# Potential of wire compensation for (HL-)LHC & Optimal optics and hardware conditions

S. Fartoukh (CERN/BE/ABP)



# <u>Contents</u>

- Introduction to flat optics and potential of wire compensation
- $\rightarrow$  LHC & "HL-LHC Plan B"
- Principle of the correction and wire specification
- Optimal optics and HW conditions
- "Round", "Oval" or "Flat" optics? Which beam emittance ?
- $\rightarrow$  Is there any natural direction where to go for the 2017 MDs ?
- Conclusions & Outlook

### Introduction to flat Optics and potential of wire compensation

• Flat optics (not flat beams!) means

 $\varepsilon_x \sim \varepsilon_y \sim \varepsilon$  but  $\beta_x^* \equiv \sqrt{r} \beta^*$  and  $\beta_y^* \equiv \beta^* / \sqrt{r}$  with  $r \neq 1$ , typically 3 to 4 in LHC

- The Xing plane is always the plane of largest  $\beta^*$  (i.e. smallest  $\beta$  in the triplet)
  - **1. To preserve/gain aperture in the triplet** (smaller X-angle requested, and better matching between beam-screen and beam aspect ratio for LHC, see later)
  - 2. To gain in luminosity (geometric loss factor closer to unity)

Luminosity calculated for head-on colliding round beams

Full normalized X-angle

(9-10  $\sigma$  for LHC, up to 12.5  $\sigma$  for HL-LHC with more current and longer triplet with more LR's )

r.m.s. bunch length (7.5 cm nominally but 9-10 cm in practice for various reasons)

 $\beta^* \equiv \sqrt{\beta_x^* \times \beta_y^*}$  (30 - 40 cm for LHC, 10 - 20 cm for HL - LHC)

r the beta \* aspect ratio (defined as  $\beta_x^* / \beta_{||}^* \ge 1$ )

 $L(\mathbf{r},\boldsymbol{\beta}^*) = -$ 

→ Increasing the beta\* aspect ratio could in principle rapidly mitigate the geometric luminosity loss w/o need of crab-cavities
→ But w/o dedicated action, the normalised X-angle should unfortunately as well increase with the beta\* aspect ratio ...

#### Introduction to flat optics and potential of wire compensation

#### • Flat optics example:

HL-LHC plan B for 10<sup>35</sup> virtual luminosity w/o crab-cavities (HL-LHC Coordination Group, May 2013, and *PRSTAB 18-121001, 2015*)

→  $\beta^*=40/10$  cm at IP1&5 (i.e. *r=4*),  $\Theta_c=300 \mu rad$ , i.e. about halved vs. baseline but still 10.5  $\sigma$  at  $\beta^*=40$  cm in the X-plane, ho collision at full current in 3 IPs



#### Introduction to flat optics and potential of wire compensation

**<u>Competitive flat optics in LHC</u>** (e.g. 80/20 instead of 40/40, or 60/15 instead of 30/30) requires to change the crossing plane orientation (IT aperture), hence installing the wires in the right plane!.. (see later possible "oval" optics)



20/03/2017

#### Many questions with non-obvious answers

- 1) With only 2 wires left/right the IP, can we properly compensate 15-20 LR encounters taking place at <u>non uniform normalized</u> <u>beam-beam separation</u>?
- 2) If yes, can we build an <u>automatic tool for</u> <u>setting generation</u> (transverse position and current) working for arbitrary optics (flat or round) and crossing angle ?
- 3) Are there any preferences (based on beam dynamics criteria) where to install the wire, i.e. at <u>which  $\beta$ -function aspect ratio</u>? Is an aspect ratio of 1 really the optimal choice as thought in the initial proposal?



at  $\beta^*$ =15 cm (7 TeV,  $\gamma \epsilon$ =2.5 mrad)

#### <u>Beam-beam long-range multipole expansion</u>

#### Working in complex coordinates is the right thing to do:

- $z \equiv x + i y$  : transverse coordinate of the test particle wrt the centroid of the weak beam
- $z_0 \equiv x_0 + i y_0$ : relative centroid position of the strong beam wrt the weak beam

... And assuming  $|z| \ll |z_0|$ 

$$\int ds \left[ B_y + i B_x \right]_{eq} = -\frac{\mu_0 \left( \widetilde{Qc} \right)}{2\pi} \times \frac{1}{z - z_0}$$
  
$$\equiv \sum_{k=1}^{\infty} \left[ B_k + i A_k \right] z^{k-1} \longrightarrow B_k + i A_k = \frac{\mu_0 \left[ IL \right]_{eq}}{2\pi} \times \frac{1}{z_0^k}$$

 $[IL]_{eq} = 10.56 \text{ A.m} / \text{LR}$  for the HL-LHC beam (2.2E11)

 $[IL]_{eq} = 5.76 \text{ A.m} / \text{LR}$  for the LHC BCMS beam (1.2E11)

90 A.m would have been fully OK for LHC (15 LRs/IP side), about 200 A.m for HL-LHC (18-19 LRs/IP side) ... The TCTW has been designed for 350 A ??

$$B_k + i A_k = \frac{\mu_0[IL]_{eq}}{2\pi} \times \frac{1}{z_0^k}$$

- 1. H crossing ( $z_0 = x_0$  real) induces only normal harmonics ( $A_k$ =0).
- 2. V crossing  $(z_0 = iy_0$  purely imaginary) induces both skewed harmonics when k is odd  $(B_{2k+1}=0)$  and normal harmonic when k is even  $(A_{2k}=0)$ .
- 3. An alternated <u>HV Xing scheme in 2 low- $\beta$  IRs with identical round optics</u> compensates all (4n + 2)-pole tune shift and tune spread  $(B_2, B_6,...)$  but combine additively the (4n)-pole tune spread  $(B_4, B_8,...)$ . ...That is why the LR tune spread is close to that of a **pure octupole** in the LHC, and was easy to compensate with octupole magnets, at least at 4 TeV ....
- The compensation is only partial for alternated HV Xing in <u>2 low-β IR's with flat optics of</u> aspect ratio r and 1/r

#### • <u>Resonance Driving Terms (RDT) from the LR interactions in H or V crossing</u>



→ The detuning terms (footprint) are non-zero only when both p and q are even, and are equal to the corresponding driving terms.



Betatron phases  $[2\pi]$  w.r.t. the first LR encounter For Typical optics at  $\beta^*=15$  cm (HL-LHC)  $\rightarrow$  A few degrees till Q4

 $\rightarrow$  But rapid degradation of the situation for  $\beta^*$  >50 cm-1 m

#### • **RDTs from the wire**

$$c_{pq}^{w} \propto N_{w} \times \frac{r_{w}^{|p|-|q|}}{\left(d_{w}/\sqrt[4]{\beta_{x,w}\beta_{y,w}}\right)^{|p|+|q|}}$$

- $d_w$  : (non-normalized) distance of the wire w.r.t. the weak beam
- $N_w$ : integrated current expressed in terms of equivalent number of LR encounters
- $r_w~:~eta$ -function aspect ratio at the wire  $(m{eta}_x/m{eta}_y)$
- → The actual product of the  $\beta$ 's at the wire is not relevant (can be absorbed in rescaling  $d_w$ ), only the  $\beta$  aspect ratio is important, which can be eventually (re-)adjusted with the triplet settings



| Optics type @ 40 cm              | ATS 2016    | Nominal 2016 | ATS 2017 (new nominal 2017) | "ex-Nominal 2017" |
|----------------------------------|-------------|--------------|-----------------------------|-------------------|
| $\beta_{x (y)}$ [m] at TCT (TCL) | 1654 (1645) | 2149 (2144)  | 1314 (1302)                 | 2149 (2144)       |
| $\beta_{y(x)}$ [m] at TCT (TCL)  | 966 (935)   | 800 (772)    | 932 (901)                   | 800 (772)         |
| r <sub>w</sub> at TCT (TCL)      | 1.71 (1.76) | 2.68 (2.78)  | 1.41 (1.44)                 | 2.68 (2.78)       |

#### <u>Correction algorithm</u>:

With 2 knobs (1 wire/beam/ IP-side assumed to be symmetric w.r.t. the IP), only 2 or 4 RDT's can be a priori fully corrected:

 $\rightarrow$  ( $c_{p_1q_1}^{LR}$ ,  $c_{p_2q_2}^{LR}$ ) and ( $c_{q_1p_1}^{LR}$ ,  $c_{q_2p_2}^{LR}$ ) by symmetry with <u>left & right wires</u> at the <u>same physical transverse distance w.r.t. the beam</u> and at <u>the same current</u>

$$\left\{\begin{array}{c} u_{w,L} = u_{w,R} = u_{w} \equiv \sqrt{\beta_{eq}^{w}} \times \left[\frac{c_{p_{1}q_{1}}^{LR}}{c_{p_{2}q_{2}}^{LR}} \frac{r_{w}^{\frac{p_{2}-q_{2}}{4}} + r_{w}^{\frac{q_{2}-p_{2}}{4}}}{r_{w}^{\frac{p_{1}-q_{1}}{4}} + r_{w}^{\frac{q_{1}-p_{1}}{4}}}\right]^{\frac{1}{p_{2}+q_{2}-p_{1}-q_{1}}}\\ N_{w,L} = N_{w,R} = N_{w} \equiv \left[\frac{(c_{p_{1}q_{1}}^{LR})^{p_{2}+q_{2}}}{(c_{p_{2}q_{2}}^{LR})^{p_{1}+q_{1}}} \frac{(r_{w}^{\frac{p_{2}-q_{2}}{4}} + r_{w}^{\frac{q_{2}-p_{2}}{4}})^{p_{1}+q_{1}}}{(r_{w}^{\frac{p_{1}-q_{1}}{4}} + r_{w}^{\frac{q_{1}-p_{1}}{4}})^{p_{2}+q_{2}}}\right]^{\frac{1}{p_{2}+q_{2}-p_{1}-q_{1}}}.$$
  
...which is independent of  $\beta$ 

For flat optics of sufficiently small  $\beta^*$  in both planes, these settings are <u>still optimal</u> for the 2 RDT's considered, but the residuals of the other RDT's remains in general optics dependent.



The following does not treat the **compromise case of only one driving term compensated**, as e.g. the octupolar term, where the wire can be at any distance from the beam, provided enough current is available

→ See talk by A. Valishev (for the very promising results alreay obtained in this case)

• Integrated current vs. wire positioning (HL-LHC simulations)

- $\rightarrow$  3 correction types tested
- →  $r_w$ =1 can mitigate the current needed but is always worst for the quality of the correction (see later)
- → The current does not depend on the correction type for an aspect ratio of  $r_w \approx 0.5$  or  $r_w \approx 2$  ! At this aspect ratio, the wire current corresponds to the strict additive contribution of each LR



• Transverse distance w.r.t. beam vs. wire positioning in HL-LHC for a full X-angle of 590 µrad (12.5  $\sigma$  at  $\beta^*=15$  cm)



→ Again the results does not depend on the correction type for  $r_w \approx 0.5$  or  $r_w \approx 2$  !? → At this optimal aspect ratio, the normalized wire position is about:

 $d_w \sim 2^{1/4} \times \text{normalised X-angle on the side of the smallest } \beta$  $d_w \sim 2^{-1/4} \times \text{normalised X-angle on the side of the largest } \beta$ 





# **Optimal optics and HW conditions**

#### Some optimal rules for HL-LHC (and LHC)

**Rule # 1 (plane):** 2 wires /beam/IR installed in the X-plane .. e.g. H in IR1 and V in IR5 for "HL-LHC-like flat optics"

Rule # 2 (layout): Left/right symmetric w.r.t the IP

**Rule # 3 (optics):** At an optimal beta aspect ratio of about 2 (1.8 for LHC). In case, the LHC optics is flexible enough to be changed accordingly (mitigating possible constraints from the forward physics experiments)

**Rule # 4 (current):** With a current of about 200 A (100 A for LHC), same current left and right

**Rule # 5 (transverse setting):** At the same physical distance w.r.t. the beam for the left and right wires, corresponding to a normalized distance which is 15-20% larger (resp. smaller) than the crossing angle for the wire on the side of the smallest (resp. largest) beta.

# **Optimal optics and HW conditions**

#### Where are we with the present HW and which consequence?

- ③: Two wires at the TCT & TCL almost symmetric w.r.t. the IP
- $\textcircled{O}: \beta$ -aspect ratio at the wires not ideal but much better for ATS2017 than for the 2016 optics
- ③: Wire in the H plane which rules out flat optics with very small (15-20 cm) horizontal beta\*, not too large vertical beta\* (~60 cm) and V crossing, as imposed by the IT aperture
- By far enough current ( × 4 compared to LHC needs), but which drove a specific HW solution with (too) many beam sigma's lost between wire and TCT edge (see also next slide)



**Round optics:** 3 mm means already ~5  $\sigma$  @  $\gamma\epsilon$ =2.5  $\mu$ m and  $\beta^*$ =40 cm ( $\beta$ ~900 m at the TCLW)

**"Oval" optics**: H crossing kept in CMS,  $\beta^*$  limited to ~ 35-40 cm in the V plane (parallel separation plane), and  $\beta^* \sim 1$  m in the X-plane to keep a "decent" sizeable aspect ratio **3 mm becomes ~8 \sigma at \beta^\*=1 m ... (\beta shrinks to ~360 m at the TCLW)** 

→ Definitely the emittance of the weak beam has to be blown up.

Divonne, France

18

# Can we find any configuration for 2017 to test the full correction? .. Assuming

(i) Minimum allowed TCTW gap of 6 collimation  $\sigma$  (i.e. calculated for  $\gamma \epsilon$ =3.5  $\mu$ m)

(ii) <u>Targeting a X-angle of 8 (10) beam  $\sigma$  in round (oval) optics to see convincing life time drops (.. and recovery), i.e. ~ 10 (12) beam  $\sigma$  for the wire at the smallest  $\beta$ .</u>

(iii) Trying  $\beta^*=33 - 40$  cm for round optics,  $\beta^*=1$  m in the X-plane for "oval" optics



It looks really tricky in all cases, and round optics still seems to be the most promising (easy) way to go

#### Conclusions & Outlook

- The present HW configuration (H-plane, 5-8  $\sigma$  lost for wire integration in TCT jaw) makes the full test of the HL-LHC Plan B rather challenging
- Testing the octupole compensation is however still perfectly within reach and potentially very beneficial, at least with round optics

 $\rightarrow$  See Sasha's talk

• Something however still deserves work and a particular attention, which is an attempt for **global correction (all RDTs)**, re-phasing appropriately the optics, with the aim

(i) to use the **TCTW/TCLW in IR5 to compensate IR1 with "true" flat optics & H crossing** for the demonstration with beam

(ii) then, to **envisage installing wires in TCP7 or TCSG7** (existing or additional ones?), with the right current rating (..), and make the technique fully operational (i.e. w/o gymnastic needed with emittance growth and/or non-nominal collimator settings ..)