

LHC Working Group on Forward Physics and Diffraction CERN, March 21st 2017

Small-x Physics in ep, eA and pA at the FCC

Néstor Armesto

Departamento de Física de Partículas, AEFIS and IGFAE Universidade de Santiago de Compostela

nestor.armesto@usc.es

for the LHeC/FCC-eh and FCC-AA Study Groups

- I. Introduction: why and where.
- 2. Determining the small-x PDFs.
- 3. Searching for physics beyond DGLAP.
- 4. Summary.

References:
→ ep/eA: LHeC CDR, arXiv:1206.2913, J. Phys. G 39 (2012) 075001; arXiv:1211.4831; arXiv:1211.5102;
2015 LHeC Workshop <u>http://indico.cern.ch/event/356714/</u>.
→ pA: arXiv:1605.01389.
See the talks by Liliana Apolinário, Stefano Camarda, Emma Slade and Frank Zimmermann at the FCC Physics Week.

Disclaimer: not a full overview; FCC-eh work in progress.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC.

I. Introduction: why and where.

2. Determining the small-x PDFs.

System	√s _{NN} [TeV]	ℒ _{int} /run [nb ⁻¹]		
pPb	63	8000		
PbPb	39	33		

3. Searching for physics beyond DGLAP.

Λ	FCC-he & HE-LHC-ep parameters				FCC-he & H	A parameters					
4	parameter	FCC-he	ер	at HE-LHC	ep at HL-LHC	LHeC	ſ	parameter	FCC-Ae	eA at HE-LHC	LHeC
	<i>E_p</i> [TeV]	50		12.5	7	7	-	E _A [TeV]	19.7	4.92	2.76
Ī	E _e [GeV]	60		60	60	60	-	E _e [GeV]	60	60	60
R	\sqrt{s} [TeV]	3.5		1.7	1.3	1.3	-	\sqrt{s} [TeV] / nucleon-electron pair	2.2	1.1	0.8
	bunch spacing [ns]	25		25	25	25	s. G 39 (no. bunches	2215	592	592
	protons / bunch [10 ¹¹]	1		2.5	2.2	1.7		ions / bunch [10 ⁸]	1.2	1.2	1.2
ar	γε _ρ [μm]	2.2		2.5	2.0	3.75		γε ₄ [μm]	0.9	1.0	1.5
20	electrons / bunch [10 ⁹]	2.3		2.3	2.3	1.0	ame/2E/7	electrons / bunch [10 ⁹]	11	11	4.7
24	electron current [mA]	15		15	15	6.4	<u>ent/356/</u>	electron current [mA]	15	15	6.4
-	IP beta function $eta_{\!\scriptscriptstyle ho}^{*}$ [m]	15		10	7	10		IP beta function β_{A}^{*} [m]	15	10	10
C	hourglass factor	0.9		0.9	0.9	0.9	harda, Er	hourglass factor	0.9	0.9	0.9
Se	pinch factor	1.3		1.3	1.3	1.3		pinch factor	1.3	1.3	1.3
FC	proton-ring filling factor	0.8		0.8	0.8	0.8		ion-ring filling factor	0.8	0.8	0.8
	luminosity [10 ³³ cm ⁻² s ⁻¹]	11		9	10	1.3		e-N luminosity [10 ³² cm ⁻² s ⁻¹]	28	9	1.5

Disclaimer: not a full overview; FCC-eh work in progress.

Why (I):

Assuming collinear factorisation holds, small -x PDFs poorly known for particle production (even for heavy objects at the FCC).

Why (I):

 Assuming collinear factorisation holds, small -x PDFs poorly known for particle production (even for heavy objects at the FCC).

N.Armesto - Small-x in ep, eA and pA @ FCC: I. Introduction.

Why (I):

 Assuming collinear factorisation holds, small -x PDFs poorly known for particle production (even for heavy objects at the FCC).

N.Armesto - Small-x in ep, eA and pA @ FCC: I. Introduction.

Why (II):

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_s \ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS).
- High density \Rightarrow linear evolution must not hold: saturation, either

perturbative (CGC) or non-perturbative. $\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$

N.Armesto - Small-x in ep, eA and pA @ FCC: I. Introduction.

Why (II):

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_s \ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS).
- High density \Rightarrow linear evolution must not hold: saturation, either

perturbative (CGC) or non-perturbative. $\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$

• Non-linear effects driven by density \Rightarrow 2-pronged approach: $\frac{1}{x}^{A}$.

I. Introduction.

2. Determining the small-x PDFs (collinear factorisation checks):

- → eA.
- **→** pA.
- → Diffractive PDFs.
- 3. Searching for physics beyond DGLAP.

4. Summary.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC.

• Large improvements at small x (xFitter analysis).

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

• New setup EPPS16 [1612.05741] including baseline (fixed target DIS, DY, RHIC) plus neutrino and LHC (dijet, W, Z) pPb data. More flexible parametrisation, GM-VFNS, $R_u \neq R_d$.

 $f^{\mathbf{p}/A}_i(x,Q^2) = R^A_i(x,Q^2) f^{\mathbf{p}}_i(x,Q^2)$

 Including eA (60+2760) NC and CC pseudodata reduces the uncertainties (notably on g), but u,d decomposition difficult (factor 2Z/A-I). [Paukkunen]

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

 Including eA (60+2760) NC and CC pseudodata reduces the uncertainties (notably on g), but u,d decomposition difficult (factor 2Z/A-I). [Paukkunen]

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

 Including eA (60+2760) NC and CC pseudodata reduces the uncertainties (notably on g), but u,d decomposition difficult (factor 2Z/A-I). [Paukkunen]

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

• Tops could be used to constrain the nuclear glue as done now in pp collisions at the LHC. d'Enterria, Krajczac, Paukkunen, 1501.05879, Hessian reweighting

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

Diffraction in ep:

- Large increase in the M² (diffractive heavy states up to ~0.5 TeV), $x_P=(M^2-t+Q^2)/(W^2+Q^2)$, $\beta=x/x_P$ region studied.
- Possible to combine rapidity gap and p tagging.
- Precise determination of DPDFs.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Diffraction in ep:

- Diffractive dijet and open heavy flavour production offer large possibilities for:
 - → Checking factorization in hard diffraction.
 - → Constraining DPDFs.
- Large yields up to large PT^{jet}.
- Direct and resolved contributions: photon PDFs.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

Diffraction in ep and shadowing:

• Diffraction in ep is linked to nuclear shadowing through basic QFT (Gribov): eD to test and set the 'benchmark' for new effects.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 2. Determining the small-x PDFs.

I. Introduction.

- 2. Determining the small-x PDFs.
- 3. Searching for physics beyond DGLAP:
 - → Inclusive observables.
 - \rightarrow Diffraction.
 - → Particle production and correlations.

4. Summary.

Structure functions:

• F₂ and F_L at the FCC will provide a decisive test of small-x QCD (DGLAP cannot accommodate both if saturation is included), FCC reaching nearly x=10⁻⁷ in DIS - much beyond HERA and the LHeC. N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Elastic VM production in ep (I):

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Elastic VM production in ep (I):

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Elastic VM production in ep (I):

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Elastic VM production in ep (II):

- t-differential measurements give a transverse mapping of the glue in the hadron/nucleus (gluon GPD; quark GPDs accesible through DVCS).
- Large acceptance, up to |t|=2 GeV², achievable at the FCC-eh.

N. Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP. W/GeV

"b-Sat" dipole scattering amplitude with $r = 1 \text{ GeV}^{-1}$

Unitarity limit: N(x,r,b) = 1

35

1.0

0.8

Elastic VM production in ep (III):

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

PElastic VM production in ep (III):

 $|t| [GeV^2]$ N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

γ + p → ρ+p

ltl [GeV²]

γ^{*} + p → J/ψ+p

-X IP-Sat (Saturation)

IP-Sat (1-Pomeron)

b-CGC (Saturation)

 $Q^2 = 10 \text{ GeV}^2$, $W_{yp} = 2.5 \text{ TeV}$

★ IP-Sat (Saturation)

→ IP-Sat (1-Pomeron)

b-CGC (Saturation)

402.483

Elastic VM production in ep (III):

 Position of the dip and its evolution determined by the transverse structure of proton/ nuclei; its shrinking is natural in non-linear evolution towards the black disk (unitarity) limit. • For incoherent diffraction, sensitivity to the proton transverse structure: homogeneous versus lumpy.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Elastic VM production in eA:

For the coherent
 case, predictions
 available.

• Challenging experimental problem.

Mantysaari, 1011.1988, IPsat

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

• Exclusive processes give information about GPDs, whose Fourier transform gives a tranverse scan of the hadron: DVCS sensitive to the singlet.

• Sensitive to dynamics e.g. non-linear effects.

DVCS, E_e =50 GeV, 10°, pT^{Y,cut}=5 GeV, 100 fb⁻¹

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Single particle suppression in pA:

• Single particle suppression increasing with rapidity was proposed as a signal of saturation. $R_{pA} = \frac{\text{yield in eA/pA}}{\text{scaled yield in ep/pp}}$

• To be contrasted with an extraction of PDFs in collinear factorisation: tensions?

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Single particle suppression in pA:

scaled yield in ep/pp

• To be contrasted with an extraction of PDFs in collinear factorisation: tensions?

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: 3. Physics beyond DGLAP.

Summary (I):

- In ep/eA/pA collisions at the FCC:
 - → High-precision tests of collinear factorization(s) and determination of PDFs.
 - → Unprecedented access to small x in p and A (extension of 4-5 o.f.m.) in the perturbative Q^2 region.
 - → Novel sensitivity to physics beyond standard pQCD.
 - \rightarrow Transverse scan of the hadron/nucleus at small x; ...
 - Detectors should have large rapidity acceptance and, for pA, γ , h and jet ID.
- Unique capabilities, with strong implications for precision in pp/AA.
- The FCC will address the question of saturation/non-linear dynamics. For that, e, p and A are crucial.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC.

Summary (II):

• ep/eA and pp/pA are complementary:

→ DIS offers fully constrained kinematics and a cleaner theoretical and experimental environment.

→ Hadron collisions extend the kinematic region and test factorisation.

• To be done: we must

- → Extend more LHeC studies to the FCC-eh (synergies with the EIC?).
- → Consider the LHC findings and the HL-LHC possibilities.

→ With emphasis on **those aspects that are exclusive of the FCC**: diffraction, GPDs, nPDFs, tensions in the standard collinear framework when non-linear dynamics appears,..., at very small x and perturbative Q^2 .

Summary (II):

• ep/eA and pp/pA are complementary:

→ DIS offers fully constrained kinematics and a cleaner theoretical and experimental environment.

→ Hadron collisions extend the kinematic region and test factorisation.

• To be done: we must

- → Extend more LHeC studies to the FCC-eh (synergies with the EIC?).
- → Consider the LHC findings and the HL-LHC possibilities.

→ With emphasis on **those aspects that are exclusive of the FCC**: diffraction, GPDs, nPDFs, tensions in the standard collinear framework when non-linear dynamics appears,..., at very small x and perturbative Q^2 .

→ Many thanks to Javier Albacete, Max and Uta Klein, Heikki Mantysaari, Hannu Paukkunen and Amir Rezaeian for sending new calculations, and Paul Newman for suggestions.

→ Many thanks to the organisers for the invitation!

Thank you very much for your attention!!!

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC.

Backup:

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC.

DIS landscape:

Lepton—Proton Scattering Facilities

N. Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Theory in the non-linear regime:

ltem	Order	Theory	Pheno- menology	Comments
Evolution eqns.	NLO	~	~	rcBK and resummations; dilute-dense approx.
DIS impact factor	NLO	~	🗶 at NLO	dilute-dense approx.
Hadrons at y~0	LO	~	~	q and Q , dilute-dense approx.
Forward hadrons	NLO	~	~	q and Q, hybrid formalism
Quarkonium at y~0	LO	~	~	dilute-dense approx.+NRQCD
Forward quarkonium	LO	~	~	hybrid formalism
γ ^(*) at y~0	NLO	~	🗶 at NLO	dilute-dense approx., not yet DY at NLO
Forward γ ^(*)	LO	~	~	hybrid formalism
Dijets at y~0	LO	~	~	dilute-dense approx., partial NLO
Forward dijets	LO	~	~	hybrid formalism and high-energy factorisation, partial NLO
Diffractive dijets	NLO	~	≭ at NLO	dilute-dense approx.
g-g/q-q correlations	LO	~	✓/X	glasma graph approx.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

LHC vs. LHeC:

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

LHC vs. LHeC:

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

D'Enterria arXiv0707.

Photoproduction cross section:

• Small angle electron detector 62 m far from the interaction point: Q²<0.01 GeV, y~0.3 \Rightarrow W~0.5 \sqrt{s} .

• Substantial enlarging of the lever arm in W.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Structure functions:

• F_2 and F_L data will have discriminatory power on models.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

FCC hh ee he

Structure functions:

DGLAP cannot simultaneously accommodate F_2 and F_L data if saturation effects are included according to current models: F₂ and F_L at the FCC will provide a decisive test of small-x QCD.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Diffraction in ep:

- Large increase in the M² (diffractive heavy states up to ~0.5 TeV), $x_P = (M^2 t + Q^2)/(W^2 + Q^2)$, $\beta = x/x_P$ region studied.
- Possibility to combine rapidity gap and proton tagging.
- Precise determination of DPDFs.

Diffractive DIS on nuclear targets:

- Challenging experimental problem, requires Monte Carlo simulation with detailed understanding of the nuclear break-up.
- For the coherent case, predictions available.

Dijet azimuthal decorrelation:

- Studying dijet azimuthal decorrelation or forward jets ($p_T \sim Q$) would allow to understand the mechanism of radiation:
- → k_T-ordered: DGLAP.
- \rightarrow k_T-disordered: BFKL.
- → Saturation?
- Further imposing a rapidity gap (diffractive jets) would be most interesting: perturbatively controllable observable.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Forward jets:

- Studying dijet azimuthal decorrelation or forward jets ($p_T \sim Q$) would allow to understand the mechanism of radiation:
- \rightarrow k_T-ordered: DGLAP.
- \rightarrow k_T-disordered: BFKL.
- → Saturation?
- Further imposing a rapidity gap (diffractive jets) would be most interesting: perturbatively controllable observable.

x bi

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Odderon:

• Odderon (C-odd exchange contributing to particle-antiparticle difference in cross section) seached in $\gamma^{(\star)}p \to Cp$, where $C = \pi^0, \eta, \eta', \eta_c \dots$ or through O-P interferences.

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.

Transversity GPDs:

- Chiral-odd transversity GPDs are largely unknown.
- They can be accessed through double exclusive production:

 $ep(p_2) \to e'\gamma_{L/T}^{(*)}(q) \ p(p_2) \to e'\rho_{L,T}^0(q_\rho) \ \rho_T(p_\rho) \ N'(p_{2'}) \twoheadrightarrow_p$

N.Armesto, 21.03.2017 - Small-x in ep, eA and pA @ FCC: Backup.