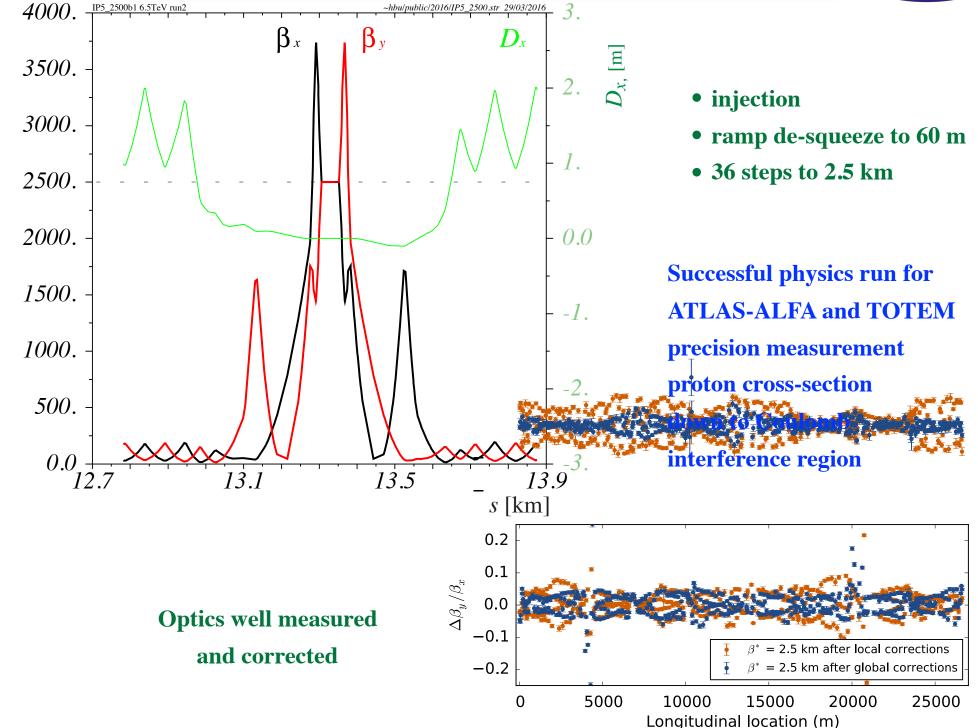


- $\beta^* \ll L^*$  low beta small beams at IP. 90° phase advance L/R and strong focusing triplet high angular divergence
- $\beta^* >> L^*$  high beta large parallel beams, low angular divergence ~ no phase advance and focusing

LHC design numbers :  $L^* = 26.15 \text{ m}$  (centre of 6.37 m long "Q1", MQXA.1R1 )  $\beta^* = 0.55 \text{ m}$  design value of low  $\beta^*$ 



```
FCC length scale for IR, roughly 2\times the LHC
L* = 45 m
\beta^* = 1.1 m design value of low \beta^*, ultimate 30 cm
```




 $\beta_{\chi}$ ,  $\beta_{y}$  [m]

### LHC 2016 : new record high $\beta^* = 2500$ m



11



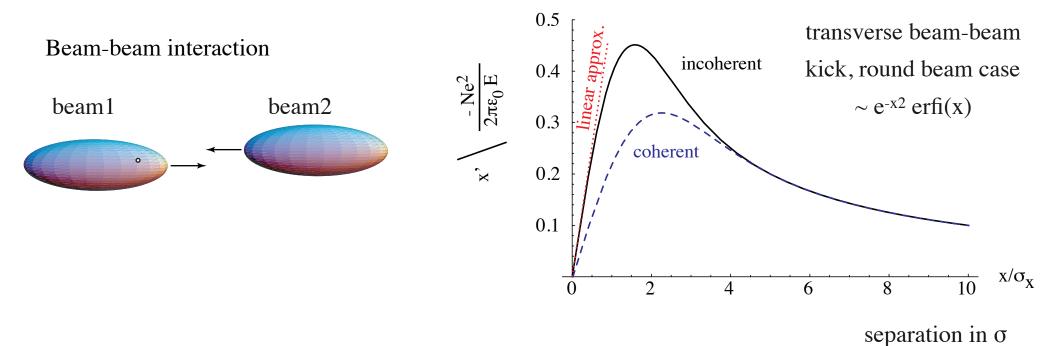


Scaling, from LHC to FCC

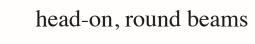


FCC: E, 
$$\gamma$$
 increases by factor  $100/14 = 7$  in  $\sqrt{\gamma}$  by 2.7 scaling  
Beam size at IP  $\sigma^* = \sqrt{\beta^* \epsilon} = \sqrt{\beta^* \epsilon_N / \gamma}$   
Angular beam divergence  $\sigma' = \sqrt{\epsilon/\beta^*} = \sqrt{\epsilon_N / (\gamma\beta^*)}$   
Luminosity, round beams  $\mathcal{L} = \frac{N^2 f}{4\pi \sigma^2} = \frac{N^2 f \gamma}{4\pi \beta^* \epsilon_N}$   $\gamma$   
Minimum  $t$  with RP at  $n_\sigma$   $-t_{\min} = \frac{2 p n_\sigma^2 \epsilon_N m_p}{\beta^*}$   $\gamma$   
Normalized emittance  $\gamma \epsilon = \epsilon_N \sim 2 \mu m$  constant in (lower energy) proton machines, determined of the second second

Normalized emittance  $\gamma \epsilon = \epsilon_N \sim 2 \mu m$  constant in (lower energy) proton machines, determined by injectors, similar for all proton machines. Beams shrink when accelerated.


Coulomb region :  $\beta^* \sim 2.5 \text{ km}$  in LHC@13 TeV ---> 20 km FCC@50 TeV LHC experience --- very high  $\beta^*$  challenging -- but not impossible.

New FCC : **damping** from SR+RF significant, opens up possibility to get significantly lower emittance --- **potentially very useful for dedicated runs** 




# **Reminder :** Low luminosity ≠ No interference

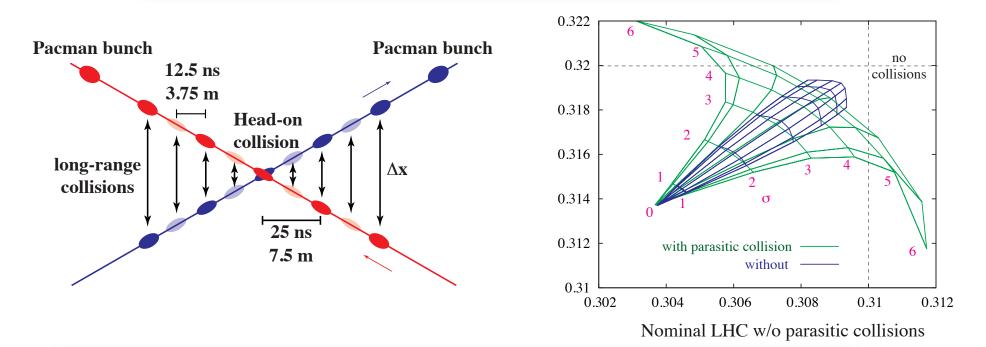




#### Quantified by tune shift parameter $\xi$



$$\xi = \frac{r_c N}{4\pi \,\epsilon_N}$$


depends only on N /  $\epsilon_N$ not on energy and **not on \beta^\***  Head on : same beam-beam from low lumi high- $\beta$  as high lumi IPs

To reduce b.b. would require to run separated by several  $\sigma$ 



# Principle of separation by crossing angle at higher $\beta^*$





Low  $\beta^*$  (< L\*)

beam size and separation increase  $\propto \Delta s$ ,  $\Rightarrow$  separation in units of  $\sigma$  about constant around IP all parasitic crossings adding up with similar contribution

#### Instead high $\beta^*$ :

beam size ~ constant =  $\sigma^*$ , separation in  $\sigma$  increases as  $\Phi\Delta s$ where  $\Phi$  is the crossing angle, dominated by 1st parasitic crossing 100 ns bunch spacing 4× more separated than 25 ns, used for 90m LHC and negligible contribution from next 200, 400 ns ...





**Parasitic** running in standard physics next to high luminosity IP, with tens of kilowatts of collision debris will be difficult. Important to plan this before.

Consider 3 scenarios - of which 1.+2. best at dedicated lower luminosity IP

1. Dedicated very high  $\beta^*$  operation for cross section measurements Few bunches, no crossing angle. Few dedicated runs.

Roman pots very close (few sigma).

Minimize beam-beam (no collisions in other IPs, moderated bunch intensities) :

**Profit from SR/RF radiation damping :**  $\epsilon_N = 2.2 \ \mu m \times exp(-t/\tau)$ 

where  $\tau = 1$  h. After ~ 4 hours at reduced equilibrium emittance (limit 0.05 µm without IBS) very high  $\beta^* > 10$  km may not be needed

at reduced bunch intensities, more bunches compatible with no crossing angle to get sufficient luminosity to be checked and optimized : damping partition, beam-beam, bunch schemes, IBS

Key ingredients for very high  $\beta^*$ :

- flexible quadrupole powering (bipolar) and large aperture
- sufficient # (  $\geq$  6 ) of independently powered quads IP to RPs
- well separated IR, DS sections
- getting there de-squeeze from  $\beta^* > L^*$





#### 2. Moderately high $\beta^*$ some ~ 100 m operation for forward / diffractive physics

(and minimum bias, proton vs / ion calibration ...) with kind of "ALICE+TOTEM" IR and detectors Design IP such that enough corrector strength and aperture available for sufficient crossing angle ( $\geq 10 \sigma$ ) and parallel separation to operate with full number of bunches with 25 ns spacing

What about : B or L insertion optimized for forward physics such that

#### higher $\beta^*$ + good acceptance for diffractive compatible with standard physics

- no need for limited special runs, high  $\int L dt$
- well screened and positioned roman pots at  $\sim 10$  sigma ? (after some h in physics )
- 3. Very forward detectors in very high luminosity insertions A/G "FP420" tagging of protons ( $\xi$  in the range 0.01 0.10?) at full luminosity using (fast timing) detectors in the dispersion suppressor needs early planning --- space and integration with magnet / cryo / collimation design





- **Goal : contribute section(s) to FCC-hh CDR**
- physics motivation
- requirements in terms of target machine parameters
- perspectives, machine & detector

For each of the running scenarios considered, define the requirements :

- phase advance between IP and RPs
- plane (x, y), w/o crossing angle
- local dispersion between IP and RPs (" $\xi$ " acceptance, D /  $\sqrt{\beta}$ )
- detector acceptance ( $\eta$  ranges)
- closest approach of RPs to beam axis  $n_{\sigma}$  and real space (mm
- if required limits on transfer matrix magnification  $v = r_{1,1}$  eff. length  $L = r_{1,2}$
- ∫ L dt
- Pile-up

 $n_{\sigma}$  and real space (mm, w/o dead space)





**Very encouraging LHC experience :** 

- no fundamental limit seen so far in going to very high  $\beta$ , 2.5 km reached in 2016
- very stable and reproducible  $\ --$  possible to de-squeeze over large range of  $\beta^*$
- roman pots -- possible to measure very close to beam, already demonstrated :
   3 σ in special runs
  - 15  $\sigma$  compatible with standard very high luminosity operation

There appears to be very good potential for forward / diffractive physics at FCC could profit a lot from :

- More space and flexibility
- Reduced emittance (significant damping)
- Higher  $\beta^*$  operation potentially compatible with standard operation
- Detectors in higher dispersion sections (dogleg, DS)