Forward Physics and Optics at the HL-LHC

Rafał Staszewsk

Forward Physics and Optics at the HL-LHC

Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow)

LHC Working Group on Forward Physics and Diffraction 21 – 22 March 201, CERN

Introduction

Forward Physics and Optics at the HI-I HC

afał Staszewsk

Forward Physics and Optics at the HL-LHC

Rafał Staszewsk

Physics

Possible physics programme

Normal running (high lumi, low β^*)

Forward Physics and Optics at the HL-LHC

- exclusive Higgs ($b\bar{b}$ decay, spin, QCD mechanism)
 - + very convincing physics case feasibility very uncertain
 - community

- + interest beyond FWD may require detectors in cold region
- new physics in two-photon processes at high mass
 - + complementary to other searches
 - + interest beyond FWD community
- unclear if competitive with other channels
- additional pots should be considered
- exclusive jets (SM & BSM)
 - + complementary to other searches
 - + interest beyond FWD community

- feasibility very uncertain
- unclear if competitive with other channels

Possible physics programme Dedicated runs

Forward Physics and Optics at the HL-LHC

afał Staszews

- Dedicated runs with low β^*
 - high mass diffraction continuation of Run II programme, aim at better precision
- Dedicated runs with high β^*
 - low mass diffraction inclusive and exclusive, continuation of Run II programme
 - elastic scattering at large t
 search for secondary dips, perturbative description
 - total cross section solve discrepancy between ALFA and TOTEM
- + low β^* runs with small luminosity should be feasible
- possibly the only way to continue diffractive physics @HL-LHC (in ATLAS & CMS)
- not clear how large β^* will be possible
- requires dedicated machine time
- physics may not be interesting outside FWD community

Possible physics programme Heavy ion runs (if foreseen?)

Forward Physics and Optics at the HL-LHC

Rafał Staszewsk

- Tagging nuclear fragments (spectators) in pA and AA runs
 - + feasible
 - possible centrality determination

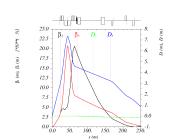
- not yet clear that useful information can be extracted from such measurements
- Proton tagging in pA (photoproduction studies)
 - requires high β^* optics with HI

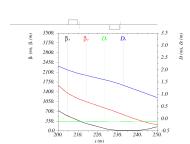
Forward Physics and Optics at the HL-LHC

Rafał Staszewsk

Optics

based on results from Maciej Trzebiński (IFJ PAN Cracow) for HL-LHC V1.0 optics (present version: 1.2)

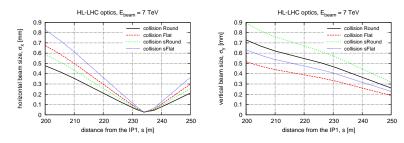

Betatron Function


Forward Physics and Optics at the HL-LHC

Optics	β_x^* [m]	eta_y^* [m]	x [mm]	y [mm]	$p_x \; [\mu { m rad}]$	p_y [μ rad]
collision Round collision Flat	0.150 0.075	0.150 0.300	$\pm 0.750 \\ \pm 0.750$	0 0	0 0	$\pm 295 \\ \pm 275$
collision sRound collision sFlat	0.100 0.050	0.100 0.200	$\pm 0.750 \\ \pm 0.750$	0 0	0 0	$\pm 360 \\ \pm 335$

- lacktriangledown x, y transverse position at the IP,
- lacksquare p_x, p_y crossing angle of Beam 1 at the IP.

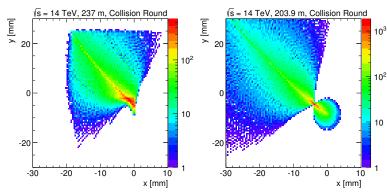
Example for 'collision Round':



Beam Size

Forward Physics and Optics at the HL-LHC

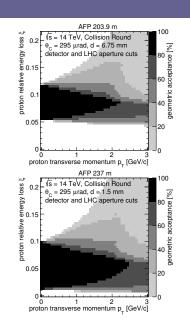
Rafał Staszewsk

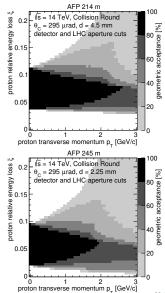

- horizontal size: minimum around 235 m for all optics,
- vertical size decreasing with distance,

Hit maps

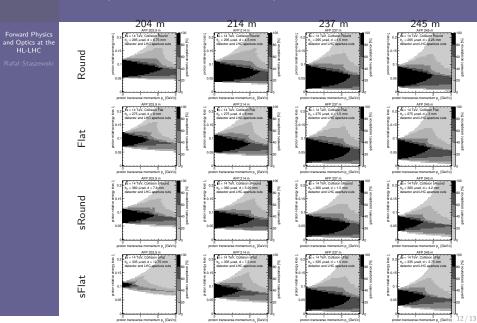
Forward Physics and Optics at the HL-LHC

of at Stanzauck


- Hit maps calculated for uniform grid in ξ , p_T and ϕ (unphysical distribution)
- Plots for Round optics, but all others are very similar
- Plots done for ATLAS IP



Acceptance for at different location


for horizontal detectors

Forward Physics and Optics at the HL-LHC

Acceptance for different optics scenarios

Summary and conclusions

Forward Physics and Optics at the HL-LHC

afal Staczowek

- If there is interest to have forward proton detectors at HL-LHC, proposals should be prepared asap and more detailed studies performed
- Given (very likely) limited resources, it will probably not be possible to pursue all physics possibilities (at least in one experiment)
- Factors (related to each other) defining performance and feasibility of measurements:
 - 1 optics
 - detectors (position, horizontal/vertical setup, resolution)
 - machine time (for dedicated runs)
- Not clear if high β^* can be obtained
- \blacksquare Acceptance for horizontal detectors at low β^* look qualitatively similar to present situation at the LHC