FCC study \& Forward Physics

by Helmut Burkhardt (CERN)

Future Circular Collider Study, FCC http://fcc.web.cern.ch Indico/Projects/FCC

status : good progress - goals and timescale as planned and presented last time
The Future Circular Collider study has an emphasis on proton-proton and electron-positron (lepton) high-energy frontier machines. It is exploring the potential of hadron and lepton circular colliders, performing an in-depth analysis of infrastructure and operation concepts and considering the technology research and development programs that would be required to build a future circular collider.

2017 : finalizing baseline designs FCC-hh \& ee; start preparation of FCC CDR

Studies on the accelerator and machine-detector interface for 2 high luminosity interaction regions \& detector concepts well advanced

FCC week April 2016 Rome 468 registered participants, Phys Workshop Jan. 2017
May 2017 Berlin, registration open (379 so far, collaboration still growing)
Acknowledgment :
discussion with FCC-hh design team, Daniel Schulte, Xavier Buffat, Michael Hofer et al. On status using slides from M. Benedikt + F. Zimmermann, Physics workshop 1/2017

Time scale

HL-LHC - ongoing project

~20 years

HL-LHC - ongoing project

Must advance fast now to be ready for the period 2035-2040 Goal of phase 1: CDR by end 2018 for next update of European Strategy

Progress on site investigations

- $90-100 \mathrm{~km}$ fits geological situation well
- LHC suitable as potential injector
- The 97.75 km version, tangent to LHC, is now being studied in more detail

parameter	FCC-hh		HE-LHC*	(HL) LHC
collision energy cms [TeV]	100		25	14
dipole field [T]	16		16	8.3
circumference [km]	100		27	27
beam current [A]	0.5		1.27	(1.12) 0.58
bunch intensity [10 ${ }^{11}$]	1 (0.2)	1 (0.2)	2.5	(2.2) 1.15
bunch spacing [ns]	25 (5)	25 (5)	25 (5)	25
IP $\beta^{*}{ }_{\text {x, }}$ [m]	1.1	0.3	0.25	(0.15) 0.55
luminosity/IP [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$]	5	30	34	(5) 1
peak \#events/bunch crossing	170	1020 (204)	1070 (214)	(135) 27
stored energy/beam [GJ]		8.4	1.4	(0.7) 0.36
synchrotron rad. [W/m/beam]		30	4.1	(0.35) 0.18
transv. emit. damping time [h]		1.1	4.5	25.8
initial proton burn off time [h]	17.0	3.4	2.3	(15) 40

compared to LHC : $3 x$ in size, $7 x$ in energy

Layout, new Nov. 2016

FCC-hh high-lumi region, (new) detector layout

Experiments like to stay at $L^{*}=45 \mathrm{~m}$ to allow for other solutions But high cost for this
trimenkery

Tracking
Ecal
HCAL
Magnets and cryostat
Muons

New Nov. 2016 :
No dipole any more
But forward solenoid

Hall half length: 35m

$$
L^{*}=45 \mathrm{~m}
$$

Detector half length $23.5 \mathrm{~m} \quad$ Space to open 11.5 m

FCC, MDI, Werner Riegler, Daniel Schulte et al.
injector options:

- SPS \rightarrow LHC \rightarrow FCC
- SPS/SPS upgrade \rightarrow FCC
- SPS -> FCC booster \rightarrow FCC

current baseline is to fully re-use the existing CERN accelerator complex
- injection energy 3.3 TeV from LHC

IR L, B optics

Optics / plots : Michael Hofer

luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ radiation damping: $\tau \sim 1 \mathrm{~h}$

PRST-AB 18, 101002 (2015)
for both phases:
beam current 0.5 A , unchanged!
total synchrotron radiation power $\sim 5 \mathrm{MW}$.
phase 1: $\beta^{*}=1.1 \mathrm{~m}, \xi_{\text {tot }}=0.01, t_{t a}=5 \mathrm{~h}, 250 \mathrm{fb}^{-1} /$ year phase 2: $\beta^{*}=0.3 \mathrm{~m}, \xi_{\text {tot }}=0.03, t_{t a}=4 \mathrm{~h}, 1000 \mathrm{fb}^{-1} /$ year

Damping time $\sim 1 \mathrm{~h}$, shrinking beam size
potentially very useful for forward physics, follow with Roman pots?

Some principles, high vs low β^{*}

$\beta^{*} \ll L^{*} \quad$ low beta small beams at IP. 90° phase advance L / R and strong focusing triplet high angular divergence
$\beta^{*} \gg$ L* high beta large parallel beams, low angular divergence \sim no phase advance and focusing

LHC design numbers :
$L^{*}=26.15 \mathrm{~m}$ (centre of 6.37 m long "Q1", MQXA.1R1)
$\beta^{*}=0.55 \mathrm{~m} \quad$ design value of low β^{*}

FCC length scale for IR, roughly $2 \times$ the LHC
$\mathrm{L}^{*}=45 \mathrm{~m}$
$\beta^{*}=1.1 \mathrm{~m} \quad$ design value of low β^{*}, ultimate 30 cm

FCC: E, γ increases by factor $100 / 14=7$ in $\sqrt{ } \gamma$ by 2.7
scaling

Beam size at IP

$$
\sigma^{*}=\sqrt{\beta^{*} \epsilon}=\sqrt{\beta^{*} \epsilon_{N} / \gamma}
$$

$$
\sqrt{ } \gamma
$$

Angular beam divergence $\quad \sigma^{\prime}=\sqrt{\varepsilon / \beta^{*}}=\sqrt{\varepsilon_{N} /\left(\gamma \beta^{*}\right)}$

Luminosity, round beams $\quad \mathcal{L}=\frac{N^{2} f}{4 \pi \sigma^{2}}=\frac{N^{2} f \gamma}{4 \pi \beta^{*} \varepsilon_{N}}$
Minimum \boldsymbol{t} with RP at $n_{\sigma} \quad-t_{\text {min }}=\frac{2 p n_{\sigma}^{2} \epsilon_{N} m_{p}}{\beta^{*}}$
Normalized emittance $\gamma \varepsilon=\varepsilon_{\mathrm{N}} \sim 2 \mu \mathrm{~m} \quad$ constant in (lower energy) proton machines, determined by injectors, similar for all proton machines. Beams shrink when accelerated.

Coulomb region: $\quad \boldsymbol{\beta}^{*} \sim \mathbf{2 . 5} \mathbf{~ k m}$ in LHC@13 TeV $--->20 \mathrm{~km}$ FCC@50 TeV LHC experience --- very high β^{*} challenging -- but not impossible.

New FCC : damping from SR+RF significant, opens up possibility to get significantly lower emittance --- potentially very useful for dedicated runs

Reminder : Low luminosity \neq No interference

Beam-beam interaction

Quantified by tune shift parameter ξ
head-on, round beams
$\xi=\frac{r_{c} N}{4 \pi \epsilon_{N}} \quad$ depends only on $\mathrm{N} / \varepsilon_{\mathrm{N}}$ not on energy and not on β^{*}

Head on : same beam-beam from low lumi high- β as high lumi IPs

To reduce b.b. would require to run separated by several σ

Principle of separation by crossing angle at higher β^{*}

Low $\boldsymbol{\beta}^{*}\left(<\mathbf{L}^{*}\right)$
beam size and separation increase $\propto \Delta s$,
\Rightarrow separation in units of σ about constant around IP all parasitic crossings adding up with similar contribution

Instead high β^{*} :

beam size \sim constant $=\sigma^{*}$, separation in σ increases as $\boldsymbol{\Phi} \Delta s$ where Φ is the crossing angle, dominated by 1st parasitic crossing 100 ns bunch spacing $4 \times$ more separated than 25 ns , used for 90 mLHC and negligible contribution from next $200,400 \mathrm{~ns}$...

Parasitic running in standard physics next to high luminosity IP, with tens of kilowatts of collision debris will be difficult. Important to plan this before.
Consider 3 scenarios - of which 1.+2. best at dedicated lower luminosity IP

1. Dedicated very high $\boldsymbol{\beta}^{*}$ operation for cross section measurements

Few bunches, no crossing angle. Few dedicated runs.
Roman pots very close (few sigma).
Minimize beam-beam (no collisions in other IPs, moderated bunch intensities) :
Profit from SR/RF radiation damping : $\varepsilon_{\mathrm{N}}=\mathbf{2 . 2} \boldsymbol{\mu m} \times \exp (-\mathbf{t} / \tau)$
where $\tau=1 \mathrm{~h}$. After ~ 4 hours at reduced equilibrium emittance (limit $0.05 \mu \mathrm{~m}$ without IBS) very high $\beta^{*}>10 \mathrm{~km}$ may not be needed
at reduced bunch intensities, more bunches compatible with no crossing angle to get sufficient luminosity
to be checked and optimized : damping partition, beam-beam, bunch schemes, IBS

Key ingredients for very high β^{*} :

- flexible quadrupole powering (bipolar) and large aperture
- sufficient \# (≈ 6) of independently powered quads IP to RPs
- well separated IR, DS sections
- getting there - de-squeeze from $\beta^{*}>\mathrm{L}^{*}$

2. Moderately high $\boldsymbol{\beta}^{*}$ some $\boldsymbol{\sim} \mathbf{1 0 0} \mathbf{m}$ operation for forward / diffractive physics
(and minimum bias, proton vs / ion calibration ..) with kind of "ALICE+TOTEM" IR and detectors Design IP such that enough corrector strength and aperture available for sufficient crossing angle ($\gtrsim 10 \sigma$) and parallel separation to operate with full number of bunches with 25 ns spacing

What about: B or L insertion optimized for forward physics such that
higher $\beta^{*}+$ good acceptance for diffractive compatible with standard physics

- no need for limited special runs, high $\int \mathrm{L} d t$
- well screened and positioned roman pots at ~ 10 sigma ? (after some h in physics)

3. Very forward detectors in very high luminosity insertions A/G "FP420" tagging of protons (ξ in the range $0.01-0.10$?) at full luminosity using (fast timing) detectors in the dispersion suppressor needs early planning --- space and integration with magnet / cryo / collimation design

Goal : contribute section(s) to FCC-hh CDR

- physics motivation
- requirements in terms of target machine parameters
- perspectives, machine \& detector

For each of the running scenarios considered, define the requirements :

- phase advance between IP and RPs
- plane (\mathbf{x}, y), w/o crossing angle
- local dispersion between IP and RPs (" ξ " acceptance, $D / \sqrt{ } \beta$)
- detector acceptance ($\boldsymbol{\eta}$ - ranges)
- closest approach of RPs to beam axis n_{σ} and real space ($\mathbf{m m}$, w/o dead space)
- if required limits on transfer matrix magnification $v=r_{1,1} \quad$ eff. length $L=r_{1,2}$
- $\int \mathbf{L} d t$
- Pile-up

Very encouraging LHC experience :

- no fundamental limit seen so far in going to very high $\beta, 2.5 \mathrm{~km}$ reached in 2016
- very stable and reproducible -- possible to de-squeeze over large range of $\boldsymbol{\beta}^{*}$
- roman pots -- possible to measure very close to beam, already demonstrated : 3σ in special runs
15σ compatible with standard very high luminosity operation

There appears to be very good potential for forward / diffractive physics at FCC could profit a lot from :

- More space and flexibility
- Reduced emittance (significant damping)
- Higher β^{*} operation potentially compatible with standard operation
- Detectors in higher dispersion sections (dogleg, DS)

