Orbit, Tune, Chroma, BTF & Schottky

T. Levens

Presenting a summary of work carried out by many other people. Thanks to them all.

Outline

- Provide an overview of the available instrumentation for measuring:
 - Orbit
 - Standard BPMs
 - DOROS BPMs
 - Tune
 - BBQ
 - BTF
 - Schottky
 - Chromaticity
 - Radial modulation
 - Schottky
- Provide examples of past measurements
- To serve as a primer for discussions about the instrumentation needs...

Orbit

WBTN electronics installed on all "standard" LHC BPMs

Available measurement modes:

- 1. Asynchronous Orbit
 - Average beam position over T seconds for all bunches
 - Used in the orbit feedback
- 2. Synchronous Orbit
 - Average selected bunch over T sec
 - Put into operation for p/Pb
- 3. Capture
 - Bunch by bunch and turn by turn position
 - Used for optics measurements and IQC

New firmware deployed end 2016 – orbit mode resolution should now be improved by better averaging

DOROS – Diode ORbit and OScillation

- orbit measurement
- local betatron coupling measurement
- beta-beating measurement
- DOROS was primarily designed for the collimator BPMs and optimised for:
 - precise beam orbit measurement for small beam offsets
 - sub-micrometre resolution
 - robustness and simplicity
 - price to pay: only turn-by-turn acquisition
- DOROS currently installed on:
 - all collimators with in-jaw BPMs (including the BBLR wires)
 - Q1 BPMs in P1, P2, P5, P8
 - Q7 & AFP BPMs in P1
- "Order of magnitude" orbit sensitivity:
 - pilot ~1um
 - nominal ~0.1um

Orbit – DOROS

| T. Levens

Orbit, Tune, Chroma, BTF & Schottky | 2nd LRBB Mini-Workshop

Tune - BBQ

Operational tune system used for tune feedback

Optimal machine parameters

- Best measurements with the "high-sensitivity" system
 - Pilot up to a small number of nominal bunches
 - Correct time constant must be selected (expert setting)
- The damper must be off to avoid SNR degradation
- Sharpness of tune peak enhanced by low chroma

Excitation options, tested in MD1447

- No excitation $<1e^{-4}$
- Chirp
- MKQA kicks <1e-5

All TCSGs scan 1 (no chirp)

• Noise lines in B1H and B1V affecting the measurement

All TCSGs scan 1 (no chirp)

Noise lines in B2H and B2V affecting the measurement

All TCSGs scan 1 (no chirp)

 We can get rid of few of them after SUSSIX analysis and selecting a narrow tune window -> Not always doable.

All TCSGs scan 1 (no chirp)

B1 B2 +2.671e-1 0.0009 Collimator full gap [mm] Collimator full gap [mm] 0.0008 0.2690 0.0007 0.0006 0.2685 С 0.0005 с 0.0004 0.2680 0.0003 0.2675 0.0002 0.0001 04:19 04:24 04:29 04:34 04:39 04:44 04:19 04:24 04:29 04:34 04:39 04:44 8 0.2945 Collimator full gap [mm] Collimator full gap [mm] B1V 0.2945 B2V 0.2940 0.2940 5 0.2935 ⊂ 5 0.2935 ^C 4 0.2930 0.2930 0.2925 04:24 04:29 04:34 04:39 04:19 04:44 04:34 04:19 04:24 04:29 04:39 04:44 time time

- After refinement the tune shift is clearly visible.
- Moving average can clean out some noise

All TCSGs scan 1 (no chirp)

TCSG.D4L7.B1 MKQA excitation (BBQ)

TCSG.D4L7.B1 MKQA excitation (BBQ)

- A nice clean signal from the BBQ can be obtained.
- 2k turns analysis gives accuracy of order of **1e-5**

TCSG.D4L7.B1 MKQA excitation (ADT)

 $\Delta Q_{V,\,\rm one} = 3.\,94361e - 05 \pm 1.\,39894e - 05$

- Similar data have been analysed with the same method from the ADT with similar results!
- Other methods applied as well (details in D.Valuch, L.Carver et al. <u>ColUSM 76</u>)

TCSG.D4L7.B1 MKQA excitation (ADT)

 $\Delta Q_{V,\,\rm one} = 3.\,94361e - 05 \pm 1.\,39894e - 05$

- Similar data have been analysed with the same method from the ADT with similar results!
- Other methods applied as well (details in D.Valuch, L.Carver et al. <u>ColUSM 76</u>)

BBQ Data analysis

M.Gasior, R.Jones, CERN-AB-BDI

Tune Change Measurements with the BBQ (SPS Prototype)

Chromaticity

- Operational chromaticity measurements based on sinusoidal RF modulation and fitting of resultant tune modulation
 - Limited to low intensity at 6.5 TeV
- Online fitting in GUI available since 2015, now used operationally
- Requires good BBQ signal

Example from the LHC

- Sinusoidal RF modulation at 0.05Hz
- Tune continuously tracked in all planes of both beams
- Chromaticity calculated once acquisition complete

BTF

Beam Transfer Function measurements:

- Excitation of beam with swept frequency
- Synchronous demodulation of BBQ response

Can measure tune shift, tune spread, stability diagram, ...

- First tests during 2015/2016 MDs with "prototype" software/GUI developed by ABP.
- Deployment on operational BBQ systems for 2017.
- New software/GUI under development for 2017 run.
- Requires good quality tune signal no damper!

T. Pieloni From BTF → Tune Shift and Tune spreads in the LHC

Crossing Angle Scan in weak-strong approximation in the LHC

No calibration of the system, very difficult since very sensitive to beam and machine set-ups. Model to measurements comparison very hard but we found a way!

- Tune Shifts measurements very precise
- Tune spread computed in relative terms (i.e. respect to a starting case in this example Octupoles powered at 478 A)

T. Pieloni

From BTF \rightarrow stability diagrams

Predictions of instability thresholds based on computation of the beam Landau damping by calculating the **Stability Diagrams (SD)**

$$\mathsf{BTF=} \ SD^{-1} = \frac{-1}{\Delta Q_{x,y}} = \int_0^\infty \int_0^\infty \frac{J_{x,y} \frac{d\Psi_{x,y}(J_x,J_y)}{dJ_{x,y}}}{Q_0 - q_{x,y}(J_x,J_y) - i\epsilon} dJ_x dJ_y$$

Frequency Distribution: (Size of the SD)

Particle distribution:

Simulation Tools:

- MAD-X \rightarrow Frequency Distribution
- PySSD \rightarrow Semi analytical calculation of the SD
- SixTrack \rightarrow Particle distribution after long particle tracking
- COMBI \rightarrow Multi-particles code, BTF simulation

From BTFs \rightarrow Stability diagrams Longitudinal motion

On-going work HSC teams:

- Modeling of distributions from Sixtrack now generative implemented in BB models to describe strongly resonant cases (strong long-ranges)
- Still working on improvement of the LHC model to measurements comparisons at end of squeeze, collisions and during crossing angles scans

(EPFL PhD Thesis C. Tambasco)

- Octupole current scan at Injection well understood and reproducible with tools
- Measured residual 5 Ampere equivalent spread at Injection → consistent with optics measurements team results
- Longitudinal motion contribution also well represented with 3D Modeling

M. Betz

Schottky Theory

• Extract the chromaticity from the measured *Schottky* sidebands:

$$\begin{split} \dot{Q} &= \eta \left(h \frac{\Delta f_{lsb} - \Delta f_{usb}}{\Delta f_{lsb} + \Delta f_{usb}} + q \right) \approx \overbrace{\eta h}^{\Delta f_{lsb} - \Delta f_{usb}}_{\simeq -136} \\ \text{with: } \eta &= -3.184 \cdot 10^{-4} \text{ (phase slip factor)} \\ h &= 4.28 \cdot 10^5 \text{ (harmonic number at } f = 4.81 \text{ GHz}) \end{split}$$

M. Wendt

Beam 1 – All Schottky Data MD1447

M. Wendt

Beam 1 – Schottky Sideband Data

MD1767: Fun with Fitting

4 5

MD1767: Schottky-based Chromaticity Measurements

M. Betz

MD1767: Beam 1 Results

MD1767: Schottky-based Chromaticity Measurements

- Potentially powerful, non-invasive, measurement of tune and chromaticity
- To obtain decent signal quality:
 - >1e¹⁰ ppb
 - 30-60 seconds averaging time with stable conditions
- Still an expert tool, requires careful setup
- Work on software and algorithms online fitting of tune and chromaticity is ongoing

Orbit, Tune, Chroma, BTF & Schottky |

Summary

• DOROS on in-jaw BPMs allows wire alignment and submicron orbit measurement

Tune

- Unexcited ~1e⁻⁴
- MKQA kicks ~1e⁻⁵

Chromaticity

• Measurement via RF modulation

BTF

• Powerful tool with potential to measure stability diagram

Schottky

• Possibility for non-invasive tune/chromaticity measurements

Note that ultimate performance of instruments often requires special setup. Important to discuss MD plans with the experts in advance.

Thanks!